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Abstract - A 2-stage detector was designed to find rho-
independent transcription terminators in the Escherichia coli 
genome. The detector includes a Stochastic Context Free 
Grammar (SCFG) component and a Support Vector Machine 
(SVM) component. To find terminators, the SCFG searches the 
intergenic regions of nucleotide sequence for local matches to a 
terminator grammar that was designed and trained utilizing 
examples of known terminators. The grammar selects sequences 
that are the best candidates for terminators and assigns them a 
prefix, stem-loop, suffix structure using the Cocke-Younger-
Kasaami (CYK) algorithm, modified to incorporate energy 
effects of base pairing. The parameters from this inferred 
structure are passed to the SVM classifier, which distinguishes 
terminators from non-terminators that score high according to 
the terminator grammar. The SVM was trained with negative 
examples drawn from intergenic sequences that include both 
featureless and RNA gene regions (which were assigned prefix, 
stem-loop, suffix structure by the SCFG), so that it successfully 
distinguishes terminators from either of these. The classifier was 
found to be 96.4% successful during testing. 
 
 

INTRODUCTION 
 
Two types of transcription terminators, named for their 
operating mechanisms, have been found to exist in bacteria: 
rho-dependent and rho-independent terminators.  Detection of 
terminators has been challenging due to the  lack of clear 
signals in their genetic sequence, such as is provided to  
protein gene detection by start and stop codons.  However, 
there are structural features present in the class of rho-
independent terminators that may be exploited to aid in their 
detection.  
 
For a rho-independent terminator, the ability to function 
effectively is largely due to formation of a stem-loop. This 
secondary structure, rather than sequence, is the phenotype 
selected for in the evolutionary process. The same structures 
may result from different sequences of nucleotides adenine, 
cytosine guanine and uracil (a,c,g and u). Therefore sequences 
may be evolutionarily related while not conserved, as long as 
their structures are conserved by compensatory mutations. 
(For example, a stem cg pair can be replaced by  gc, au, ua gu 
or ug pair.) Unsurprisingly, it has been found that rho-

independent terminators do not share general consensus 
sequence [1]. Our approach to terminator detection is to infer 
structural information from sequence alone, then use both 
sequence and inferred structural parameters to classify the 
sequence as terminator or non-terminator.  
 

BACKGROUND 
 
Terminator Detection 
Transcription is the process by which a copy of the coding 
(nontemplate) strand of a gene is produced, except that 
thymine (t) in DNA is replaced by uracil (u) in RNA, resulting 
in an RNA transcript. The final phase of transcription is 
termination, which can be signaled in rho-independent 
terminators by the formation of a stem-loop within the RNA 
polymerase (RNAP), inducing the pausing of the transcription 
elongation complex (TEC) just as the RNAP encounters weak 
au bonds at the terminator tail, causing the dissociation of the 
TEC from the RNAP and the release the protein or RNA gene. 
 
A model attributed to Carafa et al. [2] describes DNA 
sequence for rho-independent terminators. An RNA hairpin 
(stem-loop) is followed by a 15 nucleotide (nt) long region 
rich in thymidine (the nucleoside of thymine) which may be 
separated by a spacer region of up to 2 nts. An adenoside-rich 
region was described upstream of the hairpin (but not used in 
their scoring system).  Fig. 1 depicts the canonical terminator, 
based upon the Carafa model, that was used in this project. 
Carafa et al. developed a 2-stage process to detect and classify 
candidate terminators, taking into account structural 
information such as free energy of the RNA hairpin, along 
with stem and loop length. Sequence information such as the 
number and positions of thymidine residues, and the fraction 
of cg pairs in the stem is also used. This algorithm 
successfully distinguishes between terminators and both 
random sequence and protein coding sequence. 
 
Other researchers have built upon the Carafa model to create 
terminator detectors. The 2-stage process of Ermolaeva et al. 
[3] utilized location and orientation information, their own 
representation of the stability of stem-loop structure, and the 
Carafa tail-scoring function. Lesnik et al. [4] devised an 
algorithm utilizing sequence parameters and allowing the user 
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to define constraints upon structure. Their thermodynamic 
scoring system accounts for the preference of stem-loop 
structure over bonding to DNA at the point of transcription 
termination. More recently, de Hoon et al. [5] used a logistic 
regression model to arrive at a decision rule for predicting rho-
independent terminators in B. subtilis and related species. 
While these methods detect more known terminators than 
Carafa et al., they report a tradeoff between finding more 
known terminators (true positives) and getting more false 
positives. Also, this sensitivity/specificity tradeoff is hard to 
quantify since many terminators have yet to be experimentally 
determined so numbers of true and false positives in these 
studies are estimates. Some studies count the terminators 
found by their algorithm as true positives along with 
experimentally determined terminators as long as these 
putative terminators satisfy location and scoring standards. 
Ermolaeva et al., who create a polynomial approximation to 
estimate frequency of false positives, report finding 567 
terminators in E. coli with a confidence of 98% (meaning 98% 
of all predictions are estimated to be correct). This is far 
higher than the number of experimentally determined 
terminators. At this confidence they reportedly find 89% of all 
true terminators. 
 
The success of Hidden Markov models in statistical modeling, 
database searching and multiple alignment of both promoters 
and protein genes has prompted researchers to look to 
grammars to incorporate long range interactions into feature 
detection. Hidden Markov models are equivalent to stochastic 
regular grammars, where sequence is generated from left to 
right [6]. Features that have stem-loop structures caused by 
base pairs that are nested can be generated by a context-free 
grammar, emitting sequence from outside to inside rather than 
from left to right. Stochastic context-free grammars (SCFGs) 
capture both sequence and structural information and have 
been used successfully to model RNA genes by Eddy and 
Durbin [7] and tRNA genes by Sakakibara et al. [8]. Kin et al. 
[9] used a SCFG as a kernel in the classification of tRNAs. 
SCFGs were used to model terminators by Bockhorst and 
Craven [10], as a test case to show that a deficient SCFG could 
be refined in an iterative process. Their paper states that 
preliminary results indicate that the refinement method 
produced an SCFG that improved the accuracy of the model, 
but the success rates themselves were not reported.  
 
For this project, a Stochastic Context Free Grammar (SCFG) 
was developed to utilize both sequence and structural 
information to detect terminators from genomic sequence. To 
refine the detection process, a support vector machine (SVM) 
was coupled with the SCFG. The SCFG selects likely 
candidates for terminators from sequence, and designates 
subsequences of each as prefix, stem, loop and suffix. This 
information is passed to the SVM, which was trained to 
distinguish between terminators and those non-terminators 
that were assigned high scores by the SCFG. The terminator 
grammar of Bockhorst and Craven was not used, because the 
grammar was reported to be deficient. Rather, a grammar was 

developed to select sequence that can take on the structure of 
the canonical rho-indedpendent terminator of Fig. 1.  
 
Stochastic Context-Free Grammars 
A Grammar is a set of rules, called productions, together with 
a set of abstract symbols called non-terminals and a set of 
emitted symbols called terminals. Together these 3 sets 
characterize the set of legal strings, the language of the 
grammar, which are those strings that can be derived by 
iterative application of the productions. Grammars having the 
set of terminals {a,c,g,t} have been used for modeling strings 
of nucleotides, such as genes [6][7][8][16][17].    
 
The structure of a stochastic context-free grammar is that of its 
underlying context-free grammar G.  G can be formally 
defined as G={N,T,P,S} where N is a finite set of nonterminal 
symbols (“states”), T is a finite set of terminal symbols 
({a,c,g,t} for nucleotides), P is a finite set of productions of 
the form A→ Γ, where A € N , Γ € (NU T)*, and S is the start 
nonterminal (S € N).  This means that the right hand side of a 
production may consist of any combination of terminals and 
nonterminals, while the left hand side must be a single 
nonterminal. A particular iterative application of productions 
that result in a string x is referred to as a derivation or may be 
viewed as a parse tree, Π, for x.  
 
An SCFG assigns a probability to each production rule in P 
such that all the productions from any given nonterminal sum 
to 1. The set of these probabilities is referred to as the 
parameters of the model, θ. A sequence x may have a higher 
probability (score) with one model than with another. The 
probability P(x,Π | G,θ) is the probability that a particular 
derivation (parse tree) Π generates string x given structure G 
of the underlying context-free grammar and the probabilities θ 
associated with the productions. This is simply the product of 
probabilities of all the production rules used in the parse tree 
Π for sequence x. An SCFG describes a joint probability 
distribution P(x,Π | G,θ) over all sequences x and all possible 
parse trees Π. 
 
SCFGs are generalizations of hidden Markov models 
(HMMs), which are equivalent to stochastic regular grammars. 
In addition to primary sequence, modeled in left to right string 
generation by HMMS, SCFGs model secondary structure in 
outside to inside generation of strings. The HMM algorithms 
for solving problems of detection, alignment and parameter 
estimation have analogs for families modeled by SCFGs. 
These dynamic programming algorithms start with 
subsequences of length zero and consider larger and larger 
sequences by incrementally extending them. In the case of 
HMMs, subsequences are extended leftwards by 1 nt at a time, 
whereas for SCFG models, subsequences are extended 
outwards by 2 nt at a time, capturing pair interactions.  
 
For this project, genomic sequence needs to be parameterized 
into likely terminator structure so the SVM could be trained to 
detect which are terminators. To accomplish this the Cocke-
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Younger-Kasaami (CYK) algorithm is used for alignment to 
the structure and model. Rather than taking the sum of 
probabilities of parse trees as is done in scoring, these 
alignment algorithms find the argmax of the probabilities for 
parse trees. The end result is log P(x,Π* | G,θ) where Π* is the 
most likely parse for x given the grammar structure and 
model. A traceback can be coded to reveal Π*.  
 
Support Vector Machines 
Support Vector Machines (SVMs) are a relatively recent 
addition to the field of machine learning. They were 
introduced by Vapnik and began to be widely used in 
classification in the 1990s.  SVMs are trained with a learning 
algorithm from optimization theory that implements a learning 
bias derived from statistical learning theory to search a 
hypothesis space of linear functions operating on data that has 
been embedded into a high dimensional feature space [11]. A 
kernel function is selected to perform the embedding such that 
the data becomes linearly separable in the high dimensional 
space. Basically, an SVM is a hyperplane classifier which 
finds the optimal hyperplane to separate data into classes. 
When dividing two classes, the optimal hyperplane is 
orthogonal to the shortest line connecting the convex hulls of 
the two classes, and intersecting it halfway between the two 
classes at a perpendicular distance d from either class, creating 
a margin of 2d between the classes. The support vectors are 
those elements of the training set that lie on the margins of 
either class (at a distance d from the separating hyperplane). It 
is these training examples that are relevant to the algorithm. It 
is these training examples, rather than the centers of clusters, 
that are critical for finding the margins between the classes. 
Complexity of the algorithm may be reduced by removing the 
other training examples from the kernel expansion. It can be 
shown by geometry that the margin we want to maximize 
equals 2 / ||w||2, so the unique optimal hyperplane is found by 
solving the optimization problem: 
 
 Minimize   T(w)  =  ½ ||w||2                                    (1) 
 
              Subject to  yi  . ((w . xi) + b)  >=  1,       
                   i= 1,2,…,m 
 
where ||w||2 is the norm of the separating hyperplane, xi is the 
n dimensional vector representing the ith data point of m data 
points and yi is the target (correct) value for that ith data point. 
The minimization is solved using Lagrange multipliers and 
minimizing the Lagrangian.        
SVMs have the ability to find a separating hyperplane even if 
one does not exist in the space of the input vector, as long as 
the training data may be mapped into a higher dimensional 
feature space in which such a separating hyperplane exists. 
The kernel function is the inner product in that feature space, 
and is used to compute the separating hyperplane without 
actually having to carry out the mapping into higher 

dimensional space. The common kernels used are Gaussian 
RBF, polynomial, and sigmoidal [12] .   
 
To allow for noise in the data that would preclude perfect 
classification, a slack variable can be introduced in order to 
relax the constraints to : 
 
           Subject to  yi  . ((w . xi) + b)  >=  1 - ei,                       (2) 
               i= 1,2,…,m 
 
           Where slack variables         ei >= 0,            
               i= 1,2,…,m 
 
When ei>1, this allows for a misclassification, so Σi ei is an 
upper bound on the number of training errors. Changing the 
objective function to be minimized from  ½ ||w||2   to  ½ ||w||2 + 
C(Σi ei)k  allows the influence of outliers to be controlled by 
the user-specified variable C. A lower value of C penalizes 
errors less, limiting the influence of outliers. This is a 
quadratic programming problem when the value of k is chosen 
to be either 1 or 2. 
 
For details concerning support vector machines and kernels, 
please see the text by Cristianini  and Shawe-Taylor [11] . 
 

METHODS 
 

Terminator Grammar 
Because protein genes are generally easy to detect in bacteria 
due to the presence of start and stop codons, this project 
incorporated the often-used strategy of searching only those 
regions between protein genes to detecting features such as 
terminators. A crucial requirement is that the detector be able 
to distinguish terminators from RNA genes, which also have 
stem-loops.  
 
The terminator structure modeled by the grammar is prefix, 
followed by stem-loop, followed by suffix. The grammar is 
simple, using software rules to enforce requirements such as 
minimum stem length, rather than complicating the grammar. 
Also rather than using a trifurcation from the start state into 3 
states of prefix, stem-loop and suffix as Bockhorst and Craven 
(computationally costly in the CYK algorithm) this terminator 
grammar uses a simpler emissions-based approach that 
requires only a bifurcation. Productions for the terminator 
grammar are: 
 
       S → L R  
       R→ Rb | P 
       P → aPa` | L  
       L → bL | end 
 
where S is the start state, R is the state for rightwise emission, 
P is the state for pairwise emission and L is the state for 
leftwise emission. 
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Fig.1. Canonical Terminator: Nucleotides (N) of prefix, suffix, stem, loop 
 
 
 

 
                 Fig 2.  State Diagram for Terminator SCFG 

 
A state diagram is represented in Fig. 2, including transition 
probabilities. Probability matrices for single emission and 
pairwise emission complete the model. A terminator can be 
modeled using only leftwise (or rightwise) single-emission. 
However, the outside to inside generation of stem-loop 
requires an end state from the loop, as well as from either the 
prefix or suffix. Also, only one transition into the stem-loop is 
allowed in a terminator, so a single-emission state separate 
from the loop state is required. This necessitates 2 single-
emission states, However, both of them could just as easily 
emit either rightwise or leftwise, as with the alternative 
grammar of Fig. 3.  
 
For the purposes of illustrating the grammar, an overly simple 
“toy” terminator (Fig. 4) with only 2 nts for prefix, stem 
length, loop and suffix is used in Fig. 4-7. The application of 
grammar rules that result in the toy terminator are shown in 
the derivation (Fig. 5) and parse tree (Fig. 6). Fig. 7 illustrates 
the CYK algorithm that was written to scan large sections of 
genome for local matches to the grammar. Although the toy 
terminator is only 10 nts (too short to be an actual terminator) 
and the match is global to simplify the illustration, the 
intergenic stretches of genome searched may be longer than 
5000 nts. For this reason the matrix structure used by the CYK 
algorithm of this project is a variant [6] of the familiar NxN 
(N=string length) structure, which would require O(MN2) 
space and O(MN3) time. Instead, the entire string is searched 
for local matches of at most length D = min{N, max 
terminator length}. D is therefore capped at 70, which 

shortens the space requirements of CYK algorithm to 
O(MND) and time complexity to O(MND2).  
 
The (NxD) matrix structure is depicted in Fig. 7, one of which 
is required for each of the M states to make up the full three  
dimensional data structure. Each of the MND cells takes time 
O(1) (proportional to the number of transitions from the state) 
to fill, except for state S, which has a bifurcation and so takes 
O(D) to fill, resulting in total running time of O(MND2). The 
score resulting from the CYK algorithm coded for this project 
gives a different result that than the familiar log P(x,Π* | G,θ), 
because a value was added for base pairing (as in the Zuker 
algorithm [6]), to account for the effects of energy of folding.  
 
The parameters of the grammar model were trained using a 
randomly selected subset of the known terminators. Initial 
priors for emissions and transitions were established by 
statistical analysis of the training subset as folded by a locally 
developed rule-based algorithm. This initial model was then 
used by the grammar to select a parse (prefix, stem, loop, 
suffix structure) for each terminator. Counts were taken of 
frequencies of emissions and transitions, the model parameters 
were updated based upon these counts. The process was 
iterated until structure was stable.  
 

SOFTWARE AND DATASETS 
 
The Support Vector Machine toolbox for Matlab, Version 
2.51, was used to construct and train the SVM that classified 
the data [13].  Locally developed software produced negative 
examples, implemented a modified CYK algorithm, trained 
the terminator SCFG and calculated parameters. Datasources 
were the complete E. coli genome sequence and annotations 
compiled at the University of Wisconsin-Madison [14], which 
are available on the web. The sequence used was the M54 
version of the K-12  MG1655 strain of E. coli. The sequences 
used for positive examples were all 109 experimentally 
determined terminators found within -10 to 60 nts from the 
end of a gene as documented by Lesnik et al. Negative 
examples were drawn from both strands of the genome. This 
was accomplished by starting with the entire strand and 
removing known protein and RNA genes of either strand as 
well as a trailing region of 300 nts in order to minimize the 
possibility that unknown terminator sequence would comprise 
part of the set of negative training examples. The sequences of 
the 163 known RNA genes were added to the intergenic 
sequences to form the set of sequences from which negative 
examples were drawn. Some of the sequences were very long 
(up to 5000 nts) and contained many local matches to the 
terminator grammar. 
 
 

                                S → L X    
                                L→ bL | P 
                                P → aPa` | X  
                                X → bX | end  
                Fig. 3.  Alternative Terminator Grammar 
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             Fig. 4.   Structure of Simplified Terminator 
 
   
                       S →       L    R             
                          →    t  L    R 
                          →  t  cL    R 
                          →  t  c€     R 
                          →  t  c       R  t 
                          →  t  c       R t   t 
                          →  t  c       P  t   t 
                          →  t  c    cPg    t  t 
                          →  t  c c  tPa   g t t 
                          →  t c c t  L  a g t t 
                          →  t cct  cL   a g t t 
                          →  tcct  c cL a g t t 
                          →  tcct  c c€ a g t t 
                          =      tcctccagtt 
     
          Fig. 5.  Derivation of Simplified Terminator                                                                         Fig. 6.   Parse Tree for Derivation of “tcctccagtt” 
 
 

 
Collapsed view of the 4 arrays of the data structure which together form the 3 dimensional array structure for CYK algorithm 
Coordinate system: end position j vs subsequence length d, d = j–i+1 for subsequence(i:j)  being considered 
Horizontal run (light gray) is leftwise emission (prefix of length 2 and loop of length 2): shows path through array for state L 
Knight’s path  (gray) run is for pairwise emission (stem of length 2): shows path through array for state P 
Diagonal run (dark gray) is for rightwise emission (suffix of length 2): shows path through array for state R. 
Global score considers entire string = subsequence(1:10)  where  j=10, d=10: “Score=S” shows path through array for state S 
 
**   S → LR at substring(1:10), adding scores from L of substring(1:2) and R of substring(3:10) 

 
                                                  Fig. 7.   State path taken by global CYK algorithm performed on string  “tcctccagtt”
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EXPERIMENT 
 
For each sequence processed by the SCFG, the best local 
alignments (optimal parses) were determined by the CYK 
algorithm. This is, in effect, the selection of prefix, stem-
loop and suffix structures for candidate terminators. A 
subset of 81 known terminator sequences was randomly 
selected for training the parameters of the grammar model, 
as described in the Methods section. After training, these 
sequences were processed by the SCFG for likely parses of 
prefix, stem-loop and suffix structures. Each of these 
sequences contained one likely parse which was 
parameterized, resulting in a total of 81 positive examples 
with which to train the SVM. The remaining 28 positive 
sequences that had not been used in training the SCGF were 
then processed into 28 positive examples with which to test 
the SVM. All 163 known RNA genes  and the featureless 
intergenic sequences were processed by the SCFG into 
negative examples.   
  
From the prefix, stem-loop and suffix structure inferred by 
the CYK algorithm for each example, 17 parameters were 
extracted. Three parameters represented fractions of a,c, and 
t in the prefix. Also extracted was the probability that the 
stem base pair closing the loop of the example would close 
the loop of an actual terminator (as calculated by their 
frequency counts in the 81 training sequences as folded by 
the SCFG). The frequencies of the 6 dinucleotide pairs in 
the stem that were found to aid detection (at cg ta tg gc gt) 
were extracted from the sequence being parameterized. The 
number of nucleotides between the stem and the first t 
following it was used, along with the tail scoring function of 
Carafa et al. summed over all the nucleotides of the sufffix: 
 
T = Σ xn where    xn =   xn-1 * 0.9 if nth nucleotide is  t    (3) 
                            xn =   xn-1 * 0.6 if nth nucleotide is not  t 
 
Additionally there were 4 structural parameters: prefix 
length, stem length, loop length and suffix length. The 
SCFG score of the alignment was included, resulting in the 
17 dimensional input into the SVM for each example being 
classified. All parameters were normalized. 
 
Since there were many more negative than positive 
examples, negative intergenic and negative RNA gene 
examples were each randomly sampled to select the 
negative examples for the training  and test sets, allowing 5 
times as many negative as positive (terminator) examples, 
proportionately representing featureless intergenic and RNA 
gene examples. The training set was therefore comprised of 
the 81 terminators that had been used to train the SCFG, 
along with negative examples comprised of 376  featureless 
intergenic examples and 29 RNA genes.  SVMs with radial 
basis, polynomial and linear kernels were constructed and 
tested. The most successful SVM utilized a linear kernel, 
with C (the upper bound on the Lagrange multipliers, as 
discussed above) set to 10, limiting the influence of outliers.  

 
The test set was comprised of the 28 terminators that not 
been used to train the SCFG, along with 130 featureless 
intergenic examples and 10 negative RNA gene examples. 
An SVM was trained using the entire training set and tested 
on the test set. 96.4% were correctly identified (table 1), 
with detection of negative examples more successful than 
detection of positives, of which 92.9% were correctly 
identified. Three-fold cross-validation (SVM1, SVM2, 
SVM3 of table 2) was used on the training set (81 positive, 
405 negative examples), resulting in average prediction 
accuracy of 96.1% with improved accuracy of RNA gene 
prediction (97.0%).  
 

DISCUSSION 
 
There are 2 major aspects to this detection method:  1) the 
selection of likely candidates from the genome and their 
parameterization by the SCFG based upon inferring 
structure as well as upon sequence composition and 2) the 
use of an SVM to detect terminators from these high scoring 
candidates utilizing the extracted features.  
 
The success rates reported in tables 1 and 2 give a measure 
of how well the SVM accomplished the classification that it 
was trained to do. It is worthwhile to also evaluate each 
component of the 2-stage system. The SCFG retained local 
matches that scored above the cutoff, resulting in all known 
terminators being selected as likely terminators, along with 
1063 more candidates from among the negative examples. 
As described in the Background section, there is a 
sensitivity/specificity tradeoff: if the SCFG were to function 
alone as a detector, the cutoff score would be raised to have 
fewer false positives but reduced sensitivity of about 89% as 
with the tradeoff selected by Ermolaeva et al. Instead, cutoff 
was selected to allow 100% sensitivity for the SCFG alone, 
allowing the SVM to refine the prediction. After passing 
these candidates through SVM, the sensitivity of the 2-stage 
terminator detector was reduced to 92.9%, but the SVM was 
able to weed out 97.1% of the false positives it was given 
(assuming none of the negative examples are as-yet-
undiscovered terminators). This was after the SCFG had 
already filtered out 89% of non-terminator sequence (as 
compared with 9% of known terminator sequence. A 
Receiver Operating Characteristics (ROC) curve is perhaps 
the best way to view the full situation of tradeoff between 
sensitivity and specificity. If the area under the ROC curve 
is 0.9 or above, the classifier is considered good. As shown 
in Fig. 8, the SCFG alone has good performance: the area 
under ROC = 0.97, but when coupled with the SVM, 
performance is better: area under ROC = 0.99.  
 
Because of the structural similarity of RNA genes and 
terminators, the successes of both the SCFG and SVM 
components in distinguishing them was of interest. The 
SCFG was about as effective in filtering out non-terminator 
sequence from RNA genes as from featureless intergenic 
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sequence. However, performance of the SVM component 
was better for negative examples drawn from featureless 
intergenic than RNA gene sequence, indicating room for 
improvement in the SVM. 
 

FUTURE WORK 
 
The SCFG-SVM terminator algorithm would be more 
useful if a detector trained using examples from a well-
annotated species could be used on an evolutionarily related 
but newly sequenced species with no known terminators. 
Future work would include testing this transferability by 
using the E. coli terminator detector on a different, but 
closely related species whose terminators are known.  
 
The SCFG component of the detector might work better if 
the loop state was separate from the prefix state, allowing 
for different emissions parameters. Another way to improve 
the SCFG might be to change the grammar structure to 
allow for single emission in the middle of the terminator 
stem, which is a part of the Lesnik model left out of this 
grammar in order to simplify it. 
 
Different approaches might be tried to address the far 
greater numbers of negative examples than positive 
examples provided to the SVM. The approach of Meraz et 
al. [15] might improve SVM performance by using 
successive iterations of a support vector machine to select 
improved current negative sets by selecting for maximum 
dissimilarity to the positive set but also maximum distance 
to the negative set. The net effect is that the SVM decision 

boundary shrinks closer and closer to the positive set. 
Alternatively, it might improve results to use different C 
values for positive and negative examples such that the C 
value for positive examples is higher, weighting them more 
in the classification process.  Also, the SVM might be better 
at detecting RNA genes if a greater proportion of the 
negative examples were drawn from RNA genes.   
 

CONCLUSION 
 
The application of machine learning methods in the 
detection of terminators poses a challenge due to the nature 
of their evolutionarily conserved phenotype, which is the 
secondary structure that the terminator takes on during 
transcription. The challenge is that given only sequence 
information, something must be inferred about the structure 
of the terminator. While a SCFG performed reasonably well 
by itself in detecting terminators, a 2-stage detector worked 
better. Selecting candidates from the genome, inferring 
structural parameters by utilizing their most likely parse 
(rather than scoring), and then training an SVM to 
discriminate between the candidates resulted in a good 
detection system for terminators.  
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                                                       TABLE 1:    TEST RESULTS OF SVM  TERMINATOR CLASSIFIER  
 
                                    terminator      terminator         neg ex            neg ex         RNA genes      RNA genes           total                total           
                                                 correct            wrong              correct           wrong            correct             wrong              correct            wrong 
 

SVM  0.9286 0.0714 0.9714 0.0286 0.8000 0.2000   0.9643 0.0357
 

 
 
 
 
                              TABLE 2:     RESULTS OF CROSS VALIDATION OF TRAINING SET FOR SVM  TERMINATOR CLASSIFIERS 

 
                                     terminator      terminator         neg ex            neg ex         RNA genes      RNA genes           total                total           
                                                 correct            wrong              correct           wrong            correct             wrong              correct            wrong 
 

SVM 1 0.9259 0.0741 0.9850 0.0150 1.0000 0.0000 0.9750 0.0250
SVM 2 0.8889 0.1111 0.9774 0.0226 1.0000 0.0000 0.9625 0.0375
SVM 3 0.8889 0.1111 0.9568 0.0432 0.9091 0.0909 0.9458 0.0542
AVE 0.9012 0.0988 0.9731 0.0269 0.9697 0.0303 0.9611 0.0389
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                                                      Fig. 8.   ROC curves show good detection with SCFG alone, but better with 2-stage detector 
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