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Abstract -- Identifying operons at the whole genome scale of 
microbial organisms can facilitate deciphering of transcriptional 
regulation, biological networks and pathways. A number of 
computational methods, such as naïve Bayesian and neural 
network approaches, have been employed for operon prediction 
to whole genome sequences of a number of prokaryotic 
organisms, based on features known to be associated with 
operons, such as intergenic distance, microarray expression 
data, phylogenetic profiles, clusters of orthologous groups 
(COG). In this paper, we introduce a decision tree approach to 
predict operon structures using three effective types of genomic 
data: intergenic distance, gene order conservation and COG. 
We calculated and analyzed frequency distributions of each 
attribute of known operons and non-operons of Escherichia coli 
(E. coli) K12 and Bacillus subtilis (B. subtilis) 168, and 
constructed decision trees based on training examples to predict 
operons. The overall prediction accuracy is 94.1% for E. coli 
K12 and 91.0% for B. subtilis 168. We also applied four other 
classifiers, logistic regression, naïve Bayesian, neural network 
and support vector machines on both organisms. The results 
indicate that the decision tree approach is the best classifier for 
operon prediction. The software package operonDT is freely 
available at http://www.cs.uga.edu/~che/OperonDT. 
 

I. INTRODUCTION 
 

The operon structure is the one of special features unique to 
prokaryotic organisms, although a few eukaryotic organisms, 
such as Caenorhabditis elegans, do have operon-like 
structures [1]. An operon is defined as a set of genes that are 
arranged in a tandem and are co-transcribed as a unit, i.e., all 
genes in an operon share a common promoter and terminator. 
These co-transcribed genes often act together in a specific 
biochemical pathway or in a common biological process. For 
example, genes of the lactose operon in E. coli participate in 
lactose metabolism. Therefore, identifying operons in 
microbial genomes is a fundamental step for biologists to 
further understand the gene regulation network and 
pathways. 

Various features and methods have been used in operon 
prediction. The most direct approach is to identify the 
boundaries of transcriptional units based on known or 
computationally identified promoters and terminators [2-4]. 
For example, Yada et al. [4] trained an operon predictor 
based on known promoters and terminators of E. coli, using 
hidden Markov models (HMMs), to predict transcriptional 

units. 60% of 390 known transcriptional units were identified 
using their trained HMMs. In addition to transcriptional 
signal information, Bockhorst et al. [2, 5] also used gene 
lengths and intergenetic spacing, codon usage statistics and 
other features to construct Bayesian networks for operon 
prediction. This method could identify over 78% operons in 
E. coli, with only about 10% false positive rate. Based on the 
principle that the genes in the same operon usually have 
related functions and are involved in the successive reactions 
in metabolic pathways, Zheng et al. [6] developed a pipeline 
for operon prediction by using biochemical pathway 
knowledge. Sabatti et al. [7] used microarray expression data 
as a tool to predict operons. 

Recent studies show that other features, such as intergenic 
distances [3, 8-13], cluster of orthologous groups (COG) [8, 
10] are also very effective in operon prediction. Salgado et 
al. [11] found the intergentic distances of adjacent gene pairs 
within operons are usually shorter than those of at the 
borders. They used log-likelihood ratio of intergenic distance 
of adjacent gene pairs between within operons and at the 
borders to correctly predict 75% operons in E. coli. Chen et 
al. [8] developed a neural network using intergenic distance, 
COG function and phylogenetic profiles as inputs. They have 
achieved an overall accuracy of 83.8% in E. coli K12. More 
recently, Westover et al. [13] proposed a method that does 
not need extensive training data. They used naïve Bayesian 
approach with attributes such as intergenic distance, common 
annotation length and inclusion in a common cluster. This 
method achieves a true positive rate of 88% and 20% false 
positives in E. coli, and a true positive rate of 73% with 20% 
false positives in Bacteroides theta. Similar to Westover’s 
work in terms of no prior training, Jacob et al. [9] proposed a 
fuzzy guided genetic algorithm-based approach using four 
scoring criteria: intergenic distance, participation in the same 
metabolic pathway, phylogenetic profiles and COG. The 
prediction accuracy of E. coli K12 and B. subtitils was 
evaluated by ROC (receiver operating characteristic) 
analysis, and the area under the ROC curve is around 0.9. 
Interestingly, without using any important features such as 
intergenic distance, Edward et al. used homologous gene pair 
information among multiple genomes based on BLAST 
search, and applied maximum bipartite matching algorithm to 
detect operons with prediction accuracy of 85% in E. coli
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K12 [14]. More recently, Tran et al. used the predicted 
results from three popular operon predictors (JPOP, OFS and 
VIMSS) to train a neural network, and showed this approach 
could reach the prediction accuracy of around 90% in both E. 
coli K12 and B. subtitils 168 [submitted]. 

In this paper, we aim to seek a high accurate operon 
prediction method based on previous work. All previous 
prediction methods tried to classify whether two adjacent 
genes belong to the same operon or not based on the scores 
assigned to the gene pair. For instance, if gene a and gene b 
are an adjacent gene pair, and their COG code are the same, 
they will have a high score and thus have high probability of 
belonging to the same operon. Unlike the previous methods, 
we are trying to classify if a gene belongs to a member of 
operon structure based on the attribute values of the gene 
itself, which are in turn based on the information of its 
neighbor genes. The use of information of neighboring genes 
(usually more than two) instead of its adjacent gene has its 
statistical reasoning. Suppose two adjacent genes belong to 
the same operon if they have the same COG code, then the 
probability of a gene belongs to the same operon structure 
with its several consecutive neighbor genes should be much 
higher if we see all its neighbor genes have the same COG 
code as this gene. We use three effective types of information 
(i.e., intergenic distance, gene order conservation and COG) 
to evaluate whether the gene belongs to a member of the 
operon or not. Since we now evaluate the attribute values on 
single genes instead of on gene pairs, calculations of these 
attributes are different. Detailed calculations of these feature 
values are described in the following section. Based on 
attribute values of the training examples, we construct 
decision trees for operon prediction on both E. coli K12 and 
B. subtitils 168, and then evaluate the prediction accuracies. 

The remainder of the paper is organized as follows. Section 
2 describes the methods used to implement the classifier. 
Section 3 shows the prediction results of decision trees for E. 
coli K12 and B. subtitils 168. The paper is concluded in 
Section 4 with a discussion of the possible direction in the 
future work. 
 

II. METHODS 

 
A. Data Sources 

The annotated complete genome sequences were 
downloaded from NCBI GenBank database 
(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). The 
annotations of E. coli K12 and B. subtitils 168 are used for 
calculating intergenic distance and COG information.  We 
picked 177 representative genomes as reference genomes and 
run BLAST to obtain homologous gene pairs, which were 
used for calculating gene order conservation. Experimentally 
confirmed operon dataset of E. coli K12 were downloaded 
from regulonDB database [15]. Operons of B. subtitils 168 
were extracted from operon database (http://odb.kuicr.kyoto-
u.ac.jp/) [16], in which operons were originally obtained 
from transcriptional maps stored in BSORF 

(http://bacillus.genome.jp/). We call operon genes if multiple 
genes are within a transcription unit (or operon), and a non-
operon gene if there is only one gene contained in the 
corresponding transcription unit. This classification leads to 
1140 operon genes and 230 non-operon genes for E. coli 
K12, 955 operon genes and 181 non-operon genes for B. 
subtitils 168. 
 
B. Intergenic Distance Analysis 

Intergenic distance has been proved to be one of the most 
effective attributes to discriminate operon genes from non-
operon genes. Intergenic distances between an operon gene 
and its adjacent neighbor genes are usually very short, and it 
is very common that genes overlap, thus leading to negative 
intergenic distances. We define the intergenic distance of a 
gene and its adjacent gene as the number of base pairs 
between the two genes, or the number of base pairs 
overlapped. We denote d(gi-1, gi) be the distance between a 
gene and its left adjacent gene, and similarly, d(gi, gi+1) be the 
distance between a gene and its right adjacent gene. The 
shorter distance (S_Dist) and longer distance (L_Dist) are 
defined as 

 
S_Dist = min (d(gi-1, gi), d(gi, gi+1))   (1) 
L_Dist = max (d(gi-1, gi), d(gi, gi+1))  (2) 

 
Figure 1 shows frequency distributions of S_Dist for 

experimentally confirmed non-operon and operon genes for 
both E. coli K12 and B. subtitils 168. In both organisms, 
operon genes tend to have short S_Dist, with only a few 
having their S_Dist greater than 150. In contrast, S_Dist for 
non-operon genes are relatively more uniformly distributed. 
Frequency distributions of L_Dist for non-operon and operon 
genes are also shown in Figure 1. These frequency 
distributions indicate the feature of intergenic distance is an 
effective indicator for operon prediction.  

 
C. Analysis of Gene Order Conservation 

Although the whole gene order in many known operons is 
not conserved among different organisms, partial gene order 
conservation in operons does exist, such as the Trp operon 
[17]. The conservation of the gene order is possibly due to 
the physical interaction such as molecular complex, or at 
least some association in the same biological processes. 
Thus, developing a scoring scheme based on the conservation 
of gene order should be a good indicator for finding operon 
gene. 

A simple but powerful scheme is to find out how many 
consecutive genes are gene-order conserved in which the 
gene is located between the query genome (G) and the 
reference genome (G’) based on BLAST results. In practice, 
there could be several genes from G’ that are homologous to 
gene gi from G. We choose the maximum of all scores of 
gene order conservation (goc), denoted as max(goc). In 
particular, for every homologous gene pair (gi, gj) (gi ∈ G 
and gj ∈ G’) for gi, we first identify their corresponding 
directons (the set of consecutive genes having the same  
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Fig. 1. Frequency distributions of shorter and longer intergenic distances for non-operon genes and operon genes of E. coli K12 

(A and C) and B. subtilis 168 (B and D) 
 
 

strand directions with gene gi or gj). We keep updating the 
gene order conservation score (sk) until their corresponding 
neighbor gene pairs are not homologous, or the boundary of 
at least one directon has been reached. Thus, max(goc) is 
defined as 

 
max(goc) = max (s1, s2, …, sk, …, sK)   (3) 

 
where K is the total number of homologous gene pairs for 
gene gi in G.  

To make attribute values statistically meaningful, we have 
used multiple reference genomes to evaluate the gene order 
conservation for each gene in the genome of E. coli and B. 
subtitils 168. To avoid the redundant information of close 
related genomes, we picked one representative strain from 
each organism, and thus 177 reference genomes were chosen 

of all complete microbial genomes. Therefore, the overall 
gene order conservation score for gene gi is the summation of 
all max(goc) against 177 reference genomes. Figure 2 
describes the algorithm to calculate gene order conservation 
scores for all genes in the query genome G. 

By applying this algorithm, we obtained the scores of gene 
order conservation for all genes in E. coli K12 and B. subtitils 
168. Figures 3A and 3B show frequency distributions of 
calculated scores for experimentally confirmed non-operon 
and operon genes. For E. coli, only 17 out of 230 non-operon 
genes have gene order conservation scores higher than 40, 
which is equivalent to 7.4%. In contrast, 620 out of 1140 
operon genes have the conservation score higher than 40, 
which accounts for 54.4%. For B. subtitils 168, 13 out of 181 
(7.2%) non-operon genes have the conservation score higher  
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Fig. 2. The algorithm for calculating gene order conservation scores 
 
 

than 10, while 537 out of 955 (56.3%) operon genes have the 
conservation score higher than 10. 

 
D. COG Analysis 

COGs are created by identifying the best hit for each gene 
in complete pairwise comparisons of a set of genomes [18]. 
Each COG consists of individual proteins or groups of 
paralogs from at least three lineages. There are three levels in 
the COG function hierarchy, with the first level consisting of 
four categories (i.e., information storage and processing, 

celllular processes, metabolism and poorly characterized). 
The second level is much more specific base on the first 
level. For example, Translation, ribosomal structure and 
biogenesis (J) belongs to the first category of the first level, 
and transcription (T) belongs to the second category of the 
first level. Totally, there are twenty-six categories of the 
second level.  

Previous study showed that using the information of the 
first level can help to differentiate the operon and non-operon 
gene a little [8]. In this study, we use the category  

[Input]  Query genome G with M genes (g1, g2 , …, gM) and N directons (D1, D2, … DN)
  R Reference genomes G’1, G’2, … G’R, with  
   genes (g’11, g’12 , …, g’1M_1) and directons (D’11, D’12, … D’1N_1),  
   genes (g’21, g’22 , …, g’2M_2) and directons (D’21, D’22, … D2N_2), … 
   genes (g’R1, g’ R 2 , …, g’ R M_R) and  directons (D’R1, D’R2, … D’RN_R)  
  Homologous gene pairs between genomes of (G, G’1), (G, G’2), … (G, G’R) 
 
[Output] Gene order conservation score S1, S2, SM for g1, g2 , …, gM 

  
Iterations 
for i = 1 to M 
      let Si = 0; 
      find d1∈ (D1, D2, … DN) s.t. gi ∈ d1  
      for j = 1 to R 
 let max_s = 0; 
 for k = 1 to K homologous gene pairs ((gi, g’j1), (gi, g’j2), …, (gi, g’jK)) 
        d2∈ (D’j1, D’j2, … D’jN_j) s.t. gi ∈ d1  
        let sll , srr, slr and srl be 0; 
        let g1 = gi and g2 = g’ik; 
       while (g1 ∈ d1 && g2 ∈ d2  && g1, g2 are homologous) 
  increment sll by 1; 
  g1 = the left neighbor gene of g1; 

  g2 = the left neighbor gene of g2; 
       while (g1 ∈ d1 && g2 ∈ d2  && g1, g2 are homologous)  
  increment srr by 1; 
  g1 = the right neighbor gene of g1; 

  g2 = the right neighbor gene of g2; 
       while (g1 ∈ d1 && g2 ∈ d2  && g1, g2 are homologous)  
  increment slr by 1; 
  g1 = the left neighbor gene of g1; 

  g2 = the right neighbor gene of g2; 
       while (g1 ∈ d1 && g2 ∈ d2  && g1, g2 are homologous)  
  increment srl by 1; 
  g1 = the right neighbor gene of g1; 

  g2 = the left neighbor gene of g2; 
       sk  =  max(sll + srr, slr + srl ); 
       if sk > max_s; 
  max_s = sk; 
 Si = Si + max_s; 
End for loop 
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Fig. 3. Frequency distributions of gene order conservation and COG scores for non-operon genes and operon genes of E. coli 

K12 (A and C) and B. subtilis 168 (B and D) 
 
 
information from the second level. In particular, for any gene 
gi in genome G, we first identify the directon that contains gi. 
We keep expanding to its neighbors until the COG code of its 
neighbor is not the same as that of gi, or the boundary of the 
directon has been reached. The number of consecutive genes 
with the same COG code with that of gi is the COG score for 
gi. Since some genes do not have COG annotation, we could 
not evaluate their COG scores, and thus exclude them for 
COG analysis. Figures 3C and 3D show frequency 
distributions of COG scores for known non-operon and 
operon genes. In E. coli, only 16 out of 197 non-operon 
genes (8.1%) have their COG scores higher than one, while 
652 out of 1022 operon genes (63.8%) have their COG scores 
higher than one. A similar COG distribution pattern exists in 
B. subtitils 168. 10 out of 139 non-operon genes (about 7.2%) 
have their COG scores higher than one, while 431 out 773 

operon genes (about 55.8%) have their COG scores higher 
than one. 

 
E. Decision Tree Classification 

Decision tree classification is one of most widely used 
machine learning methods and has many biological 
applications. For example, Salzberg showed that the decision 
tree approach could accurately classify coding and noncoding 
DNA [19]. Selbig et al. predicted consensus protein 
secondary structure by decision tree trained based on known 
data [20]. Recently, Wong et al. combined multiple types of 
data to predict genetic interactions in Saccharomyces 
cerevisiae by using probabilistic decision trees [21]. 

 In this study, five input attributes were used, including 
shorter distance, longer distance, score of COG, score of 
gene order conservation, strand direction information 
between the target gene and its adjacent genes. The predicted 
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attribute values are operon genes and non-operon genes. We 
use C4.5, one of the popular decision tree learning algorithms 
that employs a top-down, greedy search to construct decision 
trees [22]. In particular, we start with all genes of the training 
set in the root node, and pick the attribute that best classifies 
the training data based on the information gain (IG), which is 
defined as 

)(
||
||)(),(

)(
v

AValuev

v SE
S
SSEASIG ∑

∈

−=  (4) 

where Value(A) is the set of all values for attribute A (A could 
be shorter distance, longer distance, COG, gene order 
conservation or strand direction information),  and Sv is the 
subset of S for which attribute A has value v (i.e., 

})(|{ vsASsSv =∈= ). In our case, v is either an operon 

gene or a non-operon gene. )(SE is the entropy of S, which 
is defined as 

nonooo ppppSE 22 loglog)( −−=   (5) 
po is the probability that the gene is an operon gene (i.e., the 
percentage of positive examples in S), and pno is the 
probability that the gene is a non-operon gene. We split the 
set based on the possible values of the selected feature. If the 
subset contains examples of only one class, then the process 
stops, and the node become a leaf node. On the other hand, if 
the subset does contain examples from two classes, we 
recursively split the node. 

WEKA is open source software that contains many machine 
learning algorithms for data mining tasks [23]. It includes 
decision tree, logistic regression (LR), naïve Bayesian (NB), 
neural network (NN), support vector machines (SVMs) and 
many other classifiers. We applied C4.5 (J48) of WEKA as 
our decision tree classifier on our dataset. 

 
F. Evaluation 

A ten-fold cross-validation scheme was used to evaluate 
the prediction accuracy of decision tree approach. In 
particular, the known operon dataset is evenly separated into 
ten parts, and the first part is evaluated based on the model 
trainde from the remaining nine parts. This process continues 
until all ten parts are evaluated. The overall accuracy is the 
average of all ten separate evaluations. True positives (TP) 
were the number of operon genes predicted to be operon 
genes. False negatives (FN) were the number of operon genes 
predicted to be non-operon genes. True Negatives (TN) were 
the number of non-operon genes predicted to be non-operon 
genes. False positives (FP) were the number of non-operon 
genes predicted to be operon genes. Sensitivity (Sen) and 
specificity (Spc) were defined as equation (6) and (7). The 
overall accuracy was the average of sensitivity and 
specificity. 

)/( FNTPTPSen +=    (6) 
)/( FPTNTNSpc +=     (7) 

 
 

III. RESUITS 

To evaluate the decision tree approach for predicting 
operons, we tested two well-studied organisms (i.e., E. coli 
K12 and B. subtilis 168) because of the availability of known 
operon information. We applied J48 (with default parameter 
settings) on datasets generated by our program called 
‘operonFT’, which can be obtained at 
http://www.cs.uga.edu/~che/operonDT. Table 1 lists results 
of sensitivity, specificity and overall accuracy. For E. coli 
K12, we have achieved sensitivity of 0.889 and specificity of 
0.993. The overall accuracy is 0.941. For B. subtilis 168, the 
prediction sensitivity and specificity are 0.859 and 0.960, 
respectively. To compare the decision tree method with other 
classifiers in WEKA, we applied four classifiers to the same 
datasets, including LR, NB, voted percetron (VP), one of NN 
implementations, and Sequential Minimal Optimization 
(SMO), one of SVMs implementations. We also chose 
default parameter settings for these four classifiers. As shown 
in Table 1, prediction accuracies of the decision tree method 
on both organisms are higher than any of other four methods. 
For example, the prediction accuracy on E. coli is 94.1% 
using decision tree approach, while the prediction accuracies 
are 84.7% and 86.3% for SMO and LR methods respectively. 
 

TABLE 1 
 Sensitivity, specificity and accuracy of operon prediction on 

E. coli K12 and B. subtilis 168 
Organism Method Sensitivity Specificity Accuracy 

E. coli k12 J48 0.889 0.993 0.941 

 SMO 0.855 0.839 0.847 

 LR 0.867 0.860 0.863 

 VP 0.804 0.899 0.852 

  NB 0.723 0.946 0.834 

B. subtilis168 J48 0.859 0.960 0.910 

 SMO 0.851 0.797 0.824 

 LR 0.839 0.830 0.834 

 VP 0.691 0.874 0.782 

  NB 0.527 0.966 0.747 

E. coli k12 + J48 0.865 0.953 0.909 

B. subtilis 168 SMO 0.858 0.833 0.846 

 LR 0.864 0.845 0.854 

 VP 0.745 0.900 0.822 

  NB 0.628 0.959 0.793 
 

The option of confidence factor in J48 can be adjusted to 
affect the size of the decision tree by pruning the tree. The 
default setting for the confidence value (c) is 0.25. Table 2 
lists the tree sizes and prediction accuracies with different 
confidence values. In general, prediction accuracies and tree 
sizes increase with the increase of confidence values. For 
instance, the prediction accuracy for E. coli K12 is 0.917 
with c = 0.05, and 0.941 with c = 0.5. The decision tree 
models with high confidence value might be suitable for 
predicting operons of genomes in which partial training sets 
available, such as E. coli K12 and B. subtilis 168. Thus,
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Fig. 4. An example of a decision tree model for B. subtilis 168 (confidence c= 0.1) 

 
 

organism specific decision tree models with default 
confidence setting should work fine for predicting the 
remaining operons. The complete set of decision tree models 
and predicted operon structures can be viewed on our website 
at http://www.cs.uga.edu/~che/OperonDT. As an illustration, 
Fig. 4 shows the decision tree model of B. subtilis 168 with 
the confidence value of 0.1. 

The real challenge in practice is to predict operon 
structures for genomes without any operon training sets. 
Thus, organism specific models with high accuracy might not 
be applicable to those genomes. One simple solution is to 
mix all available training sets from multiple organisms. In 
our experiment, we mixed the datasets of E. coli K12 and B. 
subtilis 168. In addition, we might use a low confidence 
value to make the model relatively universal. Table 2 shows 
the prediction accuracies and tree sizes of these models.  
 

IV. DISCUSSIONS 
 

Preliminary experimental results showed that decision tree 
approach is the best classifier for predicting operons in two 
genomes. Compared with other classifiers, the decision tree 
method can improve about 10% prediction accuracy. Further 
analysis of those attribute patterns might explain why the 
decision tree based approach might be better than other 

TABLE 2 
 Prediction accuracy, the number of leaves and tree sizes of 
the decision tree models with different confidence values 

 
Organism Confidence Accuracy Leaves TreeSize 

E. coli k12 0.050 0.917 51 101 

 0.100 0.932 63 125 

  0.250 0.941 63 125 

B. subtilis 168 0.050 0.905 29 57 

 0.100 0.907 32 63 

  0.250 0.910 42 83 

E. coli k12 + 0.050 0.893 73 145 

B. subtilis 168 0.100 0.901 81 161 

  0.250 0.909 101 201 
 
methods for this problem. We found that none of non-operon 
genes whose score of COG is higher than 3 for E. coli, while 
about 30% operon genes whose COG scores are higher than 
3. Similarly, no non-operon gene in B. subtilis has COG 
score higher than 4, but 11.7% operon genes have their COG 
scores higher than 4. Distribution differences between operon 
and non-operon genes also exist in other attributes. These 
clear-cut differences make the decision tree-based 
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classification easily and accurately. On the other hand, 
prediction based on overall attribute values, such as NB 
approach, might misclassify some genes if these attribute 
values are conflicting. For example, if a gene has large 
intergenic distance with its adjacent genes on both sides, but 
the COG score is also high, say 10, then it is very hard for 
NB approach to correctly classify this gene since operon 
genes tend to have high COG scores and small intergenic 
distances. In contrast, decision tree approach simply 
classifies it as an operon gene since all higher COG scores 
(>4) are operon genes in the training set. 

Although we have shown that the decision tree approach is 
a very powerful method in terms of prediction accuracy, we 
have also found that a few genes could not be correctly 
classified by using any machine learning method based on 
current features (results not shown). Therefore, a complete 
new feature might be included for the decision tree. Recently, 
Janga et al. found that the oligonucleotide signatures of 
promoter regions are different from the upstream regions in 
the middle of operons [24]. We believe that adding this new 
discovered feature information should make our decision tree 
approach more accurate. 

The importance of the operon prediction problem is to 
predict those prokaryotic organisms without any operon 
information. Our prediction results on the dataset of two 
organism shows the overall prediction accuracy did not 
decrease compared with that of on two separate predictions. 
This indicates that the model trained from the mixed dataset 
maybe used for predicting other genomes. However, we are 
aware that this model was built based on training sets from 
two organisms. In our future work, we will build a general 
model by using all available operon data from ODB [16], 
including B. subtilis, E. coli, Pseudomonas aeruginosa, Agro. 
tumefaciens, Synechocystis sp. PCC6803, Bradyrhizobium 
japonicum, and Pyrococcus furiosus. In addition, a small 
confidence value will be chosen to make the model be 
general. We hope we can apply the universal model to predict 
operons of all other organisms with high prediction accuracy.  
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