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Abstract- Gene ontology (GO) is organized in three principles, 

Cellular Component, Biological Process and Molecular Function.  

Analysis of GO annotations of a list of differentially expressed 

genes on microarrays became a common approach in helping 

with their biological interpretation.  Earlier studies in GO 

analysis are based on a single principle, mostly Biological 

Process; valuable information in the other two principles is 

neglected.  This paper proposes a novel approach to investigate 

gene co-regulation based on GO annotations from all three 

principles.  We used the semantic similarity of GO annotations as 

a measure to partition genes into functionally related clusters and 

developed a performance index (PI) that consolidates GO 

annotations from all three principles to measure the quality of 

each cluster.  We successfully applied our algorithm to yeast 

dataset.  Our results indicate that PI is a good measure of the 

likelihood of a cluster being co-regulated by one or more TFs.  

Another analysis based on individual GO principle indicates that 

gene annotations in Biological Process are the most informative 

and those in Cellular Component are the least informative with 

regard of gene co-regulation.  However, none of the analyses 

based on an individual principle could provide satisfactory 

classification.  It is important to consider gene annotations in all 

three principles.* 

 

I.  INTRODUCTION 

 

In the current genomics era, thousands of genes have been 

identified and annotated.  One of the main challenges that we 

are facing today is to discover the functional relationship 

among genes.  The high throughput microarray technology 

appears to fill this gap.  In microarray experiments, thousands 

of genes are expressed at different rates with regard to 

experimental treatments (attributes), which can be time [1], 

chemical treatments [2], mutant vs. wild type [2], disease vs. 

normal tissues [3], etc. Identification of differentially 

expressed genes under certain biological treatments is 

essential to understand gene functions.  Conventionally, genes 

are clustered into various groups based on certain similarity 

criteria in the expression profiles among the genes.  Genes in 

such cluster are technically regarded as co-expressed.  Their 

regulators can be found through identification of regulatory 

motifs in the promoter region of these genes [4, 5].  This 

approach often needs multiple experimental treatments, which 
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are unfeasible in many cases either due to a limited amount of 

raw samples or financial shortage.   

In parallel with the progress of gene annotation, gene 

ontology (GO) becomes one of the valuable resources to 

categorize genes.  A set of structured, precisely defined 

vocabularies are used to annotate genes and gene products, 

and collected as an open source resource [6].  Gene ontology 

annotations are organized in three principles: Molecular 

Function (MF), Biological Process (BP) and Cellular 

Component (CC).  Prior to 2006, these three principles were 

termed as three categories.  In this paper, we adopted the 

recent change in GO database.   

A gene product can have one or more molecular functions, 

play a role in one or more biological processes, and associate 

with one or more cellular components.  The ontologies are 

structured in the form of directed acyclic graphs (DAGs) that 

represent a network in which each term, represented by a 

node, may have one or more “parent” terms.  The relationship 

between a child and a parent GO terms is represented by an 

edge, which represents either “is-a” or “part-of” relations.  The 

“is-a” relation refers to a child node being a sub-type of the 

parent node, while the “part-of” relation refers to a child node 

being a component of the parent node.  Each child term may 

have more than one parent node with different relationships.   

The gene ontology analysis is a common approach to help 

with biological interpretation of a list of differentially 

expressed genes on microarrays.  This is currently the de facto 

standard for the secondary analysis of high throughput 

experiments, such as microarray.  Several tools have been 

developed and reviewed in [7].  These tools are usually used 

to identifying statistically significant GO terms among a set of 

genes. 
Among many other applications, gene ontology is also used 

to further explore, from the results of large-scale experiments 

(such as microarrays), the relationship between the functional 

information captured by GO and the co-regulators of the 

genes.  A set of genes can be grouped based on their relevancy 

in the gene expression profile and evaluated using GO 

annotation [8-9].  They can also be partitioned according to 

their information captured in GO or other functional 

annotations [10-14].   

The GO annotations have been proposed as a tool for 

measuring similarity between genes.  This is referred to as 

semantic similarity, which is highly correlated with sequence 

similarity [15] and gene expression correlation [16].  Instead 

178

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE



of gene expression profiles, functional annotations in GO or 

other databases [17] are used to cluster differentially 

expressed genes [10-11, 13].  However, these methods 

exclusively use functional annotations related to only one of 

the three GO principles, mostly Biological Process.  Valuable 

information in the other two principles is disregarded.   

In this study, we propose a new approach to investigate gene 

co-regulation within a set of genes using their GO annotations 

from all three principles.  The new algorithm classifies genes 

into various clusters based on the semantic similarity in GO 

annotation and measures the likelihood of their co-regulation 

based on a performance index.  In the following sections, we 

first describe the algorithm, and then provide results and 

discussion of applying this algorithm to the yeast dataset. 

 

II.  METHODS 

 

The algorithm took as input a list of genes with associated 

GO annotations.  The input could be a list of differentially 

expressed genes from microarray data, a set of genes with 

other significant experimentally derived expression patterns, 

or with certain biological meaning.  We first applied 

information theory to the pair-wise comparison of GO terms, 

and then clustered them based on pair-wise similarity.  Each 

cluster contained a set of functionally related genes.  We then 

explored the possibility of co-regulation from each of these 

functionally related clusters. 

 

A.  Information content 

In lexical research, information content of a concept c, 

IC(c), is quantified as the negative of the log likelihood [18]: 

 

IC(c) = −log (p(c))   (1) 

 

where p(c) is the probability of encountering an instance of c.  

The similarity of two concepts (ci, cj) is the degree of 

information they share and represented by their common 

parent concepts that subsume both concepts.  The more 

information that the two concepts share in common, the higher 

the similarity they have.  The similarity between two concepts 

(ci, cj) is represented by the information content of the parent 

concept (pa) that has maximal information content [19]: 

 

)]([max),( paIC
j

c
i

cSim = , {pa є common(ci, cj)}       (2) 

 

where common(ci, cj) is the set of common parent concepts. 

In this study, we applied an alternative definition proposed 

by Lin [20] to estimate similarity between two GO terms 

based on information content of both the common parents and 

the query terms (ci, cj), which is defined as: 
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Since )](,)([min)( ji cICcICpaIC ≤ , the value of SimLin(ci, cj) 

varies between 0 and 1 [19-20]. 

B.  Similarity between two genes 

We adopted Lin’s similarity measure to our study on the 

similarity between two genes (gi, gj).  In practice, many genes 

have more than one GO term for each principle.  The 

similarity of a pair of genes is further defined as the average of 

similarity of all pair-wise terms [15-16]: 
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where m, k are the numbers of GO terms for genes i and j, 

respectively.  The range of SimGO(gi, gj) is between 0 and 1, 

where 0 means nothing in common except the root of the 

corresponding GO principles, and 1 means two genes have 

identical GO terms under the given principle. 

For a set of n genes, an nn ×  similarity matrix is created, in 

which the entry at row i and column j is the pair-wise 

similarity value between genes gi and gj.  Since the similarity 

between genes gi and gj is the same as between gj and gi.  The 

similarity matrix is symmetric and the diagonal elements are 

all equal to 1.  The total number of distinct entries is (n
2
-n)/2. 

 

C.  Clustering 

A clustering method similar to the agglomerative 

hierarchical clustering procedure with the nearest neighbour 

technique [21] was applied to this study.  According to the 

agglomerative hierarchical clustering procedure, each cluster 

initially has one object.  The method then joins two objects 

that have the highest similarity values.  At each subsequent 

stage, the method joins the two clusters which are most 

similar.  The similarity matrix is re-calculated at each stage.  

However, in this study, we implemented the algorithm 

differently: (i) we used the similarity matrix generated by 

Equation (4) as input instead of the original gene microarray 

expression data matrix; (ii) we used a cut-off similarity 

threshold to stop the clustering as opposed to carrying the 

complete operation until the root is reached; (iii) we did not 

recreate a new similarity matrix after each joining.  Instead, 

we sorted all pair-wise similarity values and joined genes step 

by step as described in Fig. 1. 

For example, given a set of five genes, the 10 distinct 

similarity values are shown in Fig. 1.  The similarities are 

sorted in descending order.  The gene-pair with the highest 

similarity value (i.e. pair(g1, g3)) is grouped in the initial 

cluster.  The next gene-pair (pair(g2, g4)), which has the 

highest similarity in the remaining gene-pairs, is selected.  

Since neither of the two genes appears in the first group (i.e. 

pair(g1, g3)), they are grouped in a new cluster.  The third 

gene-pair of highest similarity value is pair(g3, g5).  Since g3 

already exists in Group1 and the other gene (g5) is not 

included in any existing groups, g5 is clustered into a higher 

level group that contains Group1 where g3 locates.  The fourth 

gene-pair of highest similarity value is pair(g1, g5).  Since both 

genes are already included in one group, which is Group3 in 

this case, no new grouping is necessary.  The fifth gene-pair of 

highest similarity value is pair(g4, g5).  Since g4 is in Group2 
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and g5 in Group3, these two groups are joined into one bigger 

group, namely Group4.  The algorithm stops when either of 

following conditions is met: (i) all genes (rather than gene-

pairs) are in their corresponding groups that are ultimately 

linked into one group; (ii) the pair-wise similarity value is 

below a threshold (t).  In the later case, all unselected genes 

are in the individual clusters of each gene by itself. 

 

D.  Evaluation of functionally related gene clusters 

In this study, a similarity matrix was computed for each of 

the three GO principles (i.e. MF, BP, or CC) separately.  For 

each principle, different sets of clusters were generated under 

different similarity thresholds (t).  Each such cluster was 

regarded as a functionally related gene cluster with given t and 

principle.  Such clusters contained one or more sub-clusters 

under a different threshold t or principle.  We proposed a 

performance index (PI) to measure the likelihood of a selected 

gene cluster being co-regulated based on integrated 

contribution of all three GO principles.  A PI value is a joint 

contribution of all three principles: 

 

} ])([{log
,,

22 ∏ ∏ ∗=
bpmfcc t tm

N
tPI    (5) 

 

where N is the number of genes in the selected cluster and mt 

is the number of the sub-clusters that this cluster of genes may 

have under a different threshold t and principle. 

 

III.  APPLICATION  

 

A total of 754 yeast genes were selected for our 

investigation according to the multiple regulators promoter 

architecture developed by Harbison et al. [22].  Through the 

multiple regulators promoter architecture, the authors 

identified multiple transcription factor binding sites in the 

promoter region of each gene.  We performed GO term search 

for all 754 genes based on the October 2005 releases of GO 

terms and gene annotations for Saccharomyces cerevisiae 

from the Gene Ontology Consortium [6], calculated their pair-

wise similarities, and clustered them based on the calculated 

similarity matrix.   

There were 18999 GO terms available in the GO database 

when this experiment was performed.  Among 754 genes, 684 

have annotations in CC, 550 in MF, 629 in BP, and 519 in all 

three principles.  There are also 48 genes without any GO 

annotation.  The analysis below is based on the 706 genes that 

have GO annotations in at least one principle. 

In this study, the information content was calculated for all 

GO terms including parent GO terms.  However, we did not 

consider “unknown” GO terms (“root” by the revised GO 

annotation: http://www.geneontology.org/).  The pair-wise 

similarities among the genes were computed for each principle 

separately.  As a result, three similarity matrices were created.  

The clustering was performed based on different similarity 

thresholds (t) for each principle.   

The YEASTRACT database [23] was used to search for 

common transcription factor(s) (TFs) in each functionally 

related gene cluster.  We used the “Group Genes by TF” 

function provided by the database and considered only 

“documented regulations” to obtain the percentage of the 

genes in each cluster that are commonly regulated by one or 

more known transcription factors.  The results presented 

below are based on a database search in January of 2006. 

For each gene cluster, a PI value was computed based on 

Equation (5).  We considered a cluster of genes co-regulated if 

at least 80% of the genes had one or more common TFs.  

Therefore, we eliminated clusters containing less than five 

genes in order to achieve the 80% when one gene did not have 

a TF in common.  We only retained one of the repeated 

clusters that contained the same set of genes under different 

similarity threshold or principle.  Finally, 150 clusters were 

retained for analysis below.   

Table 1 lists the genes within the cluster having the highest 

PI value (34.99).  In this cluster, all 11 genes have exactly the 

same GO annotations with regard to CC and MF.  With 
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Fig. 1.  Schematic description of the clustering algorithm. 
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respect to BP, the GO annotations are very similar, the top 7 

genes have identical GO annotations and the remaining 4 

genes are involved in more biological processes than protein 

biosynthesis.  Table 2 shows the known TFs that regulate this 

group of genes.  All genes in this group have two common 

TFs, Rap1 and Fhl1, which are named the most common TFs 

in Fig. 2.  There are three TFs (Sfp1, Rpn4, or lfh1) that each 

commonly regulates 10 out of the 11 genes in this cluster. 

It is interesting to notice that the genes in this first example 

cluster (Tables 1, 2) are different protein components of the 

small ribosomal subunit (40S).  We did BLAST search of 

yeast genome database (http://seq.yeastgenome.org/) and 

found that they are all distinct genes; there is no duplication 

between any pair of genes in this cluster.  These genes are 

located in various chromosome regions with different lengths. 

While ranking all 150 clusters with regard to PI value in 

descending order, we discovered a high correlation between 

the PI value and the likelihood of the genes in each cluster 

being co-regulated by one or more common TFs (Pearson 

correlation: R=0.57, n=150, p<0.0001).  That is the higher the 

PI value, the more likely to find TF(s) that commonly regulate 

the genes in the selected cluster.  We used the TF that most 

commonly (highest %) regulates the genes in the selected 

cluster to represent the likelihood of this cluster being co-

regulated.  Fig. 2 shows the relationship between the 

likelihood of co-regulation and PI value across all 150 

clusters.  We then binned the clusters based on PI values and 

took the average of the likelihood of co-regulation for all 

clusters falling into each bin to draw the curve in Fig. 2.  If we 

consider 80% as a threshold, the PI value should be above 10.  

In other words, for each functionally related gene cluster with 

PI value larger than 10, more than 80% of genes within the 

TABLE 2 

THE TRANSCRIPTION FACTORS (TFS) REGULATING RESPECTIVE GENES IN THE CLUSTER LISTED IN TABLE 1.  THE PERCENTAGE IS THE PERCENTAGE OF GENES 

REGULATED BY THE TF RELATIVE TO THE TOTAL NUMBER OF GENES IN THE CLUSTER. 

 
Genes 

TF    % 
RPS11b RPS13 RPS26b RPS4b RPS5 RPS0b RPS18b RPS1b RPS3 RPS15 RPS19a 

Rap1 100.00 + + + + + + + + + + + 

Fhl1 100.00 + + + + + + + + + + + 

Sfp1 90.91 + + + + + + - + + + + 

Rpn4 90.91 - + + + + + + + + + + 

Ifh1 90.91 + + + - + + + + + + + 

Arr1 63.64 - - - + + - + + + + + 

Leu3 27.27 - - + - - + - + - - - 

Yap1 27.27 - + + - - - - + - - - 

Hal9 18.18 - + - - - - - - - - + 

Yhp1 18.18 + - - - - - - - - + - 

Cin5 9.09 - - - - - - - - + - - 

Swi4 9.09 - - - - - - - - + - - 

Fkh2 9.09 - - - - - - - + - - - 

Phd1 9.09 - - - - - - - - + - - 

Hap1 9.09 - - - + - - - - - - - 

Gcr1 9.09 - - - - - - - - + - - 

Yap5 9.09 - - - - - - - + - - - 

Gcr2 9.09 - - - - - - - - - - + 

Msn1 9.09 + - - - - - - - - - - 
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Fig. 2.  Likelihood of co-regulation vs. PI value.  Each dot represents one 

of 150 clusters.  The likelihood of co-regulation is the percentage of 

genes regulated by the most common TF relative to the total number of 

genes in the cluster.  See text for details of the curve. 

 

 

TABLE 1 

GENE ONTOLOGY ANNOTATIONS OF THE CLUSTER THAT HAS THE HIGHEST 

PERFORMANCE INDEX (34.99). 

 

Gene Name 
Cellular 

Component 

Molecular 

Function 

Biological 

Process* 

RPS13 1 

RPS18b 1 

RPS19a 1 

RPS1b 1 

RPS26b 1 

RPS4b 1 

RPS5 1 

RPS3 1; 2 

RPS0b 1; 3 

RPS11b 1; 3; 4 

RPS15 

cytosolic small 

ribosomal 

subunit (sensu 

Eukaryota) 

structural 

constituent of 

ribosome 

1; 5 

*  1: protein biosynthesis 

2: response to DNA damage stimulus 

3: ribosomal small subunit assembly and maintenance 

4: regulation of translational fidelity 

5: ribosomal small subunit export from nucleus 
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cluster are most likely commonly regulated by at least one TF.  

This result increases confidence that the genes in the selected 

cluster are co-regulated. 

Throughout this study, we found that genes are likely co-

regulated if they have similar GO annotations in all three 

principles.  This result indicates that the closeness of gene 

annotations in all three GO principles is very important.  This 

is further explained by the following two examples. 

Table 3 shows a cluster of six genes with a low PI value (-

7.12).  They have the same annotations in MF but different 

annotations with regard of CC and BP.  We could not find a 

common TF shared by these genes (Table 4).   

Table 5 lists five genes in another cluster with a low PI 

value (-14.70).  They play a role in the same BP but have 

different annotations in CC.  Their MF is unknown.  Only 2 

out of 5 (BUD9 and RAX2) share three common TFs (Table 

6).  In this case, we do not consider these genes co-regulated. 

To investigate which GO principle is more informative than 

the others with regard to gene co-regulation, we considered a 

cluster which contains a TF that regulate at least 80% of the 

member genes as a co-regulated gene cluster.  For a given 

principle and under a certain threshold, we calculated the ratio 

of co-regulated gene clusters over the total number of clusters 

and presented in Fig. 3.  At high similarity thresholds (≥ 0.9), 

the percentage of co-regulated clusters based on BP 

annotations is the highest among the three principles.  

However, at low similarity thresholds (≤ 0.8), none of the 

genes in any clusters based on either CC or BP annotations are 

co-regulated.  Based on MF annotation, however, the clusters 

do not merge as fast as the other two principles when the 

threshold decreases; therefore, the percentage of co-regulated 

gene clusters decreases slowly.  Across all three principles, the 

percentage of co-regulated gene clusters is slightly lower at a 

similarity threshold of 1 than that at 0.9.  This is attributed to 

two factors.  First, we eliminated the clusters with number of 

genes less than five, even if they are 100% co-regulated gene 

clusters.  When the threshold is slightly reduced to 0.9, some 

eliminated small co-regulated gene clusters at the higher 

threshold may merge with other clusters to become an eligible 

and co-regulated gene cluster.  Second, at the lower threshold, 

the total number of clusters also decreases. 

 

 

TABLE 3 

GENE ONTOLOGY ANNOTATIONS FOR ONE CLUSTER WITH PI = -7.12 

 

Gene Name Cellular Component 
Molecular 

Function 
Biological Process 

FZO1 mitochondrial outer 

membrane; 

mitochondrial inner 

membrane 

mitochondrial fusion; 

mitochondrion 

organization and 

biogenesis 

SEC4 incipient bud site; 

actin cap; 

mitochondrion; 

transport vesicle 

cytokinesis; bipolar bud 

site selection; Golgi to 

plasma membrane 

transport; small GTPase 

mediated signal 

transduction; exocytosis; 

vesicle fusion 

GPA1 plasma membrane; 

heterotrimeric G-

protein complex 

signal transduction 

during conjugation with 

cellular fusion 

GTR1 nucleus; cytoplasm; 

vacuolar membrane 

phosphate transport 

RHO5 nucleus; cytoplasm Rho protein signal 

transduction 

ARF3 cellular component 

unknown 

GTPase 

activity 

intracellular protein 

transport; actin 

cytoskeleton 

organization and 

biogenesis 

 

 

TABLE 4 

ASSOCIATION OF GENES IN TABLE 3 WITH THEIR KNOWN REGULATORY TFS.  

LEGENDS SAME AS TABLE 2. 

 
Genes 

TF  % 
FZO1 SEC4 GPA1 GTR1 RHO5 ARF3 

Arr1 20.00 - - + - - - 

Yap6 20.00 - - - - + - 

Cad1 20.00 - - - + - - 

Cin5 20.00 - - - - + - 

Hap1 20.00 + - - - - - 

Yap1 20.00 - - - - + - 

Sum1 20.00 + - - - - - 

Phd1 20.00 - - + - - - 

Reb1 20.00 - + - - - - 

Rox1 20.00 - - + - - - 

Ste12 20.00 - - + - - - 

Leu3 20.00 - - - - + - 

 

 

TABLE 6 

ASSOCIATION OF GENES IN TABLE 5 WITH THEIR KNOWN REGULATORY TFS.  

LEGENDS SAME AS IN TABLE 2. 

 
Genes 

TF % 
BUD27 BUD9 BUD20 RAX2 BUD7 

Fkh2 40.00 - + - + - 

Swi4 40.00 - + - + - 

Mcm1 40.00 - + - + - 

Arg80 20.00 + - - - - 

Ace2 20.00 - + - - - 

Swi5 20.00 - + - - - 

Tos8 20.00 - + - - - 

Cad1 20.00 + - - - - 

Ste12 20.00 - - - + - 

Arg81 20.00 + - - - - 

Rap1 20.00 + - - - - 

Fhl1 20.00 - - + - - 

Yap1 20.00 - - + - - 

Yox1 20.00 - - + - - 

Fkh1 20.00 - + - - - 

Reb1 20.00 + - - - - 

Hsf1 20.00 - - - - + 

Sfp1 20.00 - - + - - 

 

 

TABLE 5 

GENE ONTOLOGY ANNOTATIONS FOR ONE CLUSTER WITH PI = -14.70 

 
Gene Name Cellular Component Molecular Function Biological Process 

BUD27 cytoplasm 

BUD9 bud neck 

BUD20 nucleus 

RAX2 membrane; bud scar; 

bud neck; 

mitochondrion 

BUD7 clathrin-coated vesicle 

molecular function 

unknown 

bud site selection 
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IV.  DISCUSSION 

 

This study investigates the potential of using semantic 

similarity of gene annotations to predict gene co-regulation.  

Our results clearly demonstrate the advantage of consolidating 

gene annotations in all three GO principles in discovery of 

potentially co-regulated gene groups.  The proposed 

performance index is a novel measure of the likelihood of 

gene co-regulation. 

Several research groups have attempted to use gene 

annotation information to predict common transcription factor 

binding sites [11, 13].  They consider annotation only related 

to one single principle, i.e., a specific biological process 

annotation.  Our results indicate that even though all genes in 

a cluster have identical annotation in Molecular Function, they 

do not necessarily share a common transcription factor (Tables 

3, 4).  Similarly, genes that have identical annotation in 

Biological Process do not necessarily share a common 

transcription factor (Tables 5, 6).  Therefore, it is risky to 

consider annotation only in one single principle.   

Through comparison of gene annotations of the three GO 

principles in prediction of gene co-regulation, we found that 

BP annotation is relatively more informative than the other 

two principles (Fig. 3).  However, none of the three principles 

separately could provide us with a satisfactory result of 

predicting gene co-regulation.  By integrating gene 

annotations in all three principles into the calculation of PI 

value, it is promising to find the putative co-regulated gene 

clusters. 

We need to be aware of the current state of knowledge in 

gene annotations.  The existing annotations in the GO 

database are incomplete.  For virtually all sequenced 

organisms, only a subset of known genes is functionally 

annotated [24].  Furthermore, most of the databases are built 

by curators who manually review existing literature.  Although 

unlikely, it is possible to overlook some known facts and 

certain pieces of information might be imprecise or incorrect 

[7].  In addition, many gene regulation mechanisms involve 

multiple biological functions.  This indicates the danger of 

mining annotations based on a single principle.  With the 

integration of all available annotations for a group of genes, 

we can mitigate the negative effect resulting from the shortfall 

of the current state of gene annotations.   

Conventionally, genes are clustered based on their 

expression profiles and further checked by gene annotations.  

This study explores a new approach of partitioning genes into 

functionally related clusters independent of gene expression 

data, which is not always available.  However, gene 

expression data could help to generate a set of input genes to 

our algorithm.  Iteratively cross-checking between gene 

expression data and GO annotation clustering results would 

certainly strengthen knowledge discovery.   

In the calculation of performance index, which integrated 

results from all three GO principles, we treated each principle 

equally.  With the results of this study, we realized that 

biological process annotations are the most informative and 

the cellular component annotations are the least informative 

(Fig. 3).  It is possible to assign different weights to each of 

the GO principles in the combination process.  This merits 

further study. 

  

V.  CONCLUSIONS 

 

This study proposed a novel methodology to partition genes 

into functional groups based on semantic similarity of gene 

annotations in GO and a new approach to predict co-regulation 

of a gene group.  The effectiveness of the proposed approach 

has been demonstrated through its application to a well-

researched yeast dataset.  When considering gene annotation, 

it is important to integrate information in all GO principles.  

Analysis considering only one single principle in the 

interpretation of results could lead to misleading conclusions, 

no matter how high the similarity of the genes is with regards 

to that particular principle.  One of the strengths of our 

approach is that the prediction of co-regulated gene group 

does not require the availability of gene expression profiles.  

However, due to the drawback of current state of GO 

annotations, when gene expression profile is available, it is 

highly recommended to integrate the results by considering 

gene expression profiles and gene annotations in all three 

principles.   
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Fig. 3.  Importance of three GO principles with regard to gene co-

regulation.  Y axis is the percentage of co-regulated gene clusters relative 

to the total number of clusters under given similarity threshold and 

principle.  X axis is the similarity threshold for each cluster. 
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