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Abstract— Genomic sequence databases, like GenBank [2],
EMBL, are widely used by molecular biologists for homology
searching. Because of the increase of the size of genomic sequence
databases, the importance of indexing the sequences for fast
queries grows. In this paper, we propose a new index structure,
ACGT-Words tree1, for efficiently support query processing in
genomic databases. We define the concept of words which is
different from the word definition given in the word suffix tree,
and separate the DNA sequences stored in the database and in
the query sequence into distinct words. Our approach does not
store all of the suffixes in the database sequences. Therefore, we
need less space than the suffix tree approach. We also propose
an efficient search algorithm to do the sequence match based
on the ACGT-Words tree index structure. Therefore, we could
take less time to finish the search than the suffix array approach.
Moreover, our approach avoids the missing cases occurring in the
word suffix tree. The simulation results show that our ACGT-
Words tree outperforms the suffix tree and the suffix array in
terms of storage and processing time, respectively.

I. INTRODUCTION

Bioinformatics has received increased publicity over the
past few years, in large part due to its importance to the
Human Genome Project. With the increase of genomic se-
quences, there are numerous databases holding these DNA and
protein sequences [5]. Basically, the primary structure of DNA
(Deoxyribonucleic acid) is represented as strings, or linear
sequences, which is composed of four basic molecules called
nucleotides with different nitrogen bases: Adenine (A), Gua-
nine (G), Cytosine (C), and Thymine (T) [9]. One characteristic
of the sequences in those public nucleotide databases is its long
length. The average sequence length is around 1,000 bases,
with sequences ranging from 10 to 700,000 bases in length.
The DNA sequences can not break into words, because each
character in sequences is important. Due to the long length of
sequences, the search in databases becomes more difficulty.

A general method for reducing searching costs is to store an
abstraction or index that can be used to assess broad similarity
to a query [9]. Given a set of database sequences, the well-
known Wilbur-Lipman approach [8] is first preprocess, through
hashing each interval in the query sequence. An interval in
this context is a fixed-length overlapping subsequence from
a sequence. In [9], they used an inverted index to select a

1This research was supported in part by the National Science Council of
Republic of China under Grant No. NSC-95-2221-E-110-101.

subset of sequences in a coarse search. The inverted index uses
hashing to store the intervals and search the query sequence.
However, it will have some missing cases. Weiner proposed
the suffix tree [7] that is a compact version of the suffix tries.
A suffix tree of a string with length n will have n leaf nodes,
one per suffix. Therefore, the disadvantage of the suffix tree is
its large storage space. To reduce the storage space, Manber
and Myers [6] proposed the suffix array. This data structure
is basically a sorted list of all the suffixes of strings. They
only store the sorted list. Although the suffix array reduces the
storage space for indexing DNA sequences, the construction
and search of the suffix array waste too much time. In [4],
Irving and Love proposed the suffix binary search tree to
efficiently construct a suffix array.

For most approaches mentioned above, they store all suf-
fixes of the sequences. They do not consider the concept of
words. Andersson and Nilsson designed the word suffix trees
[1], which breaks a sequence into words. Although the word
suffix tree stores less suffixes than traditional suffix trees, it
will lose information in the searching process. Take Figure 1
as an example. In Figure 1-(a), the sequence TGAGC occurs
at position 4. However, in Figure 1-(b), we can not find this
sequence in the tree structure.

In this paper, we design a new data structure to index
the DNA sequences. We use the concept of words, which is
different from the word definition given in the word suffix
tree [1], to construct our index structure. The definition of an
ACGT-Word is as follows: for a sequence which starts with
character k, k ∈ {A, C, G, T}, an ACGT-Word consists of the
successive characters from character k to the character which
is the previous one before the same character k appearing
again in the sequence. We will generate all ACGT-Words from
all suffixes of the given sequence according to the definition.
For example, for DNA sequence AGAGACT $, the related
ACGT-Words are {AG, GA, AG, GACT, ACT, CT, T}. Figure
2 shows the ACGT-Words tree index structure constructed by
the same DNA sequence shown in Figure 1-(a). Although the
number of words generated by the word suffix tree is less than
that of our index structure, the word suffix tree loses some
information as we mentioned previously. For any word which
occurs at many positions of the sequence, we only construct
the word once in our tree structure. For example, in Figure 2,
word ACGCTG is constructed only once in the tree structure,
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(a)

(b)

CGCTG

$ ACGCTG$

GCTGACGCTGACGCTG$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
A C G C T G A G C T G A C G C T G A C G C T G $

b b b b

Fig. 1. An example sequence where � = T : (a) the input sequence and the
position of the delimiter; (b) the word suffix tree.

even if this word occurs three times in the DNA sequence,
i.e., positions 0, 11, and 17. Hence, we can reduce the storage
space as compared to the suffix tree. Moreover, the ACGT-
Words tree has better performance than the suffix array in
terms of the construction time and the query processing time.
Table I shows the comparison of the complexity between the
suffix array and our ACGT-Words tree structure. From our
performance analysis and experiments on real data, we show
that the ACGT-Words tree outperforms the suffix tree and
the suffix array in terms of the storage and processing time,
respectively.

The rest of this paper is organized as follows. Section 2
describes the word suffix trees. Section 3 presents the proposed
ACGT-Words tree index structure. In Section 4, we study the
performance. Finally, Section 5 gives the conclusion.

II. THE WORD SUFFIX TREES

Traditional suffix tree construction algorithms rely heavily
on the fact of that all suffixes are inserted. Andersson et al.
[1] proposed word suffix trees. These trees store, for a string
of length n in an arbitrary alphabet, only m suffixes that start
at word boundaries.

A word suffix tree is constructed by an input string consist-
ing of n characters from an alphabet of size k, including two
special characters, $ and �. The $ character is an end marker
which must be the last character of the input string and can not
appear elsewhere, while � represents some delimiting character
which appears at m - 1 places of the input string. Andersson
et al. regarded the input string as a series of words — the m
non-overlapping substrings ending either with $ or �. There
may of course exist multiple occurrences of the same word in
the input string. They want to create a tree structure containing
m strings, namely the suffixes of the input string that start at
the beginning of words [1]. Figure 1-(b) shows an example of
the word suffix tree.

TABLE I

A COMPARISON OF THE COMPLEXITY BETWEEN THE SUFFIX ARRAY AND

THE ACGT-WORDS TREE

construction time search time
Suffix Array O(nlog(n)) O(m + logn)
ACGT-Words tree O(n) O(m)

n: the length of the database sequence; m: the length of a
query sequence
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Fig. 2. The ACGT-Words tree for the sequence ACGCTGAGCTGACGCT-
GACGCTG

III. THE ACGT-WORDS TREE

Although the word suffix tree uses the concept of words
and reduces the storage space, they lose information in the
searching process. In this section, we formally define a ACGT-
Word in the DNA sequence, which is different from the word
definition given in the word suffix tree, and present a new
data structure called the ACGT-Word tree to index the DNA
sequence.

A. The Definition

Let S = s0s1...sn−1 be a sequence of n characters over
alphabet

∑
= {A, C, G, T, $}. A substring of S is a sequence

Sj
i = sisi+1...sj for some 0 ≤ i ≤ j ≤ n − 1. The sequence

Wi = Sj
i is a ACGT-Word for the given sequence S, where

sj+1 = si or sj+1 = $ or j = n − 1.

B. Tree Construction

In this subsection, we illustrate how to construct the ACGT-
Words tree for the given sequence S. We have three proce-
dures, Construct(S), Split, and Insert, in the process of
tree construction, where procedure Construct(S) is the main
procedure for constructing the ACGT-Words tree for input
sequence S ; procedure Split splits one ACGT-Word from S;
procedure Insert inserts ACGT-Words into the tree structure.
First, in Procedure Construct shown in Figure 3, according
to the current processing character of S, we apply procedure
Split to split sequence S into words. For example, for the
given input sequence ATACACGAT $ (S) as shown in Figure
4-(a), Figure 4-(b) shows the process of generating the ACGT-
Words.
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Procedure Construct(S);
/* Generate the words of input sequence S. */
/* P is an index of the input sequence S. */

begin
P := 0;
while ( S[P ] �= ’$’) do
begin /* Create a new Node and a new Edge */

if ( S[P ] = ’A’ ) then
Split(A num, S, P );

else if ( S[P ] = ’C’ ) then
Split(C num, S, P );

else if ( S[P ] = ’G’ ) then
Split(G num, S, P );

else if ( S[P ] = ’T’ ) then
Split(T num, S, P );

P := P + 1;
end;
InsertRemainingWord();

end;

Fig. 3. Procedure Construct(S)

A T A C G $

Input sequence

0 1 2 3 4 5 6 7

(a)

A TA C
8 9

A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C
A T A C G $A TA C

A C G

1 0 -1 -1

2 0 -1 -1

3 2 -1 -1

4 2 3 -1

5 4 3 -1

6 4 5 -1

7 4 5 6

T

-1

1

1

1

1

1

1

step
var

8 7 5 6 1

A T
--
--

A C

--
A C G

A C A
A T
C

Output words
init -1 -1 -1 -1

(b)

9 7 5 6 8

10 7 5 6 8

C A

--

T C G A

G A T

T
G A T

Fig. 4. The steps for splitting the ACGT-Words: (a) scan input sequence;
(b) change the variables and generate the words.

Assume that P is a position of the sequence S. There are
four variables, A num, C num, G num, and T num, which
store the starting position for words beginning with A, C, G,
and T , respectively. Initially, let P be pointed at the starting
position of the sequence S, and variables A num, C num,
G num, and T num be set to -1, as shown in Figure 4-
(b). First, we find that the first character of the sequence
S is A. Then, we check whether the variable A num is -1
in Procedure Split. If A num is -1, we change the variable
A num to the value of P ; otherwise, a word will be generated.
Since A num is -1 now, we set A num = P = 0. After
changing the value of A num, position P points to the next
character of the sequence S. Because the pointed character
is T and the value of T num is -1, we change the value of
T num to 1, and P will point to the next character. Now,
P is at position 2, and the pointed character is A. Since
variable A num is 0, not -1, which implies that we find
a word which locates from A num to (P - 1). The first
ACGT-Word, W0 = AT , of the sequence S is generated.
The similar steps are processed until the ending symbol $ is
reached. When we reach the ending symbol $, the values of
variables A num, C num, G num, T num may not equal
to -1. It means that some ACGT-Words are not generated yet.

TABLE II

VARIABLES USED IN PROCEDURE SearchQS(QS)

QS the query sequence
SW an array which records all the searched words of QS
SW [i] the i-th searched word in SW
|SW [i]| the length of SW [i]
num the number of searched words
X an array which stores the result of function SearchSW
Y an array which stores the result of the searching process
flag true if QS is in the database
lastword true if the searched word is the last word of QS
E one edge in the ACGT-Words tree
E.label characters stored in edge E
E.endnode the connected node under edge E
k the length of the same prefix between the searched word

and E.label
suffix num occurring positions stored in one node of the ACGT-

Words tree

Therefore, as shown in Figure 4-(b), we generate the remaining
ACGT-Words AT , CGAT , GAT , and T by calling Procedure
InsertRemainingWord.

In procedures Split or InsertRemainingWord, if one
ACGT-Word is generated, we call procedure Insert to insert
the generated word into the ACGT-Words tree. Procedure
Insert is similar to the method used in the word suffix trees
[1], which inserts words into the word suffix tree. The only
difference is that in the word suffix trees method, they record
“in-order numbers” in nodes of the tree structure. However,
in our method, for each ACGT-Word, we record its occurring
positions of input sequence S in a node, where this node is at
the end of the path for this word in our tree structure. Take the
ACGT-words shown in Figure 4-(b) as an example. Figures
5 shows the process of inserting all the ACGT-Words. For
example, in Figure 5-(a), we insert word AT into the ACGT-
Words tree. Since word AT occurs at position 0 of the given
sequence ATACACGAT $, we create one edge with label
equal to AT and one node which records position 0. Then, in
Figure 5-(b), we insert word AC into the ACGT-Words tree.
Because the first character of AC, i.e., A, is the same as the
first character of label AT in the edge, we split this edge into
three edges, i.e., edges with labels “A”, “C”, and “T”. That
is, words AC and AT will share the same edge with label
A, but have the different edges with label C and T . We also
create a new node to store the occurring position of word AC,
i.e., position 2. Therefore, from Figure 5-(b), we could know
that word AC appears at position 2 and word AT appears at
position 0.

C. Search

Given a query sequence, QS, we apply procedure
SearchQS(QS) to do the searching process. Table II shows
variables used in procedure SearchQS, and Figure 6 shows
this procedure. This procedure cuts the query sequence, QS,
into searched words. Moreover, procedure SearchQS will set
flag lastword to true if the searched word is the last word of
QS. After generating the searched words, we call function
SearchSW (R, SW [i], lastword) to search one word from
our ACGT-Words tree, where R is the node that we are
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4 : a node with suffux_num = 4 : an edge with a label CACA
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1

4

3 5

C

A GAT
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C

A GAT
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6
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2 0.7

C T

4

G

(i)

A

1

3 5

C

A GAT

T

6

GAT

8

ACACGA

2 0,7

C T

4

G

(f)

3

CAA

2 0,7

C T

1

TACACGA

4

G

3

CA

(c)

A

2 0

C T

(e)

3

CAA

2 0

C T

1

TACACGA

4

G

A

2 0

(b)

C T

(d)

3

CAA

2 0

C T

4

G

Fig. 5. An example of insertion: (a) AT; (b) AC; (c) CA; (d) ACG; (e)
TACACGA; (f) AT; (g) CGAT; (h) GAT; (i) T.

TABLE III

EIGHT CASES IN SEARCH

k < |SW |, |E.label|,
k ≥ 0

|SW | = k < |E.label|,
k > 0

lastword = true
Case 1

Case 2
lastword = false Case 3

|SW | > k =
|E.label|, k > 0

|SW | = |E.label| = k,
k > 0

no
suffix num

has
suffix num

lastword = true Case 4 Case 5 Case 7
lastword = false Case 6 Case 8

traversing now. (Note that in function SearchSW , we denote
SW [i] as SW .) There are eight different cases in function
SearchSW . Table III shows the conditions of these eight
cases, and the related semantics are illustrated in Figure 7.
These cases are described as follows:

1) Case 1 (as shown in Figure 7-(a)): This case occurs if
there is no common prefix sequence between word SW and
E.label. It means that we can not find an edge whose label
matches the searched word. The output for this case will be
that no sequence matches the query sequence. For example,
in Figure 8, assume that QS = GACGT and SW = GAC.
When we traverse this tree from the root R, there is no edge
whose label starts with character G. Therefore, we conclude
that no sequence matches word GAC in the database, and
flag is set to false.

2) Case 2 (as shown in Figure 7-(b)): This case occurs if
word SW is the same as the prefix of E.label, and SW is

Procedure SearchQS(QS);

/* The main procedure of the searching process in the ACGT-Words tree. */

/* Split(QS) is a function that returns an array which contains the searched words of

QS. */

/* TotalNum(SW ) is a function that returns the number of searched words in the

query sequence QS. */

/* Sort(X) is a function that returns the resulting array after sorting array X . */

/* Combine(Y, X) is a function that returns an array which contains the matching

positions in the database. */

begin

SW := Split(QS);

num := TotalNum(SW );

X := ∅
Y := ∅;

flag := true;

lastword := false;

i := 0;

while ( flag = true and i < (num − 1) ) do

begin

X := SearchSW (R, SW [i], lastword);

if X = ∅ then

flag := false;

else

begin

Y := Combine(Y, X, |SW [i − 1]|);

i := i + 1;

end;

end;

lastword := true;

if ( flag �= false ) then

begin

X := SearchSW (R, SW [i], lastword);

X := Sort(X);

Y := Combine(Y, X, |SW [i − 1]|);

end;

if ( X = ∅ or Y = ∅) then

writeln(” Not found ! ”);

else

writeln(Y );

end;

Fig. 6. Procedure SearchQS(QS)

�
�
� ��

��
��

����

(a) (b) (d)

(e) (f)

��
: the same prefix sequence

SW

E.label

: the different prefix
  sequence

QS

�
�
�

(c)
�
�
�

SW

E.label

QS

lastword not lastword
Don't care Don't care

����

lastword not lastword

��
(g) (h)
����

lastword not lastword

suffix_num

suffix_num Don't care Don't care Don't care Don't care

AT

: the SW which is in the
  searching process

AT

: the node we traverse
  now

no
suffix_num

no
suffix_num n

AT
has
suffix_num

n

n
AT

has
suffix_num

: n is the suffix
  number

Fig. 7. Eight cases in the searching process: (a) Case 1; (b) Case 2; (c) Case
3; (d) Case 4; (e) Case 5; (f) Case 6; (g) Case7; (h) Case 8.
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1

ACT

0 2

CT
T

1 2 3

R

DB = ACT

Fig. 8. An example for Case 1 in the searching process (QS =GACGT ,
SW = GAC)

ACT

5

0 8

CT

3

R

CG

1

2

DB = ACTCGACTACTCT

Fig. 9. An example for Case 2 in the searching process (QS = AGTAC,
SW = AC)

the last searched word of the query sequence. In this case,
we apply function OutputAll(). This function traverses the
subtree from the last edge which the searched word SW meets,
and returns an array of suffix num’s which are stored in
those nodes that function OutputAll() traverses. In Figure 9,
assume that QS = AGTAC and SW = AC (i.e., the last
searched word). We traverse the tree from the root node, and
find that AC is the same as the prefix of E.label = ACT
(|E.label| > |SW |). Therefore, E.label = ACT is one output
that matches the condition SW = AC. Due to SW is the last
word of QS (lastword = true), it may have other outputs,
e.g., ACTCG and ACTCT in this example, which also match
the searched word. Function OutputAll() will also traverse
those nodes. Therefore, the output of this example is {0, 5,
8}. It means that positions 0, 5, and 8 match the last searched
word SW = AC.

3) Case 3 (as shown in Figure 7-(c)): This case occurs if
SW is the prefix of E.label, but is not the last searched word
of the query sequence. This means that no sequence matches
the query sequence. For example, in Figure 10, assume that
QS = ATACG and SW = AT . Since word AT is not the
last word of QS, word AT must exactly match the label of
edge E, i.e., SW = E.label. However, in this example, we
have SW = AT �= E.label = ATG. Therefore, there is no
sequence matching query sequence QS.

4) Case 4 (as shown in Figure 7-(d)): This case occurs
if E.label is the prefix sequence of word SW . First, we
call function Shift(E.label, SW ) to cut the prefix sequence
between E.label and SW . Second, we change the searched
node R to the end node of E. Finally, we call function
SearchSW again to search the new searched word. For
example, in Figure 11, assume that QS = GTCTGA and
SW = GTCT . First, we traverse the tree from the root node.
We find that we will reach node 1 after searching GT (the
common prefix between E.label = GT and SW = GTCT ).

ATG

5

0 8

GC

3

R

CT

1

2

DB = ATGCTATGATGGC

Fig. 10. An example for Case 3 in the searching process (QS =ATACG,
SW = AT )

GT

0

2 6

CT

3

R

AC

1

2

DB = GTGTACGTCT

Fig. 11. An example for Case 4 in the searching process (QS =GTCTGA,
SW = GTCT )

Next, we change the searched node to node 1, and the new
search word becomes CT (due to |SW | > |E.label|). Then,
we call function SearchSW again to traverse the tree deeply
(from node 1 with SW = CT ). Finally, the searched word
GTCT is found in the database (i.e., position 6 stored in node
3).

5) Case 5 (as shown in Figure 7-(e)): This case occurs if
(1) word SW is exactly equal to E.label; (2) word SW is the
last searched word of the query sequence; (3) E.endnode has
no suffix num. It means that this node is created by two or
more edges that have the same prefix sequence. For example,
In Figure 12, sequence ATGATC constructs the tree. Let’s
consider the branch with the starting character A. It has two
ACGT-Words, ATG and ATC. These two ACGT-Words have
shared characters, AT . Hence, after constructing the ACGT-
Words tree, the tree contains one edge E.label = AT and
E.endnode (i.e., node 1) has no suffix num. Therefore,
in this case, we only call function OutputAll(). It traverses
the tree from the edge which the searching word meets. For
example, assume that SW = AT . In Figure 12, we traverse
the tree from the root node. Then, edge E with label AT
(E.label = AT ) matches the word SW , and E.endnode,
node 1, stores no suffix num. Therefore, we call function
OutputAll(). The result after calling function OutputAll()
is {0, 3}. It means that positions 0 and 3 of the database
sequence match the searched word SW = AT .

6) Case 6 (as shown in Figure 7-(f)): This case occurs if
(1) word SW is exactly equal to E.label; (2) word SW is not
the last searched word of the query sequence; (3) E.endnode
has no suffix num. In this case, there is one difference
with Case 5: word SW is not the last searched word of
the query sequence. This means that no sequence matches
the query sequence. For example, in Figure 13, assume that
QS = CACTG and SW = CA (lastword = false). We
traverse the tree from the root node, and SW matches edge
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AT

3 0

G

3

R

C

1

2

DB = ATGATC

Fig. 12. An example for Case 5 in the searching process (QS = ACGAT ,
SW = AT )

CA

0 4

GTA

3

R

AT

1

2

DB = CAATCAGTA

Fig. 13. An example for Case 6 in the searching process (QS =CACTG,
SW = CA)

E with a label CA. However, E.endnode, node 1, stores no
suffix num. Therefore, we output that no sequence matches
the query sequence QS = CACTG in the database.

7) Case 7 (as shown in Figure 7-(g)): This case
is similar to Case 5. The only difference is that
E.endnode has suffix num. Therefore, first, we output
those suffix num’s stored in E.endnode. Next, we ap-
ply function OutputAll() to traverse the subtree under
E.endnode.

8) Case 8 (as shown in Figure 7-(h)): This case is sim-
ilar to Case 6. The only difference is that E.endnode has
suffix num. In this case, word SW exactly matches the
E.label in the tree. For example, in Figure 14, assume that
QS = CTCGACA and SW = CT . We traverse the tree
from the root node. We find that edge E with label CT exactly
matches SW = CT , and E.endnode, node 1, stores positions
0 and 5 (E.endnode.suffix num �= null). Therefore, the
result of this example is {0, 5}. It means that these two
positions of the database sequence match the searched word
SW = CT .

Up to this point, we have discussed all cases considered
by function SearchSW . Next, in procedure SearchQS, after
applying function SearchSW for a searched word SW [i], we
will combine the result from function SearchSW , i.e., X ,

R

CT

1

2

A

2

DB = CTCTACT

0, 5

Fig. 14. An example for Case 8 in the searching process (QS =
CTCGACA, SW = CT )

ATAC

Input String

        0

Database
Position

(b) (e)

A

1

3 5

C

A GAT

T

6

GAT

8

ACACGA

2 0,7

C T

4

G

AT

AC

Searched Words

(a) (c)

AT

AC

Words

    0 , 7
    2 , 4

Positions

(d)

AT

AC

Words

    0 , 7
    2 , 4

Positions

Fig. 15. The searching process for the query sequence ATAC (AT in Case
8, AC in Case 7) : (a) the ACGT-Words; (b) the tree structure; (c) the initial
result; (d) combining; (e) the final result.

and the previous found result, i.e., Y , by applying function
Combine(Y , X , |SW [i]|). In function Combine, we prune
those positions in Y that can not occur in the query sequence.
After we process all searched words, array Y , which is
returned from function Combine, stores the positions that
query sequence QS occurs in the database.

Figure 15 shows an example of the searching process in the
ACGT-Words tree. Given database sequence ATACACGAT
and query sequence QS = ATAC, in our searching process,
procedure SearchQS will split query sequence ATAC into
two searched words, {AT , AC}. When a searched word,
SW , is generated, we search this searched word by function
SearchSW immediately. In this example, we search SW =
AT first. Then, positions 0 and 7, which satisfy the condition
SW = AT , are returned by function SearchSW . Finally,
function Combine(Y , X , len) combines X = {0, 7} with
Y = ∅. Therefore, {0, 7} is stored in Y . Now, we search the
next word SW = AC. In procedure SearchQS, we know
that AC is the last searched word of the query sequence
QS. We traverse the tree structure from the root, and find
that SW = AC occurs at position 2. Then, position 2 is
added into X . However, since SW = AC is the last searched
word of the query sequence QS in this example, we have to
traverse all nodes under the node which we are traversing now.
Therefore, position 4 will be added into X . After applying
function SearchSW for SW = AC, we get the resulting
array X = {2, 4}. Finally, we combine X = {2, 4} and the
previous result Y = {0, 7} by applying function Combine(Y ,
X , |SW [i−1]|). Since the previous searched word, AT , occurs
at positions 0 and 7 of the database sequence, the current
searched word, AC, should occur at positions 2 (= 0+2) and
9 (= 7+2). Therefore, position 2 in X could be combined with
position 0 in Y . That is, position 0 of the database sequence
matches the query sequence ATAC.
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TABLE IV

A COMPARISON OF THE NUMBER OF NODES BETWEEN THE SUFFIX TREE

AND THE ACGT-WORDS TREE FOR THE REAL DNA SEQUENCES

Drosophila Part of human Chromosome 19

DNA length 14405 17010
ACGT-Words Tree 14992 17704
Suffix Tree 23509 27898

TABLE V

PARAMETERS USED IN SIMULATION MODEL

Parameter Meaning Value

PN the number of distinct patterns 6..10
PL(i) the length of the ith synthetic pattern
Min PL the minimum length of a synthetic pattern 5
Max PL the maximum length of a synthetic pattern 10
Mean PL the mean length of a synthetic pattern 7
Min TL the minimum length of the database sequence 10000
Max TL the maximum length of the database sequence 20000
Mean TL the mean length of the database sequence 15000
QN the number of query sequences 200
QL the length of query sequences
Min QL the minimum length of a query sequence 50
Max QL the maximum length of a query sequence 200
Mean QL the mean length of a query sequence 80
θ the probability for containing a pattern in 0.1..1.0

the DNA sequence

IV. PERFORMANCE STUDY

In this section, we study the performance of the proposed
ACGT-Words tree data structure, and make a comparison
with the suffix tree and the suffix array data structures by
simulation. First, we study the performance by using the real
DNA sequences in GenBank. Then, in order to evaluate the
performance of the algorithms over a large range of data
characteristics, we generate the synthetic data and study the
performance by using the synthetic data.

A. Experiment Results for Real Genomic Databases

In this subsection, we study the performance of the ACGT-
Words tree by using the real DNA sequences in GenBank
(http://www.ncbi.nlm.nih.gov). We use Drosophila and Human
Chromosome 19 as our database sequences. Table IV shows
the comparison of the number of nodes between the suffix tree
and the ACGT-Words tree. Obviously, the number of nodes
used in the ACGT-Words tree is less than that used in the
suffix tree.

B. Generation of Synthetic Data

In this subsection, we generate synthetic sequences to
evaluate the performance of the algorithms. The synthetic data
is used to simulate the occurrence of a DNA query sequence in
a genomic database. The parameters used in our performance
model are shown in Table V. The details of our performance
model are described in [3]. The simulation results is the
average of 2000 experiments for different parameters which
we consider.
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Fig. 16. A comparison of the number of nodes between the ACGT-Words
tree and the suffix tree under the different probabilities of patterns (TL =
15000, PN = 6, PL = 7)
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Fig. 17. A comparison of the number of nodes between the ACGT-Words
tree and the suffix tree under the different length of the database sequence (θ
= 0.5, PN = 6, PL = 7).

C. Simulation Result

In this subsection, we show the simulation results of the
ACGT-Words tree.

1) The Suffix Tree vs. the ACGT-Words Tree: A comparison
of the number of nodes under the different occurring proba-
bilities of the same patterns is shown in Figure 16. From this
figure, we show that the ACGT-Words tree always requires less
number of nodes than the suffix tree no matter what value of
the probability θ is. That is, the ACGT-Words tree needs less
storage space than the suffix tree. Moreover, as the occurring
probability of the same patterns increases, the number of nodes
increases in the suffix tree, but decreases in the ACGT-Words
tree. This is because as the occurring probability of the same
patterns increases, the number of ACGT-Words is less than
the number of suffixes.

A comparison of the number of nodes under the different
length of database sequences is shown in Figure 17. From this
figure, we show that the ACGT-Words tree always requires
less number of nodes than the suffix tree no matter what
value the length of the database sequence (TL) is. As TL
increases, some patterns may occur for many times. Therefore,
the increasing rate of the number of nodes of the ACGT-Words
tree is slower than that of the suffix tree.

A comparison of the number of nodes under the different
number of patterns is shown in Figure 18. From this figure, we
show that the ACGT-Words tree always requires less number
of nodes than the suffix tree no matter what value the number
of database patterns (PN ) is. The simulation result does not
contain any obvious regulation. That is, the value of PN is not
the main factor for affecting the storage spaces of the suffix
tree and the ACGT-Words tree.
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Fig. 18. A comparison of the number of nodes between the ACGT-Words
tree and the suffix tree under the different number of patterns (θ = 0.5, TL
= 15000, PL = 7).
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Fig. 19. A comparison of the number of nodes between the ACGT-Words
tree and the suffix tree under the different length of patterns (θ = 0.5, PN =
6, TL = 15000).

A comparison of the number of nodes under the different
length of patterns is shown in Figure 19. From this figure, we
show that the ACGT-Words tree always requires less number
of nodes than the suffix tree no matter what value the length
of patterns (PL) is. Similar to the previous result, this result
also contains no obvious regulation.

2) The Suffix Array vs. the ACGT-Words Tree: A compar-
ison of the constructing time based on the different length of
the database sequences is shown in Figure 20. In this figure,
we show that the ACGT-Words tree always takes less time
than the suffix array to construct the index structure no matter
what length the database sequence is. When the suffix array
is constructed, it needs to sort all suffixes in the database
sequence first. Therefore, it will take much time and require
more space to construct its data structure.

A comparison of the searching time under the different
length of query sequences is shown in Table VI. In this
table, we observe that the ACGT-Words tree always takes
less time for the searching process than the suffix array. The
searching process of the suffix array uses a binary search.
In the ACGT-Words tree, we search only one path for the
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Fig. 20. A comparison of the constructing time between the ACGT-Words
tree and the suffix array under the different length of database sequence

TABLE VI

A COMPARISON OF THE SEARCHING TIME BETWEEN THE SUFFIX ARRAY

AND THE ACGT-WORDS TREE UNDER THE DIFFERENT LENGTH OF QUERY

SEQUENCES

Query Length ACGT-Words Tree (ms) Suffix Array (ms)

50 36 89
60 65 76
70 91 92
80 55 81
90 76 98
100 76 110
150 88 179
200 101 187

query sequence. Although we need to combine the results after
searching ACGT-Words, we still have a better performance
than the suffix array.

V. CONCLUSION

Genomic sequence databases are widely used by molecular
biologists for searching. In this paper, we proposed a new data
structure, ACGT-Words, for indexing the genomic sequences.
In the proposed ACGT-Words tree, we insert the ACGT-Words
generated, instead of all suffixes, into the tree structure. The
size of the ACGT-Words tree is small, and the ACGT-Words
tree has no missing case occurred in the word suffix trees.
From our simulation results, we have shown that the storage
space of the ACGT-Words tree is less than that of the suffix
tree. Moreover, we have shown that the construction time
and the search time of the ACGT-Words tree are shorter than
those of the suffix array. How to extend our index structure
to support the approximate sequence matching in database
sequences is the possible research direction.
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