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Abstract— Rearrangements of genes and other syntenic blocks
have become a topic of intensive study by phylogenists, compara-
tive genomicists, and computational biologists: they are a feature
of many cancers, must be taken into account to align highly
divergent sequences, and constitute a phylogenetic marker of
great interest. The mathematics of rearrangements is far more
complex than for indels and mutations in sequences. Inversions
have been well characterized through 20 years of work, but
transpositions still await comparable results. We can compute
inversion and DCJ (a combination of inversions and block
exchanges) distances, and bounds on the transposition distance.
The first has been extensively used in comparative genomics and
phylogenetics, the second is quite new, and the third has not seen
significant use to date.

We present here a detailed experimental study of these three
distance measures within the context of genome comparison
(pairwise distances) and phylogenetic reconstruction. We used
data generated through simulated evolution along various trees,
using various evolutionary rates and various mixes of inversions
and transpositions. Our main finding is that inversion and DCJ
measures return very similar results even on data generated using
only transpositions, while the measure based on Hartman’s bound
is often too loose to provide comparable accuracy in genomic
comparisons or phylogenetic reconstruction.

I. INTRODUCTION

Rearrangements of genes and other syntenic blocks have

become a topic of intensive study by phylogenists, comparative

genomicists, and computational biologists. Rearrangements

are a key feature of many cancers, must be taken into account

to align sequences that have seen high divergence, and con-

stitute in themselves a phylogenetic marker of great interest.

Unfortunately, the mathematics of rearrangements is far more

complex than that of simple indels and mutations in sequences.

The rearrangement known as inversion has been well char-

acterized through nearly 20 years of work, but the equally

important transposition still awaits comparable results. At

present, we have the means of computing inversion distances

and so-called DCJ distances (a combination of inversions and

block exchanges), as well as to derive fairly tight bounds

on the transposition distance. The first has been extensively

used in both comparative genomics and phylogenetics, but the

second is quite new and the third has not seen significant use

to date. In particular, nothing is known on the importance of
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taking into account in some explicit manner the possibility that

a sequence of rearrangements may include transpositions and

not just inversions.

We therefore set out to investigate the effect of mixing

transpositions and inversions, up to the extreme of using only

transpositions, on the usefulness of these three measures for

phylogenetic reconstruction. For this purpose, we generated

simulated data in the accepted manner (birth-death trees and

published trees, various deviations from ultrametricity, various

tree diameters, and various ratios of inversions to transpo-

sitions, including zero), then computed pairwise distances

among the resulting gene orders, and finally computed several

measures on these gene orders. These measures included the

quality of trees reconstructed from the pairwise distances using

neighbor-joining, the sum of the branch lengths of these trees,

the sum of the pairwise distances, and the monotonicity of the

distance estimates (as defined by the number of inverted pairs

of values in a sorted list of these pairwise distances).

Since the DCJ measure uses only block interchanges

(including transpositions) in a transposition-only scenario,

whereas the inversion measure suffers from a complete mis-

match of operations, one might expect the DCJ measure and

the transposition bound to outperform the inversion measure

in such a scenario. Somewhat surprisingly, we found that

inversion and DCJ distances are nearly indistinguishable under

our various measures and that the transposition bound is only

slightly different. On the other hand, since all three measures

are based (loosely) on the same construct (the breakpoint

graph), the similarity might have been expected. Note that

our results do not imply that solving the problem of sorting

by transpositions (or by transpositions and inversions) would

yield little or no benefit: we looked only at the effect of the

choice of distance computation on various measures related to

tree reconstruction; should one desire to reconstruct ancestral

arrangements, for instance, the distinction between inversions

and transpositions would become crucial.

II. PRELIMINARIES

We provide a very short introduction to gene rearrangements

and their uses in comparative genomics and phylogenetic re-

construction. Further information on the biological motivation

for studying rearrangement can be found in the following: the

surveys of Moret et al. [1], [2] address the uses of rearrange-

ments in phylogenetic reconstruction; papers by Pevzner and

colleagues [3], [4], [5], [6] illustrate the uses of computational
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approaches to rearrangements in comparative genomics; many

other researchers are developing methods based on gene orders

to assign gene orthologies (cf. [7], [8], [9]); and studies of

rearrangements in many types of cancer (thyroid, breast, etc.)

abound.

A. Gene-order data

With the advent of high-throughput sequencing and thanks

to the large number of researchers engaged in gene hunting

and annotation, the complete ordering of genes on each

chromosome of a large number of organisms has become

available; many more (especially bacteria and archea) will

become available shortly. These data have much to offer to

the biomedical community, but tools for analyzing them lag

behind tools for sequence analysis, in part of course because

of nearly 20 years’ worth of additional efforts on sequence-

based tools, but also because of the intrinsically more complex

mathematics governing these new data.

In a typical setup, homologous gene sequences (or other

syntenic blocks of interest) have been identified by conven-

tional methods and gene families can thus be set up, with

homologous families in other organisms. If we index all

distinct (non-homologous) gene families from 1 to m, then

each gene can be denoted simply by the index of its family,

so that the list of genes along a chromosome becomes a list

of indices, each with a value between 1 and m1; if genes are

on different strands, we give a positive sign to the indices

of genes read from the 3’ to 5’ end and a negative sign to

those on the other strand. In the simplest case (unlikely to be

encountered even in simple organelles), each gene family has a

single member and then each chromosome becomes a signed

permutation of a subset of the indices in {1, . . . ,m}; as a

further simplification, we could also assume that each genome

contains exactly the same genes and has a single chromosome,

in which case each chromosome is now a signed permutation

of the set {1, . . . ,m}. If we assume that the indices are such

that the last common ancestor (LCA) of our samples was

characterized by the identity permutation 1, 2, . . . ,m, the most

basic problem becomes “how did the new signed permutations

come into being?”

B. Rearrangements

We can focus on the outcomes or on the mechanism.

Researchers first focused on outcomes: synteny, for instance,

is a simple measure of the result of evolution [10]—we test

whether elements i and i+1 remain on the same chromosome

on which they were located in the LCA. Adjacency is a

more demanding version of the same idea—if elements i

and i + 1 are adjacent in one genome, we test whether they

are also adjacent in another. The loss of adjacency manifests

itself by the presence of a breakpoint—two indices adjacent

in our modern genome that were not adjacent in the LCA.

1This indexing assumes that genes are linearly ordered along a chromo-
some, which is not always the case—in fact, one gene can be nested within
another; we assume the simpler, linearly ordered case, which is why it may
make more sense to think of these orderings as orderings of blocks of
consecutive codons.

Sankoff [11], [12] advocated the use of breakpoints in evalu-

ating rearrangements, characterized many of their aspects, and

provided early software for their use. To move from results to

explanations, however, we need models of evolution in terms

of rearrangement operations.

Rearrangement operations may move chromosome seg-

ments within the same chromosome or among chromosomes.

In the former category, the simplest operations are inversions,

which excise a segment and put it back in the position, but

in the reverse direction, and transpositions, which move a

segment from one position to another along the chromosome.

Hannenhalli and Pevzner [13], [14] provided a framework

in which to study inversions and characterized the shortest

sequence of inversions between two arbitrary signed permuta-

tions, giving a polynomial-time algorithm to compute it; later,

Bader et al. [15] gave a linear-time algorithm to compute the

resulting edit distance. While Bafna and Pevzner [16] gave

a similar framework in which to study transpositions as well

as a 1.5-approximation algorithm, the problems of finding a

shortest edit sequence or of computing the edit distance remain

open to this day. The best results to date are due to Hartman,

who gave a simplified 1.5-approximation algorithm [17], later

improved it to a 1.375-approximation [18]. The more general

operation of block interchange, which exchanges two non-

overlapping segments (and of which transposition is a special

case) has also been studied and can be solved in polynomial

time [19].

In the second category are operations that alter the gene

content of chromosome and may even alter the number

of chromosomes. These operations including fusion (of two

chromosomes into one), fission (of one chromosome into

two), and translocation (of a segment of one chromosome

to some location of another). Recently, Yancopoulos et al.

[20] proposed a unifying operation, the double-cut-and-join

or DCJ; their work was further elaborated by Bergeron et

al. [21]. A DCJ operation, as its name indicates, makes a

pair of cuts (which can be anywhere, including one cut each

on two different chromosomes) and proceeds to reglue cut

ends; the repair can be done in several ways and can yield an

identity, an inversion, a fission (one linear chromosome into

two chromosomes, one linear and one circular, for instance),

a fusion (a circular chromosome and another fused), and a

translocation (exchanging tails between two linear chromo-

somes). Combining two DCJ operations can create a block

interchange and thus, in particular cases, a transposition. While

there is no direct biological evidence for DCJ operations

in their full generality, the unifying model they present, the

natural way in which they equate the cost of one transposition

with that of two inversions (a valuation long preferred by the

community, but always artificially imposed), and the fact that

computations with DCJ are even simpler than computations

with just inversions, have all combined to make this model

very attractive.

C. Distance measures

While one would like the actual amount of evolution (in

terms of the rearrangements operations permitted under the
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model) that separates two genomes, one has to settle for

computing metrics such as the smallest number of permitted

operations that can transform one genome into the other,

known as an edit distance. These edit distances naturally

underestimate the amount of evolution, especially for more

divergent genomes—a problem common to such computations

for sequence data as well. Thus various corrections, which

apply model statistics to produce an expected value for the

amount of evolution indicated by the edit distance, have

been proposed (see, e.g., [22], [23]) and shown to improve

the accuracy of phylogenetic reconstruction. However, such

corrections have so far only been proposed for inversion

metrics; the complexity of the DCJ model makes it difficult to

produce model statistics (we would need to know more about

the parameters of the various rearrangements it encompasses)

and the elasticity of the transposition bounds quickly magnify

the principal drawback of such corrections, which is the large

increase in variance for the expectation produced. Therefore

our study focussed on uncorrected distances only. We used

the 1.5-approximation of Hartman, rather than his later 1.375-

approximation, in part due to the simplicity of the former, but

also because the fractions only denote a worst-case behavior

and there was little reason to assume that the second algorithm

would do better on average than the first.

III. EXPERIMENTAL DESIGN

Our aim is to evaluate the relative merit of these three

distance estimates (inversion, DCJ, and transposition, the latter

through Hartman’s bound) in phylogenetic and comparative

work.

A. Comparison strategies

We know that all three measures (certainly the first two,

which are true edit distances) will typically underestimate the

true evolutionary distance, but we are interested in possible

differences in these underestimates. On the other hand, because

rearrangement paths using only transpositions necessarily dif-

fer greatly from rearrangement paths using only inversions,

there is no point in comparing reconstructed ancestral genomes

in phylogenies. Thus our experiments focus on the relative

performance of the three methods in estimating distances and

the differences observed in the quality of reconstructed trees.

We chose four measures to compare the three distance

estimates.

• The sum of all pairwise distances. We can compare

this quantity to the sum of all true pairwise distances

(known from the simulation) and thus see whether the

underestimate is more pronounced with some of the

distances than with others.

• The relative ordering of the pairwise distances. We can

sort the true pairwise distances and, for each of the three

distance estimates, compare its sorted order with the true

one. We used the number of pairwise index inversions

(as needed in a bubblesort) as the indicator.

• The sum of all tree branch lengths in a tree reconstructed

from the distance matrix by the neighbor-joining (NJ)

method [24]. This measure avoids the need for ancestral

reconstructions, yet gives us a quick estimate of how

much overall evolution is implied for the dataset under

each distance estimate and how it compares to the true

total amount of evolution (known from the simulation).

• The Robinson-Foulds (RF) distance [25] between the

model tree and the tree reconstructed under each distance

estimate with the NJ method. This measure of topological

error is the most widely used in phylogenetic work and,

within the limits of the chosen reconstruction method,

tells us how well each distance estimate lends itself to

phylogenetic analysis.

B. Generating sample data

Because DCJ distances reduce to inversion distances on data

generated using only inversions and because transpositions

remain the unknown factor, we generated data with large

numbers of transpositions; indeed, most of our tests used data

generated with transpositions only. On such data, DCJ methods

will not postulate any inversions, Hartman’s bounds will be

well matched, and inversion methods will presumably be at

their worst—although earlier studies indicated that inversion

distances performed well under most mixes of inversions,

transpositions, and inverted transpositions [26], [27].

We first generate sample model trees with evolutionary

distances on all branches, using the standard r8s software

[28]. The edge lengths are set such that the diameter of the tree,

the largest distance between any two leaves on their connecting

path in the tree, is a predetermined factor of the number of

genes. Since these trees are ultrametric (the path length from

root to leaf is the same for all leaves), we alter branch lengths

to deviate the tree from ultrametricity by a prescribed factor,

following a standardized procedure (see, e.g., [27]). For each

branch in the model tree, we pick a random number s, where

ln(s) is drawn from the interval [−c, c], where c is the chosen

deviation from ultrametricity, set to 5 in our experiments (a

rather severe deviation). We then multiply the expected branch

length by s to obtain a new branch length for the true tree;

finally, in order to avoid branches of zero length (which could

artificially confuse the NJ algorithm and would, in any case,

force it to return false positive edges), we add 2 to the length

of every resulting edge. For each of the model trees, we

generate 25 replicates (which will have identical edge length

distributions, but resampled). We generated in this manner

trees of 50, 100, and 200 leaves.

On each tree thus obtained, we generate gene orders (per-

mutations) for the leaves, which are then stored in a FASTA

file for processing by our distance estimators. In all our

experiments, we used artificial genomes of 400 genes: the

number is large enough to accommodate larger trees and to

present complex interactions among rearrangements, yet small

enough to allow for large-scale experimentation. Leaf genomes

are generated by starting with the identity permutation at the

root and traversing down to the root, generating each child

of a node by applying to that node’s genome a number of

rearrangement operations equal to the length of the edge to the

child. The rearrangement operations are selected in the chosen

proportion of inversions to transpositions (we show only
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results for 100% transpositions) and each operation is specified

independently at random by picking two (for inversions) or

three (for transpositions, with the third value outside the range

defined by the first two) integers in the range from 1 to 400.

C. Running the experiments

The outcome of the previous step is a collection of true

trees (with edge lengths) and of FASTA files (which contain

the leaf genomes). We then compute a pairwise distance matrix

for each FASTA file with each distance estimate and run the

NJ algorithm on that matrix, recording the resulting tree and

its edge lengths, and calculating the four measures described in

Section III-A. Because DCJ could use block exchanges rather

than actual transpositions (there is no way to forbid block

exchanges without losing the advantages of the DCJ model),

we also measured the percentage of block exchanges that were

actually transpositions in the DCJ distance calculations; ide-

ally, this percentage should be 100, since there is no biological

evidence for block exchanges rather than transpositions at the

genomic level. Finally, we averaged the results over the 25

replicates of each model tree.

IV. RESULTS AND DISCUSSION

We present and discuss results under each of the four

measures of Section III-A in turn. Lack of space prevents us

from showing all of our results; moreover, many are repetitive,

so we present only a sample.

A. Sum of all pairwise distances

Figure 1 shows the sum of all pairwise distances returned

by each distance estimate (as a percentage of the true sum)

plotted against increasing tree diameters. In this and all plots

(except for Figure 2), the data are shown for trees of 50

taxa on 400 genes, with tree diameters varying from 100 to

1200 rearrangements, and inversion estimates are shown with

squares, Hartman’s bound with circles, and DCJ estimates

with triangles. Predictably, as the tree diameter increases,

the underestimation gets worse. The three methods give very

tightly clustered values, with DCJ slightly lower and, in

most cases, Hartman’s bound slightly higher than inversion.

This tight clustering further supports the assumption that a

transposition should be given the weight of two inversions.

We carried out a series of experiments for genomes of vary-

ing sizes, from 50 to 400 genes, in order to determine where

the three distance estimators first began to underestimate the

true distance—the beginning of saturation for our distance

estimates. With most distance measures, reconstruction is

far more accurate below saturation than past saturation; NJ

reconstruction from these distance matrices should be no

exception. Figure 2 shows plots for genomes of 50, 150, and

200 genes. In these plots, the true distance corresponds to the

diagonal, shown as a thin line. Hartman’s bound unsurprisingly

overestimates true distances for small values, then closely

follows true distances up to almost n

3
transpositions, where

n is the number of genes. Both inversion and DCJ distances

closely follow true distances up to about n

5
transpositions.

These results are similar to those obtained by Moret et al.

[22] for inversion distances under various scenarios.
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Fig. 1. Sum of all pairwise distances as a percentage of the true sum on 50
(top) and 100 (bottom) taxa and for various true tree diameters.

B. Bubblesort exchanges

Figure 1 shows that the three methods perform very closely

when we look at the entire tree. However, we also wanted

to check how uniform the difference in distance estimation is

between the true distances and the method being considered.

We looked at the number of bubblesort exchanges it takes to

reorder the sorted pairwise distances returned by one method

so as to agree with the order obtained from the true pairwise

distances. Figure 3 shows the results; to make comparisons

easier, the results in the plot are normalized by the number

of taxa. Again, the three methods perform very closely with

DCJ marginally below inversion and Hartman’s approximation

usually above. What is more interesting is that the ordering

is less sensitive to the diameter than the sum of all pairwise

distances, hardly deviating from the true ordering up to almost
n

2
transpositions. This is good news for tree reconstruction, as

the relative ordering of pairwise distances is more important

for accuracy than the absolute values.

C. Sum of tree edges

The next measure we look at is the sum of all edge lengths

for the trees generated by NJ from the distance matrices

computed under each distance estimate. Once again, we expect

that measure to underestimate the sum of the true edge lengths

of the true tree. Figure 4 shows these values as percentages

of the true sum. The same pattern observed earlier continues,

with all three distance estimates yielding very close values
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(i) on 50 genes

(ii) on 150 genes

(iii) on 200 genes

Fig. 2. Pairwise inversion, DCJ, and Hartman’s distance estimates vs. true distances for genomes of 50, 150, and 200 genes (from top to bottom).
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Fig. 3. Normalized bubblesort exchanges on 50 (top) and 100 (bottom) taxa
and for various true tree diameters.
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Fig. 4. Sum of all branches for trees returned by NJ on 50 (top) and 100
(bottom) taxa and for various true tree diameters.

and with DCJ marginally lower than inversion and Hartman’s

approximation slightly larger than the other two.

D. Robinson-Foulds metric

From what we have seen so far, it is clear that the DCJ edit

distance tends to yield the smallest estimate, closely followed

by the inversion edit distance. Now, inversion distances have

been used successfully in tree reconstruction, so we should

expect that DCJ distances would be equally successful. We

now compare the tree structures returned by NJ run on the

pairwise distance matrices compared to the true tree, using

the Robinson-Foulds metric. Normalized RF values are the

sums of the number of false positive edges and the number

of false negative edges divided by (twice) the number of

edges in the true tree and thus vary from 0 (perfect) to 1

(completely wrong). Figure 5 plots normalized RF scores as

a function of tree diameter for 50 and 100 taxa. As expected

from our results on the relative ordering of pairwise distances,

the reconstructions are quite accurate up to a diameter of about
n

2
transpositions and acceptable to a diameter of n. Once

again, the results for the three distance estimates are barely

distinguishable.

E. Transpositions vs. block interchanges

The DCJ algorithm first attempts to find possible inversions,

but only if oriented edges can be found in the breakpoint graph.

Since data generated using only transpositions will produce

breakpoint graphs without any oriented edges, DCJ will not
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infer any inversions in a sorting sequence for such data.

However, it will infer both general block interchanges and

transpositions, the special case in which one of the two blocks

has zero length. Since transpositions are well documented in

genomics, but general block interchanges are not, we would

prefer to see the DCJ method infer as many transpositions

as possible. Figure 6 shows the proportions of transpositions

and block interchanges in the sum of all edge lengths (all

operations, times two) for each tree. It is gratifying to see

that between 85% to 95% of block interchanges are actually

transpositions.

F. General discussion

The striking similarity of the three distance estimates under

the four measures we used confirms the widely held view that

the “cost” of a transposition or block exchanges should be

taken as twice that of an inversion. That is because we used

such a cost for block exchanges and transpositions in our cal-

culations and the (very different) sorting paths for inversions

and for transpositions came to almost exactly the same cost.

The fact that good reconstructions (under NJ) are possible

for diameter of up to n confirms findings from our group re-

garding inversion distances: gene-order data is generally more

“resistant” to saturation than sequence data, due to the huge

number of character states available. Finally, the fact that the

DCJ approach inferred a sorting sequence composed mostly of

pure transpositions for data generated with transpositions only

shows that, except in order to reconstruct ancestral sequences,

we may not need to “solve” the transposition problem in order

to produce accurate phylogenies.

V. CONCLUDING REMARKS

Because DCJ distances and sorting sequences are as easy

to compute as inversion distances and sorting sequences,

yet DCJ operations are more general, applying as they do

to multichromosomal genomes, it makes sense to replace

inversion computations by DCJ computations. However, there

remain a number of significant issues.

First, the issue of distance correction: as shown by Moret

et al. [22], correcting inversions distances yields considerably

more accurate results in phylogenetic work; there is no doubt

that DCJ distances would benefit just as much from a correc-

tion, but this correction will be much more complex to design

and would appear to require a large number of assumptions

about basic parameters of the evolutionary process.

Second, the assumption of equal gene content and no

duplicates is clearly unrealistic, especially for larger genomes.

Some significant advances have been made with unequal gene

content and duplications in an inversion context [29], [30],

[31], but, once again, the large variety of operations possible

with DCJ will make similar work very challenging.

Finally, the elusive goal of ancestral reconstruction will not

be made any more reachable by the DCJ model: what has

prevented us so far from reconstructing good ancestral gene

orders under inversion only is the lack of biological knowledge

to constrain what appears to be an enormous choice of equally

good possibilities. The more flexible DCJ model can only

make that choice even larger. The various tantalizing issues

arising with inversions (such as the apparent prevalence of

short over long inversions [32], [33] and the apparent presence

of hotspots in certain chromosomal loci [5]) are likely to grow

in number and complexity with a DCJ model.
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