
Terminator Detection by Support Vector Machine
Utilizing a Stochastic Context-Free Grammar

Patricia Francis-Lyon: University of California at Davis, pfrancis@ucdavis.edu

Nello Cristianini: University of Bristol (UK), nello@support-vector.net
Stephen Holbrook: Lawrence Berkeley National Laboratory, srholbrook@lbl.gov

Abstract - A 2-stage detector was designed to find rho-
independent transcription terminators in the Escherichia coli
genome. The detector includes a Stochastic Context Free
Grammar (SCFG) component and a Support Vector Machine
(SVM) component. To find terminators, the SCFG searches the
intergenic regions of nucleotide sequence for local matches to a
terminator grammar that was designed and trained utilizing
examples of known terminators. The grammar selects sequences
that are the best candidates for terminators and assigns them a
prefix, stem-loop, suffix structure using the Cocke-Younger-
Kasaami (CYK) algorithm, modified to incorporate energy
effects of base pairing. The parameters from this inferred
structure are passed to the SVM classifier, which distinguishes
terminators from non-terminators that score high according to
the terminator grammar. The SVM was trained with negative
examples drawn from intergenic sequences that include both
featureless and RNA gene regions (which were assigned prefix,
stem-loop, suffix structure by the SCFG), so that it successfully
distinguishes terminators from either of these. The classifier was
found to be 96.4% successful during testing.

INTRODUCTION

Two types of transcription terminators, named for their
operating mechanisms, have been found to exist in bacteria:
rho-dependent and rho-independent terminators. Detection of
terminators has been challenging due to the lack of clear
signals in their genetic sequence, such as is provided to
protein gene detection by start and stop codons. However,
there are structural features present in the class of rho-
independent terminators that may be exploited to aid in their
detection.

For a rho-independent terminator, the ability to function
effectively is largely due to formation of a stem-loop. This
secondary structure, rather than sequence, is the phenotype
selected for in the evolutionary process. The same structures
may result from different sequences of nucleotides adenine,
cytosine guanine and uracil (a,c,g and u). Therefore sequences
may be evolutionarily related while not conserved, as long as
their structures are conserved by compensatory mutations.
(For example, a stem cg pair can be replaced by gc, au, ua gu
or ug pair.) Unsurprisingly, it has been found that rho-

independent terminators do not share general consensus
sequence [1]. Our approach to terminator detection is to infer
structural information from sequence alone, then use both
sequence and inferred structural parameters to classify the
sequence as terminator or non-terminator.

BACKGROUND

Terminator Detection
Transcription is the process by which a copy of the coding
(nontemplate) strand of a gene is produced, except that
thymine (t) in DNA is replaced by uracil (u) in RNA, resulting
in an RNA transcript. The final phase of transcription is
termination, which can be signaled in rho-independent
terminators by the formation of a stem-loop within the RNA
polymerase (RNAP), inducing the pausing of the transcription
elongation complex (TEC) just as the RNAP encounters weak
au bonds at the terminator tail, causing the dissociation of the
TEC from the RNAP and the release the protein or RNA gene.

A model attributed to Carafa et al. [2] describes DNA
sequence for rho-independent terminators. An RNA hairpin
(stem-loop) is followed by a 15 nucleotide (nt) long region
rich in thymidine (the nucleoside of thymine) which may be
separated by a spacer region of up to 2 nts. An adenoside-rich
region was described upstream of the hairpin (but not used in
their scoring system). Fig. 1 depicts the canonical terminator,
based upon the Carafa model, that was used in this project.
Carafa et al. developed a 2-stage process to detect and classify
candidate terminators, taking into account structural
information such as free energy of the RNA hairpin, along
with stem and loop length. Sequence information such as the
number and positions of thymidine residues, and the fraction
of cg pairs in the stem is also used. This algorithm
successfully distinguishes between terminators and both
random sequence and protein coding sequence.

Other researchers have built upon the Carafa model to create
terminator detectors. The 2-stage process of Ermolaeva et al.
[3] utilized location and orientation information, their own
representation of the stability of stem-loop structure, and the
Carafa tail-scoring function. Lesnik et al. [4] devised an
algorithm utilizing sequence parameters and allowing the user

170

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

to define constraints upon structure. Their thermodynamic
scoring system accounts for the preference of stem-loop
structure over bonding to DNA at the point of transcription
termination. More recently, de Hoon et al. [5] used a logistic
regression model to arrive at a decision rule for predicting rho-
independent terminators in B. subtilis and related species.
While these methods detect more known terminators than
Carafa et al., they report a tradeoff between finding more
known terminators (true positives) and getting more false
positives. Also, this sensitivity/specificity tradeoff is hard to
quantify since many terminators have yet to be experimentally
determined so numbers of true and false positives in these
studies are estimates. Some studies count the terminators
found by their algorithm as true positives along with
experimentally determined terminators as long as these
putative terminators satisfy location and scoring standards.
Ermolaeva et al., who create a polynomial approximation to
estimate frequency of false positives, report finding 567
terminators in E. coli with a confidence of 98% (meaning 98%
of all predictions are estimated to be correct). This is far
higher than the number of experimentally determined
terminators. At this confidence they reportedly find 89% of all
true terminators.

The success of Hidden Markov models in statistical modeling,
database searching and multiple alignment of both promoters
and protein genes has prompted researchers to look to
grammars to incorporate long range interactions into feature
detection. Hidden Markov models are equivalent to stochastic
regular grammars, where sequence is generated from left to
right [6]. Features that have stem-loop structures caused by
base pairs that are nested can be generated by a context-free
grammar, emitting sequence from outside to inside rather than
from left to right. Stochastic context-free grammars (SCFGs)
capture both sequence and structural information and have
been used successfully to model RNA genes by Eddy and
Durbin [7] and tRNA genes by Sakakibara et al. [8]. Kin et al.
[9] used a SCFG as a kernel in the classification of tRNAs.
SCFGs were used to model terminators by Bockhorst and
Craven [10], as a test case to show that a deficient SCFG could
be refined in an iterative process. Their paper states that
preliminary results indicate that the refinement method
produced an SCFG that improved the accuracy of the model,
but the success rates themselves were not reported.

For this project, a Stochastic Context Free Grammar (SCFG)
was developed to utilize both sequence and structural
information to detect terminators from genomic sequence. To
refine the detection process, a support vector machine (SVM)
was coupled with the SCFG. The SCFG selects likely
candidates for terminators from sequence, and designates
subsequences of each as prefix, stem, loop and suffix. This
information is passed to the SVM, which was trained to
distinguish between terminators and those non-terminators
that were assigned high scores by the SCFG. The terminator
grammar of Bockhorst and Craven was not used, because the
grammar was reported to be deficient. Rather, a grammar was

developed to select sequence that can take on the structure of
the canonical rho-indedpendent terminator of Fig. 1.

Stochastic Context-Free Grammars
A Grammar is a set of rules, called productions, together with
a set of abstract symbols called non-terminals and a set of
emitted symbols called terminals. Together these 3 sets
characterize the set of legal strings, the language of the
grammar, which are those strings that can be derived by
iterative application of the productions. Grammars having the
set of terminals {a,c,g,t} have been used for modeling strings
of nucleotides, such as genes [6][7][8][16][17].

The structure of a stochastic context-free grammar is that of its
underlying context-free grammar G. G can be formally
defined as G={N,T,P,S} where N is a finite set of nonterminal
symbols (“states”), T is a finite set of terminal symbols
({a,c,g,t} for nucleotides), P is a finite set of productions of
the form A→ Γ, where A € N , Γ € (NU T)*, and S is the start
nonterminal (S € N). This means that the right hand side of a
production may consist of any combination of terminals and
nonterminals, while the left hand side must be a single
nonterminal. A particular iterative application of productions
that result in a string x is referred to as a derivation or may be
viewed as a parse tree, Π, for x.

An SCFG assigns a probability to each production rule in P
such that all the productions from any given nonterminal sum
to 1. The set of these probabilities is referred to as the
parameters of the model, θ. A sequence x may have a higher
probability (score) with one model than with another. The
probability P(x,Π | G,θ) is the probability that a particular
derivation (parse tree) Π generates string x given structure G
of the underlying context-free grammar and the probabilities θ
associated with the productions. This is simply the product of
probabilities of all the production rules used in the parse tree
Π for sequence x. An SCFG describes a joint probability
distribution P(x,Π | G,θ) over all sequences x and all possible
parse trees Π.

SCFGs are generalizations of hidden Markov models
(HMMs), which are equivalent to stochastic regular grammars.
In addition to primary sequence, modeled in left to right string
generation by HMMS, SCFGs model secondary structure in
outside to inside generation of strings. The HMM algorithms
for solving problems of detection, alignment and parameter
estimation have analogs for families modeled by SCFGs.
These dynamic programming algorithms start with
subsequences of length zero and consider larger and larger
sequences by incrementally extending them. In the case of
HMMs, subsequences are extended leftwards by 1 nt at a time,
whereas for SCFG models, subsequences are extended
outwards by 2 nt at a time, capturing pair interactions.

For this project, genomic sequence needs to be parameterized
into likely terminator structure so the SVM could be trained to
detect which are terminators. To accomplish this the Cocke-

171

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Younger-Kasaami (CYK) algorithm is used for alignment to
the structure and model. Rather than taking the sum of
probabilities of parse trees as is done in scoring, these
alignment algorithms find the argmax of the probabilities for
parse trees. The end result is log P(x,Π* | G,θ) where Π* is the
most likely parse for x given the grammar structure and
model. A traceback can be coded to reveal Π*.

Support Vector Machines
Support Vector Machines (SVMs) are a relatively recent
addition to the field of machine learning. They were
introduced by Vapnik and began to be widely used in
classification in the 1990s. SVMs are trained with a learning
algorithm from optimization theory that implements a learning
bias derived from statistical learning theory to search a
hypothesis space of linear functions operating on data that has
been embedded into a high dimensional feature space [11]. A
kernel function is selected to perform the embedding such that
the data becomes linearly separable in the high dimensional
space. Basically, an SVM is a hyperplane classifier which
finds the optimal hyperplane to separate data into classes.
When dividing two classes, the optimal hyperplane is
orthogonal to the shortest line connecting the convex hulls of
the two classes, and intersecting it halfway between the two
classes at a perpendicular distance d from either class, creating
a margin of 2d between the classes. The support vectors are
those elements of the training set that lie on the margins of
either class (at a distance d from the separating hyperplane). It
is these training examples that are relevant to the algorithm. It
is these training examples, rather than the centers of clusters,
that are critical for finding the margins between the classes.
Complexity of the algorithm may be reduced by removing the
other training examples from the kernel expansion. It can be
shown by geometry that the margin we want to maximize
equals 2 / ||w||2, so the unique optimal hyperplane is found by
solving the optimization problem:

 Minimize T(w) = ½ ||w||2 (1)

 Subject to yi . ((w . xi) + b) >= 1,
 i= 1,2,…,m

where ||w||2 is the norm of the separating hyperplane, xi is the
n dimensional vector representing the ith data point of m data
points and yi is the target (correct) value for that ith data point.
The minimization is solved using Lagrange multipliers and
minimizing the Lagrangian.
SVMs have the ability to find a separating hyperplane even if
one does not exist in the space of the input vector, as long as
the training data may be mapped into a higher dimensional
feature space in which such a separating hyperplane exists.
The kernel function is the inner product in that feature space,
and is used to compute the separating hyperplane without
actually having to carry out the mapping into higher

dimensional space. The common kernels used are Gaussian
RBF, polynomial, and sigmoidal [12] .

To allow for noise in the data that would preclude perfect
classification, a slack variable can be introduced in order to
relax the constraints to :

 Subject to yi . ((w . xi) + b) >= 1 - ei, (2)
 i= 1,2,…,m

 Where slack variables ei >= 0,
 i= 1,2,…,m

When ei>1, this allows for a misclassification, so Σi ei is an
upper bound on the number of training errors. Changing the
objective function to be minimized from ½ ||w||2 to ½ ||w||2 +
C(Σi ei)k allows the influence of outliers to be controlled by
the user-specified variable C. A lower value of C penalizes
errors less, limiting the influence of outliers. This is a
quadratic programming problem when the value of k is chosen
to be either 1 or 2.

For details concerning support vector machines and kernels,
please see the text by Cristianini and Shawe-Taylor [11] .

METHODS

Terminator Grammar
Because protein genes are generally easy to detect in bacteria
due to the presence of start and stop codons, this project
incorporated the often-used strategy of searching only those
regions between protein genes to detecting features such as
terminators. A crucial requirement is that the detector be able
to distinguish terminators from RNA genes, which also have
stem-loops.

The terminator structure modeled by the grammar is prefix,
followed by stem-loop, followed by suffix. The grammar is
simple, using software rules to enforce requirements such as
minimum stem length, rather than complicating the grammar.
Also rather than using a trifurcation from the start state into 3
states of prefix, stem-loop and suffix as Bockhorst and Craven
(computationally costly in the CYK algorithm) this terminator
grammar uses a simpler emissions-based approach that
requires only a bifurcation. Productions for the terminator
grammar are:

 S → L R
 R→ Rb | P
 P → aPa` | L
 L → bL | end

where S is the start state, R is the state for rightwise emission,
P is the state for pairwise emission and L is the state for
leftwise emission.

172

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Fig.1. Canonical Terminator: Nucleotides (N) of prefix, suffix, stem, loop

 Fig 2. State Diagram for Terminator SCFG

A state diagram is represented in Fig. 2, including transition
probabilities. Probability matrices for single emission and
pairwise emission complete the model. A terminator can be
modeled using only leftwise (or rightwise) single-emission.
However, the outside to inside generation of stem-loop
requires an end state from the loop, as well as from either the
prefix or suffix. Also, only one transition into the stem-loop is
allowed in a terminator, so a single-emission state separate
from the loop state is required. This necessitates 2 single-
emission states, However, both of them could just as easily
emit either rightwise or leftwise, as with the alternative
grammar of Fig. 3.

For the purposes of illustrating the grammar, an overly simple
“toy” terminator (Fig. 4) with only 2 nts for prefix, stem
length, loop and suffix is used in Fig. 4-7. The application of
grammar rules that result in the toy terminator are shown in
the derivation (Fig. 5) and parse tree (Fig. 6). Fig. 7 illustrates
the CYK algorithm that was written to scan large sections of
genome for local matches to the grammar. Although the toy
terminator is only 10 nts (too short to be an actual terminator)
and the match is global to simplify the illustration, the
intergenic stretches of genome searched may be longer than
5000 nts. For this reason the matrix structure used by the CYK
algorithm of this project is a variant [6] of the familiar NxN
(N=string length) structure, which would require O(MN2)
space and O(MN3) time. Instead, the entire string is searched
for local matches of at most length D = min{N, max
terminator length}. D is therefore capped at 70, which

shortens the space requirements of CYK algorithm to
O(MND) and time complexity to O(MND2).

The (NxD) matrix structure is depicted in Fig. 7, one of which
is required for each of the M states to make up the full three
dimensional data structure. Each of the MND cells takes time
O(1) (proportional to the number of transitions from the state)
to fill, except for state S, which has a bifurcation and so takes
O(D) to fill, resulting in total running time of O(MND2). The
score resulting from the CYK algorithm coded for this project
gives a different result that than the familiar log P(x,Π* | G,θ),
because a value was added for base pairing (as in the Zuker
algorithm [6]), to account for the effects of energy of folding.

The parameters of the grammar model were trained using a
randomly selected subset of the known terminators. Initial
priors for emissions and transitions were established by
statistical analysis of the training subset as folded by a locally
developed rule-based algorithm. This initial model was then
used by the grammar to select a parse (prefix, stem, loop,
suffix structure) for each terminator. Counts were taken of
frequencies of emissions and transitions, the model parameters
were updated based upon these counts. The process was
iterated until structure was stable.

SOFTWARE AND DATASETS

The Support Vector Machine toolbox for Matlab, Version
2.51, was used to construct and train the SVM that classified
the data [13]. Locally developed software produced negative
examples, implemented a modified CYK algorithm, trained
the terminator SCFG and calculated parameters. Datasources
were the complete E. coli genome sequence and annotations
compiled at the University of Wisconsin-Madison [14], which
are available on the web. The sequence used was the M54
version of the K-12 MG1655 strain of E. coli. The sequences
used for positive examples were all 109 experimentally
determined terminators found within -10 to 60 nts from the
end of a gene as documented by Lesnik et al. Negative
examples were drawn from both strands of the genome. This
was accomplished by starting with the entire strand and
removing known protein and RNA genes of either strand as
well as a trailing region of 300 nts in order to minimize the
possibility that unknown terminator sequence would comprise
part of the set of negative training examples. The sequences of
the 163 known RNA genes were added to the intergenic
sequences to form the set of sequences from which negative
examples were drawn. Some of the sequences were very long
(up to 5000 nts) and contained many local matches to the
terminator grammar.

 S → L X
 L→ bL | P
 P → aPa` | X
 X → bX | end
 Fig. 3. Alternative Terminator Grammar

.91

.09

.1

.9

1

.1
.9

S

L

R

P

€

N - N
N - N
N - N
N - N
N - N
N - N

NNNNNNNNNN NNNNNNNNNN

prefix: 8-10 nts t-rich suffix: 8-18 nts

stem: 4-16 pairs of nucleotides

loop: 2-10 nts

N
N

N
N

N

N
N N

173

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

 Fig. 4. Structure of Simplified Terminator

 S → L R
 → t L R
 → t cL R
 → t c€ R
 → t c R t
 → t c R t t
 → t c P t t
 → t c cPg t t
 → t c c tPa g t t
 → t c c t L a g t t
 → t cct cL a g t t
 → tcct c cL a g t t
 → tcct c c€ a g t t
 = tcctccagtt

 Fig. 5. Derivation of Simplified Terminator Fig. 6. Parse Tree for Derivation of “tcctccagtt”

Collapsed view of the 4 arrays of the data structure which together form the 3 dimensional array structure for CYK algorithm
Coordinate system: end position j vs subsequence length d, d = j–i+1 for subsequence(i:j) being considered
Horizontal run (light gray) is leftwise emission (prefix of length 2 and loop of length 2): shows path through array for state L
Knight’s path (gray) run is for pairwise emission (stem of length 2): shows path through array for state P
Diagonal run (dark gray) is for rightwise emission (suffix of length 2): shows path through array for state R.
Global score considers entire string = subsequence(1:10) where j=10, d=10: “Score=S” shows path through array for state S

** S → LR at substring(1:10), adding scores from L of substring(1:2) and R of substring(3:10)

 Fig. 7. State path taken by global CYK algorithm performed on string “tcctccagtt”

 d: 1 2 3 4 5 6 7 8 9 10

j: 1 t

 2 c L L **

 3 c

 4 t

 5 c

 6 c L P→ L

 7 a P

 8 g R → P

 9 t R

 10 t R ** Score=S

loop

 t c

prefix

t – a

c – g

stem

c c

 t t

suffix

S

R

a

R

R

P

P

P

L

L

L

€

L

L

L

€

c

c

c

c

t t

t

t

g

174

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

EXPERIMENT

For each sequence processed by the SCFG, the best local
alignments (optimal parses) were determined by the CYK
algorithm. This is, in effect, the selection of prefix, stem-
loop and suffix structures for candidate terminators. A
subset of 81 known terminator sequences was randomly
selected for training the parameters of the grammar model,
as described in the Methods section. After training, these
sequences were processed by the SCFG for likely parses of
prefix, stem-loop and suffix structures. Each of these
sequences contained one likely parse which was
parameterized, resulting in a total of 81 positive examples
with which to train the SVM. The remaining 28 positive
sequences that had not been used in training the SCGF were
then processed into 28 positive examples with which to test
the SVM. All 163 known RNA genes and the featureless
intergenic sequences were processed by the SCFG into
negative examples.

From the prefix, stem-loop and suffix structure inferred by
the CYK algorithm for each example, 17 parameters were
extracted. Three parameters represented fractions of a,c, and
t in the prefix. Also extracted was the probability that the
stem base pair closing the loop of the example would close
the loop of an actual terminator (as calculated by their
frequency counts in the 81 training sequences as folded by
the SCFG). The frequencies of the 6 dinucleotide pairs in
the stem that were found to aid detection (at cg ta tg gc gt)
were extracted from the sequence being parameterized. The
number of nucleotides between the stem and the first t
following it was used, along with the tail scoring function of
Carafa et al. summed over all the nucleotides of the sufffix:

T = Σ xn where xn = xn-1 * 0.9 if nth nucleotide is t (3)
 xn = xn-1 * 0.6 if nth nucleotide is not t

Additionally there were 4 structural parameters: prefix
length, stem length, loop length and suffix length. The
SCFG score of the alignment was included, resulting in the
17 dimensional input into the SVM for each example being
classified. All parameters were normalized.

Since there were many more negative than positive
examples, negative intergenic and negative RNA gene
examples were each randomly sampled to select the
negative examples for the training and test sets, allowing 5
times as many negative as positive (terminator) examples,
proportionately representing featureless intergenic and RNA
gene examples. The training set was therefore comprised of
the 81 terminators that had been used to train the SCFG,
along with negative examples comprised of 376 featureless
intergenic examples and 29 RNA genes. SVMs with radial
basis, polynomial and linear kernels were constructed and
tested. The most successful SVM utilized a linear kernel,
with C (the upper bound on the Lagrange multipliers, as
discussed above) set to 10, limiting the influence of outliers.

The test set was comprised of the 28 terminators that not
been used to train the SCFG, along with 130 featureless
intergenic examples and 10 negative RNA gene examples.
An SVM was trained using the entire training set and tested
on the test set. 96.4% were correctly identified (table 1),
with detection of negative examples more successful than
detection of positives, of which 92.9% were correctly
identified. Three-fold cross-validation (SVM1, SVM2,
SVM3 of table 2) was used on the training set (81 positive,
405 negative examples), resulting in average prediction
accuracy of 96.1% with improved accuracy of RNA gene
prediction (97.0%).

DISCUSSION

There are 2 major aspects to this detection method: 1) the
selection of likely candidates from the genome and their
parameterization by the SCFG based upon inferring
structure as well as upon sequence composition and 2) the
use of an SVM to detect terminators from these high scoring
candidates utilizing the extracted features.

The success rates reported in tables 1 and 2 give a measure
of how well the SVM accomplished the classification that it
was trained to do. It is worthwhile to also evaluate each
component of the 2-stage system. The SCFG retained local
matches that scored above the cutoff, resulting in all known
terminators being selected as likely terminators, along with
1063 more candidates from among the negative examples.
As described in the Background section, there is a
sensitivity/specificity tradeoff: if the SCFG were to function
alone as a detector, the cutoff score would be raised to have
fewer false positives but reduced sensitivity of about 89% as
with the tradeoff selected by Ermolaeva et al. Instead, cutoff
was selected to allow 100% sensitivity for the SCFG alone,
allowing the SVM to refine the prediction. After passing
these candidates through SVM, the sensitivity of the 2-stage
terminator detector was reduced to 92.9%, but the SVM was
able to weed out 97.1% of the false positives it was given
(assuming none of the negative examples are as-yet-
undiscovered terminators). This was after the SCFG had
already filtered out 89% of non-terminator sequence (as
compared with 9% of known terminator sequence. A
Receiver Operating Characteristics (ROC) curve is perhaps
the best way to view the full situation of tradeoff between
sensitivity and specificity. If the area under the ROC curve
is 0.9 or above, the classifier is considered good. As shown
in Fig. 8, the SCFG alone has good performance: the area
under ROC = 0.97, but when coupled with the SVM,
performance is better: area under ROC = 0.99.

Because of the structural similarity of RNA genes and
terminators, the successes of both the SCFG and SVM
components in distinguishing them was of interest. The
SCFG was about as effective in filtering out non-terminator
sequence from RNA genes as from featureless intergenic

175

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

sequence. However, performance of the SVM component
was better for negative examples drawn from featureless
intergenic than RNA gene sequence, indicating room for
improvement in the SVM.

FUTURE WORK

The SCFG-SVM terminator algorithm would be more
useful if a detector trained using examples from a well-
annotated species could be used on an evolutionarily related
but newly sequenced species with no known terminators.
Future work would include testing this transferability by
using the E. coli terminator detector on a different, but
closely related species whose terminators are known.

The SCFG component of the detector might work better if
the loop state was separate from the prefix state, allowing
for different emissions parameters. Another way to improve
the SCFG might be to change the grammar structure to
allow for single emission in the middle of the terminator
stem, which is a part of the Lesnik model left out of this
grammar in order to simplify it.

Different approaches might be tried to address the far
greater numbers of negative examples than positive
examples provided to the SVM. The approach of Meraz et
al. [15] might improve SVM performance by using
successive iterations of a support vector machine to select
improved current negative sets by selecting for maximum
dissimilarity to the positive set but also maximum distance
to the negative set. The net effect is that the SVM decision

boundary shrinks closer and closer to the positive set.
Alternatively, it might improve results to use different C
values for positive and negative examples such that the C
value for positive examples is higher, weighting them more
in the classification process. Also, the SVM might be better
at detecting RNA genes if a greater proportion of the
negative examples were drawn from RNA genes.

CONCLUSION

The application of machine learning methods in the
detection of terminators poses a challenge due to the nature
of their evolutionarily conserved phenotype, which is the
secondary structure that the terminator takes on during
transcription. The challenge is that given only sequence
information, something must be inferred about the structure
of the terminator. While a SCFG performed reasonably well
by itself in detecting terminators, a 2-stage detector worked
better. Selecting candidates from the genome, inferring
structural parameters by utilizing their most likely parse
(rather than scoring), and then training an SVM to
discriminate between the candidates resulted in a good
detection system for terminators.

ACKNOWLEDGMENTS

Nello Cristianini was partially supported by NIH Grant No.
R33HG003070-01, "Detecting Relations Among
Heterogeneous Datasets". This work was supported by
grant 5RO1H6002665-02 from the NHGRI to S.R.H.

 TABLE 1: TEST RESULTS OF SVM TERMINATOR CLASSIFIER

 terminator terminator neg ex neg ex RNA genes RNA genes total total
 correct wrong correct wrong correct wrong correct wrong

SVM 0.9286 0.0714 0.9714 0.0286 0.8000 0.2000 0.9643 0.0357

 TABLE 2: RESULTS OF CROSS VALIDATION OF TRAINING SET FOR SVM TERMINATOR CLASSIFIERS

 terminator terminator neg ex neg ex RNA genes RNA genes total total
 correct wrong correct wrong correct wrong correct wrong

SVM 1 0.9259 0.0741 0.9850 0.0150 1.0000 0.0000 0.9750 0.0250
SVM 2 0.8889 0.1111 0.9774 0.0226 1.0000 0.0000 0.9625 0.0375
SVM 3 0.8889 0.1111 0.9568 0.0432 0.9091 0.0909 0.9458 0.0542
AVE 0.9012 0.0988 0.9731 0.0269 0.9697 0.0303 0.9611 0.0389

176

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

 Fig. 8. ROC curves show good detection with SCFG alone, but better with 2-stage detector

REFERENCES

[1] Platt, T. (1966) Transcription termination and the regulation of gene
expression. Annu. Rev. Biochem. 55, 339-372.
[2] Carafa Y., Brody E. and Thermes, C. (1990) Prediction of Rho-
independent Escherichia coli Transcription Terminators: A Statistical
Analysis of their Stem-Loop Structures. J. Mol. Bio. 216, 835-858.
[3] Ermolaeva, M., Khalak H., White O., Smith H. and Salzberg S. (2000)
Prediction of Transcription Terminators in Bacterial Genomes. J. Mol. Bio.
301, 27-33.
[4] Lesnik E., Sampath R., Levene H., Henderson T., McNeil J. and Ecker,
D. (2001) Prediction of rho-independent transcriptional terminators in
Escherichia coli. Nucleic Acids Research 29:3583-3594.
[5] de Hoon M.,Makita Y., Nakai K. and Miyano S. (2005) Prediction of
Transcriptional Terminators in Bacillus subtilis and Related Species. PLoS
Comput Biol 1(3): e25.
[6] Durbin,R.., Eddy S., Krogh A. and Mitchison G. (1998) Biological
sequence analysis: Probabilistic models of proteins and nucleic acids.
Cambridge University Press.
[7] Eddy S., and Durbin R. (1994) RNA sequence analysis using
covariance models. Nucleic Acids Research 22:2079-2088.
[8] Sakakibara Y., Brown M., Hughey R., Mian I.S., Sjolander K..,
Underwood R.C. and Haussler D. (1994) Stochasitc context-free grammars for
tRNA modeling. Nucleic Acids Research 22:5112-5120.

[9] Kin T., Tsuda K. and Asaj K. (2002) Marginalized kernels for RNA
sequence data analysis. Genome Informatics 13: 112–122 (2002)
http://www.jsbi.org/journal/GIW02/GIW02F012.pdf
[10] Bockhorst J. and Craven M. (2001) Refining the Structure of a
Stochastic Context-Free Grammar. Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI 2001).
[11] Cristianini N., and Shawe-Taylor J. (2000) An Introduction to Support
Vector Machines and other kernel-based learning methods. Cambridge
University Press.
[12] Müller, K., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (March,
2001) An Introduction to Kernel–Based Learning Algorithms. IEEE
Transactions of Neural Networks, vol 12, no. 2.
[13] Schwaighofer, Anton (January 2002) Support Vector Machine
toolbox, Version 2.51. GNU public license.
[14] Blattner,F.R., Plunkett,G., Bloch,C.A., Perna,N.T., Burland,V.,
Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K. and Mayhew,G.F. (1997)
The complete genome sequence of Escherichia coli K-12. Science, 277,
1453–1474. Datasources available on the web at:
http://www.genome.wisc.edu/sequencing/k12.htm
[15] Meraz R., Xiaofeng H., Ding C. and Holbrook S. (2004) Positive
Sample Only Learning (PSOL) for Predicting RNA Genes in E. Coli.
Computational Systems Bioinformatics Conference, 2004. CSB 2004.
Proceedings. 2004 IEEE Page(s): 535 - 538
[16] Searles, D.B. (1992) The linguistics of DNA. American Scientist
80:579-591
[17] Dong, S. and Searles, D.B. (1994) Gene structure prediction by
linguistic methods. Genomics 23:540-551.

177

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

