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Abstract— Investigation of 3D chromatin structure in inter-
phase cell nuclei is important for the understanding of genome
function. For a reconstruction of the 3D architecture of the
human genome, systematic fluorescent in situ hybridization in
combination with 3D confocal laser scanning microscopy is
applied. The position of two or three genomic loci plus the
overall nuclear shape were simultaneously recorded, resulting in
statistical series of pair and triple loci combinations probed along
the human chromosome 1 q-arm. For interpretation of statistical
distributions of geometrical features (e.g. distances, angles, etc.)
resulting from finite point sampling experiments, a Monte-Carlo-
based approach to numerical computation of geometrical prob-
ability density functions (PDFs) for arbitrarily-shaped confined
spatial domains is developed. Simulated PDFs are used as bench
marks for evaluation of experimental PDFs and quantitative
analysis of dimension and shape of probed 3D chromatin regions.
Preliminary results of our numerical simulations show that the
proposed numerical model is capable to reproduce experimental
observations, and support the assumption of confined random
folding of 3D chromatin fiber in interphase cell nuclei.

I. MOTIVATION

The dynamic 3D folding of the chromatin fiber in the
interphase nucleus is a key element in the epigenetic regulation
of gene expression in eukaryotes [2], [7]. Chromatin structure
can be studied by 3D confocal laser scanning microscopy
(CLSM) after fluorescent in situ hybridization (FISH) labeling
of specific sequence elements in the genome under conditions
that preserve biological structure. Using Bacterial Artificial
Chromosomes (BACs), FISH enables selective visualization
of complete individual chromosomes or subchromosomal do-
mains, or smaller genomic regions of only few hundreds kilo-
base pairs (Kb = 10−3 Mb). In the present study four CSLM
imaging channels were used for the simultaneous visualization
of three genomic sequence elements (using three spectrally
differently labeled BACs) and the overall size and shape of the
interphase nucleus (using DAPI labeling of all nuclear DNA).
For probing large chromatin regions with a finite number of
sampling points, multiple measurements in different cells have
to be performed. However, reconstruction of 3D chromatin
structure in a ’piece-by-piece’ manner from such series of
finite point samplings assumes the existence of a mechanically
conservative 3D structure that exhibits only small topological
cell-to-cell variations. In contrast, distance measurements in
different cells show extensive cell-to-cell variations that are not

due to measuring errors and therefore indicate a flexible and
dynamic structure of interphase chromatin [5]. Repetitive mea-
surements in many otherwise identical cells yield statistical
series of simultaneously labeled pairs or triplets of BACs, i.e.
coordinates of their mass center points, and the corresponding
geometrical features (e.g. pairwise distances) that are used
for quantitative analysis of probed chromatin regions. In a
number of previous studies [4], [5], [8], statistical models of
3D chromatin folding were proposed. These models provide
a qualitative description for some basic experimental obser-
vations, for example the D(L) ≈

√
L relationship between

3D physical distance (D) and genomic length (L) for each
two probes along the DNA on a small L < 2 Mb genomic
scale. However, the saturation plateau of D(L) ≈ const
observed on larger genomic scales L > 2 Mb is not yet
satisfactory explained in the literature. The distribution of fluo-
rescent probes for a random folded DNA fiber and probability
densities for the corresponding geometrical features (e.g. BAC
distances) are derived by authors on the basis of some general
thermodynamic principles, e.g. equilibrium state, resulting in
a general integral form for sought probability density function
(PDF). Closed form solutions of such integrals can only be
obtained for some particularly simple geometries of spatial
domains, e.g. a spherical ball. However, for the validation
of some structural hypotheses and comparative analysis of
experimental data, PDFs for a wide range of geometrical
features and domain shapes may be of interest. In this article,
we present a general approach for numerical computation of
arbitrary geometrical PDFs using Monte-Carlo simulations,
which is applied for interpretation of statistical series resulting
from 4 channel CLSM of human fibroblast cell nuclei. Exem-
plarily, we restrict our simulations to a natural assumption of
uniform confined point distributions, although any arbitrary
non-uniform point density function can be used instead. Our
simulation results show that the proposed model is capable to
reproduce experimental PDFs and provides numerical bench
marks for quantitative analysis of probed spatial confinements
in terms of dimension and shape. Furthermore, we present a
confined random folding model of 3D chromatin fiber, which
gives a qualitative explanation for biphasic behavior of the
D(L) relationship.
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Fig. 1. Left column: 3D CLSM image of a DAPI-stained human fibroblast
nucleus (bottom), single slice of 3D image with one BAC in red-color channel
(top). Arrows point to two spots of the same BAC corresponding to two sister-
chromosomes. Right column: 3D view (bottom) and single 2D slice (top) of
the binarized image.

Fig. 2. Segmented 3D CLSM image. Numbered nodes indicate positions
of mass centers of the whole nucleus (0) and three BACs in two sister-
chromosomes (1-6), respectively.

II. METHODS

A. Image Acquisition and Preprocessing

3D confocal laser scanning microscopy images of DAPI-
stained human fibroblast nuclei are used for geometrical
reconstruction of 3D chromatin structure in interphase nuclei
of human fibroblasts, see Fig. 1. Besides overall nucleus shape,
up to 3 BAC regions are simultaneously labeled via the FISH
technique resulting in 4 channel 3D image of the nucleus.
3D images of all channels are consistently preprocessed using
following basic steps [3]:

• Fourier band-pass image smoothing,
• threshold-based image segmentation.

After thresholding and segmentation, target structures are
represented in the binarized images by clearly bounded white
regions, see Fig. 1 (right column). Pointwise representation of
segmented nuclear and BAC regions is obtained by computing

their mass centers:

xmci =
1

N

N∑

j=1

xji , (1)

where xji is the i-th coordinate of the j-th of totally N voxels
of one segmented region (e.g. particular BAC or entire nucleus
domain). Since each BAC label produces two signals corre-
sponding to two sister-chromosomes, totally 7 mass center
points are localized after preprocessing 4 channel 3D images
of the nucleus, see Fig. 2.

B. Strategies of finite point sampling of 3D chromatin fiber
Due to the limited number of independent color-channels,

only few gene loci along the chromatin fiber can simultane-
ously be sampled in one single cell. For continuous dense
sampling of larger chromosome regions and assessment of
statistical cell-to-cell variations in chromatin structure, each
combination of BACs is probed in 50 different cells resulting
in statistical series of coordinates of mass center points. On
the basis of these statistical series, probability distributions for
geometrical features (distances, angles, etc.) are calculated.
Two strategies for placement of sampling probes along the
DNA fiber and assessment of statistical series are applied:

1) series of BAC pairs with increasing genomic distances,
2) series of BAC triplets.

a) Series of BAC pairs: with increasing genomic distance
are used for assessment of the D(L) relationship between
physical D and genomic L distances for each BACs at small
L = 0.1 − 3 Mb and large L = 3 − 28 Mb genomic scales,
see Fig. 3 (left).

b) Series of BAC triplets: are measured for assessment
of geometrical features of 3-point combinations (e.g. triangle
angles, etc.), which indicate structural variability of probed
3D domains along the DNA fiber. Stochastical analysis of
statistical distributions of geometrical features of BAC triplets
is applied for the estimation of cross section dimension and
shape of sampled chromosome regions. For dense sampling of
larger genetic regions in a piece-by-piece manner, a moving
mask technique is applied. That is three BACs are placed along
the DNA in a way that each next triplet has an overlap with
the previous one by two common BACs, see Fig. 3 (right).
This approach is applied for 3D visualization of finite point
sets using multidimensional scaling of cross-distance matrices,
see Section III-D.

C. Geometrical features of BAC combinations
Spatial distribution of BAC pairs and triplets is analyzed

using following geometrical features:
• pairwise distances between BACs,
• radial distances of BACs w.r.t. the nucleus center,
• angles of triangles spanned by BAC triplets,
• spatial orientation of BAC triplets w.r.t. the nucleus

center.
Fig. 4 gives an overview over geometrical features of BAC
triplets used for numerical computation of PDFs via the
Monte-Carlo approach as described in Section II-E.
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Fig. 3. Left: the relationship D(L) between physical distances Di = |OPi|
and genomic lengths Li =

R Pi
O

dl for a finite number of sampling points
(i = 1...N ) sequentially placed along the DNA provides insights into 3D
chromatin folding. Right: schematic view of the moving mask approach in
case of 5 BAC triplets, green frames show overlapping pairs of BACs.

c) Pairwise distances: between BACs are computed as
Euclidean distances for all 3 pairs of BACs in each triplet
dij = |BiBj | ∈ [0, Smax], ∀i = 1..3, j > i, where Smax is
the maximum cross section of the cell nucleus.

d) Radial distances: of BACs w.r.t. the mass center of
the nucleus are computed as Euclidean distances between mass
centers of the nucleus O and each BAC regionBi, i.e. ROBi =
|OBi| ∈ [0, Smax

2 ].
e) Maximum angle: of BAC triangle αmax serves as

a feature of triangle shape, see Fig. 4 (right). The PDF of
αmax ∈ [60, 180] provides insights in the overall shape of the
probed domain.

f) Spatial orientation: of BAC triplets w.r.t. the nucleus
center is characterized by a scalar product s = (n ·ROM ) ∈
[−1, 1], where n is the triangle normal and ROM is the vector
pointing from center of the nucleus to the middle of BAC
triangle. s = 0 means that ROM lies in the triangle plain,
while |s| = 1 indicates that ROM is perpendicular to the
triangle plain.

D. Geometrical probability density function

Series of finite point samplings of 3D chromatin fiber
in different cells yield statistical distributions of invariant
geometrical features (e.g. pairwise distances, angles etc.),
which are analyzed using geometrical probability techniques.
Stochastical analysis of such statistical series is aimed at
• investigation of the order of randomness and
• quantification of dimension and shape of probed chro-

matin regions,
and is based on construction of geometrical PDF.

Formally, the PDF of a probability distribution is defined as
a non-negative function p(x) > 0 of a statistically distributed
variable x such that the integral

P (A ≤ x ≤ B) =

∫ B

A

p(x)dx ≤ 1, (2)

gives the probability P (A ≤ x ≤ B) for the variable x being
found in the interval A ≤ x ≤ B. From (2) it immediately
follows that ∫ +∞

−∞
p(x)dx = 1. (3)

For a discrete distribution of xi ranging in the interval xi ∈
[A,B], ∀i = 1...N , the PDF can be constructed using the

Fig. 4. Left: geometrical features of BAC triplets Bi: pairwise distances
dij = |BiBj |, radial distances w.r.t. a fixed point ROB1

, triangle angles α,
orientation of BAC triangle w.r.t. a fixed point (n ·ROM ). Right: maximum
triangle angle αmax as a feature of triangle shape.

histogram function hj(xi), which is defined as an array of
tabulated frequencies of xi being found within the j-th of
totally n intervals j

n (B −A) ≤ xi ≤ (j+1)
n (B −A):

pj(xi) = C
hj(xi)

N
, (4)

where C is the normalization constant resulting from the
condition (3)

C =




n∑

j=1

hj(xi)

N

(B −A)

n



−1

. (5)

For a uniform random distribution of N sampling points ri
with Cartesian coordinates xj in a spherical k-dimensional
ball Bk = {ri(xj) :

∑k
j=1 x

2
j ≤ R2}, where R denotes the

radius of Bk, the PDFs pk(d) for pairwise distances d =
||rp=1..N − rq=(p+1)..N || between the points can be obtained
in a closed form [6]:

B1 : p1(d) = 1
R (1− d

2R )

B2 : p2(d) = 2d
R2 − d2

πR4

√
4R2 − d2 − 4d

πR2 arcsin
(
d

2R

)

B3 : p3(d) = 3d2

R3 − 9d3

4R4 + 3d5

16R6

(6)
Plots of pk(d) in case of unit 1D/2D/3D-balls (i.e. 2R = 1)

are shown in Fig. 5. As one can see, PDFs for pairwise
distances essentially depend on the spatial dimension k of Bk.
These PDFs can be seen as characteristic signatures of random
point distributions for 1D, 2D and 3D isotropic spherical
confinements, respectively. Interestingly, the distance with the
highest probability (dm ∈ [0, 1] : max(p(d)) = p(dm)) for
a unit spherical ball of dimension higher than 1 is not the
smallest-possible, but some intermediate one:

B1 : dm = 0

B2 : dm = 0.42

B3 : dm = 0.52

(7)

These key-values together with further standard PDF features
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Fig. 5. Plots of theoretical probability density functions pk(d) for pair-
wise distances between randomly distributed points in case of spherical k-
dimensional balls (k = 1, 2, 3) with a unit cross section dimension (S =
2R = 1).

such as first four statistical moments Mi:

M1 = 1
n

∑n
i=1 p(di)

M2 =
√

1
n−1

∑n
i=1(p(di)−M1)2

M3 = 1
n

∑n
i=1

(
p(di)−M1

M2

)3

M4 =

(
1
n

∑n
i=1

(
p(di)−M1

M2

)4
)
− 3

(8)

can be used for quantification of the order of randomness
of BAC distributions on the basis of experimental PDFs of
pairwise distances. If, for instance, we would observe in our
experiment a PDF for pairwise distances, which behaves very
much the same as p3(d) in (6), we would have a strong
evidence for a completely random distribution of measured
points within a probed spatial domain. And the other way
round: if we assumed that the underlying 3D point distribution
is confined, random and isotropic, statistical features of the
experimental PDF p̄(d) such as (7) gave us an estimate for the
upper bound of the cross section dimension S̄ of the probed
spherical domain, namely

S̄ =

(
S

dm

)
d̄m ≈ 1.92 d̄m, (9)

where S = 1 is the cross section dimension of the reference
unit ball and d̄m : max(p̄(d)) = p̄(d̄m).

E. Numerical computation of PDFs for an arbitrary domain

The approach for bench marking experimentally observed
PDFs of pairwise distances vs theoretically predicted PDFs can
be extended to the case of an arbitrary geometrical feature
and arbitrarily-shaped k-dimensional confinement Ω ⊂ Rk
with the boundary Γ ⊂ Ω. For more complex geometries,
the PDF for pairwise point distances or any other geometrical
feature can not be derived in a closed form. However, it can
be computed numerically, for example, via a Monte-Carlo
simulation. The basic steps of our simulation scheme are as
follows

Fig. 6. Left: results of numerical computation of PDFs of pairwise distances
for a unit 3D spherical domain with N = 270 (blue) and N = 5219
(green) random points vs theoretical solution (red). Right: L2 error norm of
numerically computed PDFs w.r.t. theoretical solution as a function of log(N),
where N is the number of random points in the Monte-Carlo simulation.

1) specify the domain Ω in a suitable parametric form (e.g.
surface or volumetric meshes, point clouds, etc.),

2) generate sufficiently large number of random points ri
within the bounding box of Ω and select only the points
lying inside the domain ri ∈ Ω

3) compute geometrical features (distances, angles, etc.) for
all pairs and triplets of ri ∈ Ω,

4) compute corresponding histogram and PDF for simu-
lated statistical series of geometrical features.

At the end, the PDF for a geometrical feature and spatial
confinement is given by an (n− 1)-array of tabulated values
corresponding to n intervals of the histogram function. Further
details on computation of PDFs for some special cases of 3D
domain geometry are in Section III.

F. Confined random folding model

For the interpretation of the D(L) relationship between
physical and genomic distances (see Fig. 3 (left)), a confined
random folding model of 3D chromatin fiber is proposed. We
consider 3D chromatin fiber or one of its fragments to be
randomly folded within a confined spatial domain Ω ⊂ R3 :∑3
i=1(xi−xmci )2 ≤ R2, ∀xi ∈ Ω, where xi are coordinates of

points, xmci is the mass center of Ω, and R is a characteristic
dimension of the confinement Ω. The simulation of a randomly
folded 3D fiber begins with the generation of a confined
random point distribution for Ω as described in Section II-
E. These points are understood as vertex nodes of a 3D fiber
randomly folded in Ω, see Fig. 11. An algorithm is developed
to perform the reconstruction of a non-closed, loop-free 3D
fiber connecting all points of Ω pairwise using the closest
neighborhood connectivity. Details on the validation of the
confined random folding model are in Section III-E.

III. EXPERIMENTAL RESULTS

In this section, we present the results of stochastical simula-
tions of confined random point distributions and 3D chromatin
fiber folding carried out for the interpretation of experimental
observations.

A. Numerical simulation vs theoretical solution

First, numerical algorithms for computation of geometrical
PDFs are validated by a direct comparison with closed form
solutions (6). Fig. 6 (left) shows the results of numerical
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Fig. 7. Simulated PDFs of geometrical features for isotropic (Z = 1.0)
an Z-scaled spatial domains: (a) pairwise distances, (b) maximum angles of
point triplets, (c) radial distances w.r.t. a fixed point, (d) triangle orientation
ratio.

computations of the PDF of pairwise distances p3(d) for
N = 113 and N = 5219 sampling points of Monte-
Carlo simulations. Plot 6 (right) illustrates the reduction of
the numerical error vs theoretical solution with increasing
number of sampling points. From numerical point of view,
N = 350 sampling points is an acceptable lower bound for
accurate computation of smooth PDFs. However, one should
take into account that N = 350 sampling points correspond
to N2−N

2 = 61750 pairwise distances, i.e. single distance
measurements! One can also reversely calculate the number
N of virtual sampling points corresponding to Nd distance
measurements: N ≈ √2Nd. This means that Nd = 500
distance measurements correspond to only N = 31 virtual
sampling points, and, in order to simulate N = 100 sampling
points, Nd = 9900 distance measurements are required.

B. Impact of domain geometry

In order to investigate impact of domain geometry on the
PDF pattern, numerical simulations are carried out Fig. 7
show the simulation results for PDFs of different geometrical
features discussed above and several values of Z-scaling
factor. As one can see, domain geometry has a strong impact
on PDF patterns, which can be exploited for the interpretation
of experimental PDF curves.

C. Geometrical PDFs of experimental series

Our measurements did focus on two regions of the q-arm of
human chromosome 1 in G1-phase human primary fibroblasts.
The human transcriptome map [1] shows the presence of a
gene-dense region of highly expressed genes (named a region
of increased gene expression (ridge)) and a gene-sparse region
(named antiridge), each comprising several Mb. One ridge
(R) and one antiridge (AR) region along the q-arm of human
chromosome 1 were probed on a scale 0.7 - 3.3 Mb, see Table
Table I. Average distances and standard deviations for these
statistical series are summarized in Table II. Distances for each

Fig. 8. Geometrical PDFs of statistical series of probing five ridge (blue
curves) and antiridge (green curves) regions of human chromosome 1: (a)
pairwise BAC distances, (b) maximum angles of BAC triplets, (c) radial
distances of BACs w.r.t. the nucleus center, (d) orientation ratio of BAC
triangles. Red curves denote simulated PDFs.

TABLE I
GENOMIC DISTANCES (IN MB) FOR FIVE AR/R BACS.

AR 1 8 19 28 35
1 0 0.81 1.61 2.49 3.26
8 0 0.80 1.68 2.45

19 0 0.88 1.65
28 0 0.77
35 0

R 5 12 21 28 39
5 0 0.84 1.58 2.39 3.20

12 0 0.74 1.55 2.36
21 0 0.81 1.62
28 0 0.81
39 0

TABLE II
AVERAGE PHYSICAL DISTANCES (IN µM) FOR FIVE AR/R BACS.

AR 1 8 19 28 35
1 0 0.65±0.36 0.9±0.52 1.30±0.64 1.37±0.74
8 0 0.61±0.42 1.21±0.60 1.27±0.45
19 0 0.74±0.41 1.08±0.49
28 0 0.76±0.32
35 0

R 5 12 21 28 39
5 0 0.72±0.33 1.13±0.44 1.32±0.95 2.12±1.10

12 0 0.52±0.27 1.23±0.52 2.18±1.09
21 0 0.92±0.28 2.51±0.76
28 0 2.57±0.77
39 0
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BAC triplet were measured in about 50 clonally grown fibrob-
last cells and for each of these measurements all geometrical
features described in Section 3.2 were computed. Altogether,
R/AR chromatin regions sampled by five BAC triplets were
totally probed Nt = 200 − 272 times, which corresponds to
Nd = 3Nt = 600 − 816 pairwise distances Rij /ARij and,
recalling the discussion in Section III-A,

√
2Nd ≈ 35 − 40

virtual sampling points, respectively. Experimentally assessed
geometrical PDFs for entire R/AR series of five BAC probes vs
simulated PDFs are plotted in Fig 8. Quantitative comparison
between experimental pexi and simulated psimi PDF patterns
carried out on the basis of least square norms ||pexi −psimi || and
statistical moments M3 (skew) and M4 (kurtosis) indicates a
random distribution of BACs within anisotropically shaped 3D
confinements, whereas some significant differences in spatial
structure of R and AR regions were observed:
• AR domain probed by five BACs is more compact and

smaller in size (1.45× 0.42× 0.28 µm) than R domain
(3.16× 1.62× 0.26 µm),

• AR BACs have in average larger radial distances (r̄AR =
6.62± 1.98 µm) w.r.t. the nucleus center compared to R
BACs (r̄R = 5.98± 2.23 µm)

D. 3D visualization of average cross-distance matrix

Ridge and antiridge BAC triplets have been placed ac-
cording to the scheme shown in Fig. 3 (right). This BAC
placement strategy was introduced for consistent 3D visual-
ization of finite point probes of chromatin regions using a
multidimensional scaling (MDS) approach [9], which requires
a matrix of cross-distances dij between all BACs, see Table
II. The result of 3D visualization of average R/AR distance
matrices after decomposing dij via the MDS is shown in
Fig. 9 (top). In view of large statistical deviations in cell-
to-cell distance measurements, the probed chromatin regions
can not be regarded as rigid objects with a same constant
shape. Thus, 3D loops depicted in Fig. 9 represent an average
shape of probed R/AR regions resulting from a statistical
series of distance measurements. Fig. 9 (middle, bottom) show
statistical uncertainty spheres whose radii are equal to standard
deviations of the corresponding BAC coordinates ri = σi

E. Validation of confined random folding model

A pure geometrical approach has been applied for quali-
tative validation of a confined random folding model of 3D
chromatin fiber. A synthetic 3D fiber is constructed using
the basic computational steps described in Section II-F. The
initial random point cloud consisting of N = 528 vertices and
the corresponding 3D fiber are shown in Fig. 10. The D(L)
relationship between Euclidean distanceD and genomic length
L of all vertices w.r.t. a fixed starting point of the fiber is shown
in Fig. 11 (bottom, red curve). This is a typical behavior of
D(L) function with large periodic oscillations appearing after
the
√
L regime for small L. At this point, we want to draw

attention to the fact that the result of numerical computation
of D(L) essentially depends on the choice of the starting point
for the construction of 3D fiber. For example, if the starting

Fig. 9. From top to bottom: 3D visualization of average cross-distance
matrices for five ridge (white polygon) and antiridge BACs (red polygon)
probed along human chromosome 1 on a genomic scale 0.7 − 3.3 Mb, and
their statistical uncertainty spheres (ri = σi).
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point is selected on the boundary of a spherical confinement
with the radius R, the maximum possible Euclidean distance
is Dmax = 2R, whereas if the starting point is selected in
the center of the sphere, the maximum value is Dmax = R.
Also, periodic patterns of D(L) for different starting points
are shifted w.r.t. each other with a random phase. From
experimental point of view it has following consequences:
since experimental D(L) curves are constructed from sequen-
tial measurements of the same genetic region in different
cells, the physical position of the starting BAC, as well as
overall 3D folding of the probed genomic region are varying
from cell to cell. This means that an experimentally obtained
D(L) relationship is, in fact, the result of averaging N single
D(L) curves, where N is the number of measurements in
different cells. The result of numerical simulation of such
average D(L) is shown in Fig. 11 (bottom, black curve).
As one can see it exhibits a biphasic behavior very much
similar to experimentally assessed D(L) curve in Fig. 11 (top).
Obviously, the saturation plateau of experimentally assessed
D(L) relationships results from statistical smoothing of single
D(L) curves due to measurements in different cells. However,
one can still recognize remaining quasi-periodic oscillations
of single random D(L) curves in the average D(L) on large
genomic scale L > 2 Mb.

IV. CONCLUSION

In this article, we have presented a novel approach for
stochastical analysis and visualization of finite point sam-
pling of 3D chromatin in interphase cell nuclei. The core
idea of our approach consists in application of geometrical
probability techniques for interpretation of statistical series
of finite point sampling of chromatin regions. Numerically
computed probability density functions (PDFs) serve as bench
marks for the validation of experimentally observed statistical
distributions of canonic geometrical features of two- and
three-point combinations, e.g. pairwise and radial distances,
angles, etc. We have introduced a general Monte-Carlo-based
simulation scheme for computation of PDFs of geometrical
features of random point distributions for arbitrarily-shaped
confined 3D domains, and derived numerical criterions for the
estimation of the order of randomness of observed statistical
distribution as well as dimension and shape of probed chro-
mosome regions. Preliminary experimental results of sampling
human chromosome 1 in primary human fibroblasts in G1
cell cycle phase by five overlapping ridge and antiridge
BAC triplets on a genomic scale 0.7 − 3.3 Mb support the
assumption of confined random folding of 3D DNA fiber
in interphase cell nuclei. We have proposed a geometrical
model of confined random chromatin folding, which is capable
to reproduce experimentally observed relationship between
physical and genomic distances on a large genomic scale.
Further sampling experiments with 4 simultaneous BAC labels
and larger statistical series (≈ 104 distance measurements) are
required to provide a more consistent source of geometrical
information for distinctive analysis of 3D chromatin structure.

Fig. 10. Top: initial random distribution of N = 528 points for a unit
spherical confinement. Bottom: randomly folded 3D fiber computed on the
basis of the initial point cloud.

Fig. 11. Top: experimentally assessed relationship D(L) between physical
and genomic distances on a scale 0.1 − 28 Mb for human chromosome 1.
Bottom: numerically computed D(L) for a synthetic fiber randomly folded
within a unit 3D spherical confinement (cf. Fig. 10): red curve corresponds to
D(L) for a single (starting point dependent) simulation, black curve shows an
average D(L) for N/2 = 264 simulation runs with varying starting points.
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