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Abstract— Algorithms have been recently developed for
clustering microarray data that allow elements - usually
genes - to belong to more than one cluster. The labellings
that these algorithms produce are intuitively closer to the
reality of biological processes, but are more difficult to
analyze by traditional means. In this paper, we introduce an
algorithm for aligning the results of overlapping clusterings
and for visualizing the results. We demonstrate the utility of
the visualization, and provide an example of the application
of the alignment technique to constructing an overlapping
clustering ensemble.

I. INTRODUCTION

Clustering is a useful unsupervised way of discovering
structure in large datasets. Most clustering algorithms in
common use assign each data point to just one cluster.
The result of this type of clustering is an assignment
of 1 of k labels to each of the n points in the dataset.
Such a labelling can be represented as a k × n mem-
bership matrix M where each row has a 1 in the
kth position corresponding to the point having label k,
and zeros elsewhere. Membership matrices that satisfy
∀n

∑k
i=1 M(n, k) = 1 are called disjoint because they

represent a disjoint clustering.
In bioinformatics applications, disjoint clusterings of-

ten do not adequately capture the expected behavior.
It is known from gene-knockout and other assays that
individual genes often play roles in several cellular pro-
cesses; thus, when finding process clusters by clustering
genes’ behavior across several experimental conditions,
one would expect certain genes to have multiple labels.
Several novel approaches to clustering microarray data
have been developed to find such labellings, e.g. Gene
Shaving [1], Model-Based Overlapping Clustering [2],
[3], and Plaid [4]. These approaches allow genes to
belong to none, one, or many clusters, and therefore the
labellings form membership matrices that do not satisfy
∀n

∑k
i=1 M(n, k) = 1. Such membership matrices are

called nondisjoint.
The adjusted Rand index (ARI) [5] is commonly used

to compare two disjoint clusterings, or to compare a

disjoint clustering to a ground truth. The adjusted Rand
index evaluates pairs of points; a high ARI indicates that
most pairs of points that share a label in one clustering
also share a label in the other. The state of a pair of
points sharing a label is implicitly binary, and therefore
the adjusted Rand index can not be used to compare
nondisjoint memberships, where a pair can share 0, 1,
or more labels. The Omega index [6] generalizes the ad-
justed Rand index to compare nondisjoint memberships.

When clustering genes into processes with a nondis-
joint clustering approach, the Omega index similarity
between clusterings or with a ground truth is useful,
but provides no information about the correspondence
between individual clusters. This paper describes a
method for finding and visualizing the best partial cor-
respondence between two overlapping labellings. Label
alignment facilitates comparisons among membership
matrices, as well as combining membership matrices into
ensembles.

In Sections II and III, we describe the alignment and
visualization method. In Sections IV, V, and VI we give
examples of the application of the method to to simulated
microarray data.

II. ALIGNING NONDISJOINT MEMBERSHIP

MATRICES

To align two binary membership matrices MA and
MB , we seek a permutation of the columns of MB that
maximizes the similarity between each column of MA

and its corresponding column in MB . A simple measure
such as Hamming distance between the columns seems
like a reasonable choice, but it implicitly assumes each
column has the same density (ratio of 1’s and 0’s), which
is not a valid assumption. To compensate for variations in
density, we assume the 1’s are independently distributed
and calculate the probability of seeing the observed
match given the densities of the binary vectors, v1 (a
column of MA) and v2 (a column of MB):

With

121

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE



• N as the vector length (total number of data points)
• d1 as the number of 1’s appearing in v1, i.e. d1 =∑N

i=1 v1[i]
• d2 as the number of 1’s appearing in v2, i.e. d2 =∑N

i=1 v2[i]
• S is the number of “overlapping” 1’s, i.e. S =∑N

i=1 v1[i] × v2[i]
• the 1’s in v1 and v2 uniformly distributed

the probability of seeing an observed overlap of S 1’s is
given by:

P (s = S) =

(
N
d1

) (
d1

S

) (
N − d1

d2 − S

)
(

N
d1

)(
N
d2

) (1)

where the denominator is the total number of permuta-
tions of the two vectors, and the numerator is the number
of those permutations that have the observed overlap S:

•
(

N
d1

)
counts the number of ways d1 1’s can be

placed in a vector of length N ;

•
(

d1

S

)
counts the number of ways to choose the

S overlapping points from the d1 1’s in v1; and

•
(

N − d1

d2 − S

)
counts the number of ways to place

the remaining 1’s in vector 1 such that they do not
overlap with 1’s in v2.

While the denominator is obviously symmetric in as-
signment of v1 and v2, the numerator is not so clearly
symmetric. Expansion of the binomial in Equation 1 co-
efficients makes it clear that the numerator is symmetric:

N !
(d1 − S)!S!(N − d1 − d2 + S)!(d2 − S)!

(2)

Algebraic simplification of Equation 1 yields:

P (s = S) =

(
d1

S

)(
N − d1

d2 − S

)
(

N
d2

) (3)

Equation 3 calculates the probability that two binary
vectors v1 and v2 with densities d1 and d2 respectively
will have S matched 1’s (Equation 3 is the hypergeo-
metric distribution evaluated at s = S). If we observe
two N -length binary vectors, then

p − value =
s=min{d1,d2}∑

s=S

P (s) (4)

The p-value defined in Equation 4 gives the total prob-
ability of seeing the observed overlap (S) or a greater
overlap. This value essentially measures the likelihood
of the observed overlap being a random event, hence a
small p-value indicates a small probability of seeing the
observation at random. 1

Returning to our original goal of aligning the columns
of two membership matrices M1 and M2, it is clear
that if we find that the p-value of matching between
column i of M1 and column j of M2 is very small,
we can surmise that those two columns represent the
same cluster. Finding the best possibly global matching
of columns is an instance of the Stable Marriage problem
[9], which is known to be NP-complete. The well-known
Gale-Shapley algorithm [10] gives asymmetric solutions,
so we opt to use a simple greedy matching algorithm.

1) Find the pairwise alignment p-value for every
column of M1 matched with every column of M2.
(For M1 and M2 each having k columns, this
operation will take (k2

2 − k) p-value calculations.)
2) Match the pair of columns M1[:, i] and M2[:, j]

with the lowest pairwise p-value.
3) Repeat 1-2 until all columns have been assigned.

Note that this algorithm does not allow a single cluster
in one clustering to be represented by a combination
of clusters from the other clusterer. Future work will
explore allowing such combinations.

III. VISUALIZATION OF p-VALUE BASED ALIGNMENT

Along with the overlapping correspondence matching
algorithm, we have developed a visualization tool which
clearly presents correspondence alignments and other in-
formation. The visualization, as shown in Fig. 1, presents
three frames. The first two show cluster ”signatures”, and
the last a bar chart of overlap p-values.

Cluster signatures are a visual representation of a
nondisjoint label assignment designed to facilitate quick
inspection and comparison of labellings. Given an n×m
membership matrix M , a cluster signature is constructed
as follows:

1) For each row i,

a) construct a vector t containing the indices of
the 1’s and set score[i] = 0

b) If length(t) = 0, score[i] = n + 1
c) if t[2] − t[1] �= 1, score[i] = t[1] +∑length(t)

k=2
t[k]
mk

d) if t[2] − t[1] = 1, score[i] = t[1] + (1 −
1

mm+1 ) +
∑length(t)

k=2
t[k]

mm+k

1A similar measure called the S-measure has been used previously
in [7], [8].

122

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



2) Sort rows by increasing score
Ordering the membership matrix as described above

puts the data points with no memberships at the bottom
(step 1b) and sorts data points with memberships into
blocks according to their minimum cluster label (steps
1c and 1d). Additionally, step 1d creates a visual overlap
between consecutive overlapping clusters. Both steps 1c
and 1d place points with additional cluster memberships
into a unique order. This algorithm leads to a unique
ordering for a given membership matrix, and is inde-
pendent of the input order of the points.

IV. COMPARISON OF CLUSTERING METHODS

We present the alignment and visualization with a
comparison of two algorithms, Model-based Overlapping
Clustering (MOC) [3] and thresholded soft k-means 2 .
MOC takes as input an observed n × m data matrix E
and factors it into an n×k binary matrix M and an m×k
(real) activation matrix A. Soft k-means is very similar
to the standard k-means algorithm, except that points are
given partial (“soft”) assignment to centers. The resulting
membership matrix is real, with the property that for
any row j,

∑m
i=1 x[i, j] = 1. A soft clustering can be

converted into a hard clustering by thresholding the soft
membership matrix.

For ease of explanation and analysis, we demonstrate
the application of our alignment and visualization on
synthetic data. We generated a 10 cluster synthetic
dataset using the MOC generative model, which is a
conceptual representation of the biological and experi-
mental processes that produce collections of microarray
experiments. The MOC model assumes that an observed
n × m data matrix E can be expressed as the product
an n×k (binary) nondisjoint membership matrix M and
an m × k (real) activation matrix A. For this example,
we have used n = 1000,m = 30, k = 10. (For a full
discussion of the MOC model, please refer to [3].)

Fig. 1 illustrates the p-value based alignment of Model
Based Overlapping Clustering with the ground truth
for a synthetic data set. The uppermost box shows the
signatures of each of the 10 clusters of the ground
truth labels. The points have been sorted as described in
Section III. The next box shows the signatures of each
of the 10 clusters of the MOC labelling, with the points
sorted as above and the clusters aligned. The final box
shows the p-values of each of the alignments.

2Soft k-means is the application of the expectation maximization
(EM) algorithm to a mixture of k spherical Gaussians. Soft k-
means minimizes an objective function equivalent to the fuzzy c-
means [11] objective with “fuzziness” parameter m set to 1 and with
dimensional scaling matrix Ak as identity. These are reasonable - but
not necessarily optimal - parameters for this algorithm on our dataset.
For a study on choosing m and Ak for a given dataset, see [12].

By visually comparing the first and second frames
(the cluster signatures of the ground truth and of MOC’s
labelling, respectively) in Fig. 1, one can observe that
this clusterer, MOC, has found a cluster labelling that
corresponds well to the actual clusters in the data.
Columns 1,3,5, and 6 show log10 p-values of less than
-110, indicating infinitesimal odds of those matches
occurring by chance. The other columns show good
alignment, although the imperfections in the result are
evident. Overall, this alignment is very good, which is
to be expected since the data was generated using the
clusterer’s generative model.

Fig. 2 shows the alignment of a soft k-means clusterer
run on the same artificial data set and thresholded at 0.3.
Both the signature visualization and the p-value chart
show that the clustering does not match the truth as
well as the MOC clustering. While several clusters show
reasonable correspondence with the ground truth, two
clusters - columns 2 and 4 - completely fail to match.

V. ALIGNMENT FOR CLUSTER ENSEMBLES

When the underlying generative model is unknown,
combining the results of several diverse clusterers often
improves the overall clustering result. One method of
aligning clusters ensemble techniques is matching label
assignments from each clusterer in the ensemble. Effec-
tive methods exist for disjoint membership matrices [13];
however, such methods are not applicable to nondisjoint
membership matrices.

The p-value alignment method described in Section II
provides a means of combining overlapping clusterings
where each constituent clusterer uses the same k. In
this section, we present results from combining three
overlapping clusterers - MOC, thresholded soft k-means,
and gene-shaving - on the previously described synthetic
microarray dataset.

The idea behind cluster ensembles is that each con-
stituent clusterer will return a noisy representation of
the actual underlying clustering. Combining several clus-
terers in an ensemble averages out the noise and often
provides a better estimate of the underlying clustering.
Clustering algorithms in general return clustering infor-
mation in arbitrary order, necessitating cluster matching
prior to ensemble operations.

We applied MOC, soft k-means thresholded at 0.3,
and gene shaving to our synthetic microarray dataset.
We aligned the results to each other, as shown in Fig.
3. We then performed a majority-vote combination; that
is, if a gene is marked as belonging to a cluster m by 2
out of the 3 clusters, we assign that gene to cluster m in
the final result. Fig. 4 shows the final consensus result
aligned to the ground truth.
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Fig. 1. Visualization of correspondence between ground truth and MOC overlapping clustering for synthetic microarray data. The top frame is
the “signature” of the ground truth, with the rows sorted as described in Section III. The second frame is the “signature” of the MOC clustering,
with the rows in the same order as in the top frame, and the columns matched using the algorithm described in Section II. The final frame is a
bar chart of the alignment p-values. The more negative the alignment p-values, the less likely the alignment happened due to random chance.

The consensus clustering shown in Fig. 4 is superior
to any of the constituent clusterings shown in Fig.
3. It should also be noted that while the individual
alignments for MOC and soft k-means shown in Fig.
1 and Fig. 2 have some lower alignment p-values, the
overall ensemble result appears to be much less noisy.

VI. CONCLUSION

Overlapping clustering techniques provides a means
of clustering microarray data in a way that matches
nicely with biologic intuition about the participation of
genes in biological processes. The results of overlapping
clusterings, though, can be difficult to interpret. In this
paper, we presented a cluster alignment method and a vi-
sualization tool which facilitates comparison, evaluation,
and combination of overlapping clustering results.

NOTES

1) The model-based clustering algorithm was imple-
mented by Bannerjee, Basu, and Krumpelman [3].

2) geneclust [14] was used for gene shaving.
3) netlab [15] was used for soft k-means.
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Fig. 2. Visualization of correspondence between ground truth and Soft k-means overlapping clustering for synthetic microarray data.
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Fig. 3. Visualization of aligned cluster signatures of MOC, soft k-means, and gene shaving clustering results on the synthetic data.
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Fig. 4. Visualization of ground truth cluster labels and aligned majority-vote consensus of MOC, soft k-means and gene shaving. The consensus
recovers the actual labelling better than any of the individual clusterers.
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