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Abstract- The integration of diverse data sets into probabilistic 
functional networks is an active and important area of research 
in systems biology. In this paper we fracture a previously 
published integrated network into its component networks, and 
investigate the overlap between the information provided by each 
data set to the final network. Using three-node network motifs as 
a surrogate for information about genetic circuits, we find that 
the same motifs are over-represented in all of the networks, but 
different genes contribute to the motifs in different data sets.  We 
conclude that the data integration approach is valuable because it 
clearly does combine different insights into a biological system. 
However, the fact that the information contained in different 
data sets is so diverse raises issues of how best to perform data 
integration so as to accurately estimate error rates for different 
data sets, whilst including as much data as possible in the 
integrated network. 

I. INTRODUCTION 

The word "genome" was first coined in the 1920s (a 
combination of "gene" and "chromosome"), and the study of 
genomes rapidly became the science of genomics. In the 
1990s, the term "proteomics" joined the lexicon, describing 
the study of the full protein complement of an organism, and 
in the last decade a veritable flood of "omics" terms has come 
into being, reflecting the flood of omics data. Omics data are 
generated by whole-cell, high-throughput screening of 
biological systems and tend to be very large and very noisy. 
Many different types of omics data can be collected: as well as 
genomics and proteomics there are metabolomics, 
transcriptomics, interactomics, and many more. The Genomic 
Glossaries site lists literally dozens1. Although these datasets 
can be hard to manage, they provide the closest approximation 
to date of a holistic, unbiased view of the workings of 
biological systems. 

A recent trend in the handling of omics data is to combine 
diverse types of data into integrated functional networks, often 
using statistical approaches which take into account the error 
rates associated with different data sets (e.g. Breitkreutz, Stark 
& Tyers, 2003; Gopalacharyulu et al., 2005; Li, Li, Su, Chen 
& Galbraith, 2006; Kohler et al., 2006; Baitaluk et al., 2006). 
In these networks nodes are usually genes, while edges 
represent any functional relationship between a pair of genes: 
physical, regulatory, or any other sort or combination of sorts 
of interaction. The hope is that integrated networks will 

                                                       
1 Of which our favourite is the unknome: the complete set of genes within a 
genome for which there is currently no functional information. 

provide more information about intracellular interactions than 
will networks constructed from a single type of data, since 
each data source used adds information, and the use of 
statistical integration techniques means that many weak 
sources of evidence can be combined to produce a stronger 
link, as different sources of noise cancel each other out. 

It is reasonable to ask, however, exactly what is gained by 
combining data sources in this way. While a network from a 
single data source—for example, a protein-protein interaction 
network—is easy to understand (an edge between gene A and 
gene B means that A physically binds to B, and hence the two 
genes probably perform similar functions (Oliver, 2000)) the 
meaning of an edge in an integrated network is less 
conceptually clear, and, indeed, will differ from edge to edge 
within the same network, depending upon which data sources 
were utilized in the construction of each edge. 

We have previously investigated the relationship between 
aspects of network topology and dynamics, using abstract 
computational models of gene regulatory networks. These 
studies suggest that the topological features of a network 
influence its dynamics (in the case of gene regulatory 
networks, the pattern of gene expression over time) (Hallinan 
& Jackway, 2005), and can provide insights into the functions 
of genes and sets of genes. Tightly connected sets of nodes 
("modules") are often involved in the same biological process 
(Hallinan, 2004). Network analysis can identify genes which 
are parts of modules, and those which mediate communication 
between modules (Hallinan & Wipat, 2006). In an integrated 
functional network links from different data sources may well 
provide different insights into the underlying biology. In this 
paper we attempt to use the approaches we have previously 
developed to quantify the ways in which different data sets 
contribute to a network. 

One type of information which should be strengthened by 
the combination of multiple data sets is that regarding the 
prevalence and structure of cellular control circuits. The 
circuits controlling the regulation of gene expression are not 
comprised simply of protein-protein interactions. Protein-
DNA, protein-RNA and RNA-RNA interactions are all 
important, as are interactions with other metabolites. Further, 
it is becoming increasingly apparent that epigenetic 
modifications to biomolecules are essential to genetic 
regulation (Jaenisch & Bird, 2003), as are protein 
modifications. These data are not yet part of interactome 
databases, but such interactions may be indirectly captured by 
an integrated network. 
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It has recently been suggested that genetic regulatory 
circuits may be detected in gene networks in the form of 
network motifs: small sets of nodes with a specific pattern of 
interaction (Milo et al., 2002). If small functional modules are 
essential to network functioning, it is argued, they will be 
preserved by natural selection, and should be found at higher-
than-chance levels in evolved networks. Small network motifs 
have indeed been found to be over-represented in the gene 
networks of model organisms such as the gut bacterium E. coli
(Shen-Orr, Milo, Mangan & Alon, 2002; Dobrin, Beq, 
Barabasi & Oltvai, 2004) and the yeast Saccharomyces 
cerevisiae (Wuchty, Oltvai & Barabasi, 2003; Lee et al.,
2002). Interestingly, though, these studies have involved 
networks constructed from a single data type (transcriptional 
networks and protein-protein interaction networks, 
respectively). We suggest that single-source networks can 
provide only incomplete information about functionally 
important genetic circuits in intracellular networks, since such 
circuits must of necessity involve several different types of 
interactions. 

In this paper we compare the motif structure of an 
integrated functional network of the baker's yeast 

Saccharomyces cerevisiae with that of the single-source 
networks which underlie the integrated network. By 
fragmenting the network in this way, and comparing the 
topology of the fragments, we can investigate not only how 
much information each data source contributes to the 
integrated network, but also how relevant that information is 
to a particular set of questions about biological function. 

II. METHODS 
A. Data Sets 

The integrated functional network we used was compiled 
and published by Lee, Date, Adai & Marcotte (2004). It 
consists of data from 11 different sources, combined using a 
Bayesian statistics approach to yield a network in which nodes 
represent genes and edges represent functional interactions 
between genes. The edges are weighted to reflect the data set 
quality and the probability that an interaction exists, based 
upon the error rates in each data set as compared with a gold 
standard (KEGG (Kanehisa & Goto, 2000) and Gene 
Ontology data (The Gene Ontology Consortium, 2000). The 
sources used to construct the integrated network are briefly 
described in Table 1.

TABLE 1. 
DATA SOURCE S FOR THE LEE NETWORK

Name Type Reference 
Gavin Protein complexes Gavin et al., 2002 
Ho Protein complexes Ho, 2002 
Uetz Protein – protein 

interactions 
Uetz et al., 2000 

Ito Protein - protein 
interactions 

Ito et al., 2001 

Tong01 Functional 
interactions 

Tong et al., 2001 

Tong02 Protein – protein 
interactions 

Tong et al., 2002 

Coexp 717 microarrays Gollub et al., 2003 
DIP Protein – protein 

interactions 
Xenarios et al., 2000 

Phyl Phylogenetic co-
evolution 

Pellegrini et al., 1999; 
Huynen, Snel, Lathe & Bork, 
2000; 
Wolf, Rogozin, Kondrashov 
& Koonin, 2001 

Fusion Gene fusion Marcotte et al., 1999; 
Enright, Illiopoulos, 
Kyrpides & Ouzounis, 1999; 
Yanai, Derti & DeLisi, 2001 

Cocite Literature 
cocitation 

Stapley & Benoit, 2000; 
Jenssen, Laegrid, 
Komorowski & Hovig, 2001 

The Lee et a.l network contains data for all possible pairs 
of genes, and therefore includes statistically non-significant 
edges. We extracted the 30,000 most highly weighted 
interactions from the Lee data set and used them to construct a 
network consisting of 4,514 nodes and 30,000 edges. We then 

divided this data set into its components, retaining for each 
single network only those nodes for which there were edges in 
that data set. The statistics of each of these networks are 
shown in Table 2. 

TABLE 2
STATISTICS OF THE FRACTURED NETWORK

LCC IS THE  SIZE OF THE LARGEST CONNECTED COMPONENT OF THE 
NETWORK

Data 
Source 

Nodes Edges Avg. 
Conn. 

Comp- 
onents 

LCC (%) 

All 4514 30000 6.7 82 4302 (95.3) 
Coexp. 2241 20061 8.9 149 1862 (83.1) 
Cocite 1862 2658 1.4 158 999 (53.6) 
Gavin 818 1217 1.5 113 311 (38.0) 
Ho 481 476 1.0 92 76 (16.0) 
Ito 437 299 0.7 152 38  (8.7) 
Phyl. 1271 5902 4.6 98 973 (76.5) 
Fusion 330 496 1.5 72 49 (14.8) 
DIP 1515 2822 1.8 55 1345 (88.8) 
Tong01 17 12 0.7 6 4 (23.5) 
Tong02 29 29 1.0 4 21 (72.4) 
Uetz 371 252 0.68 132 12 (3.2) 

It is immediately apparent from Table 2 that different data 
sets contribute to the final network to different extents. While 
the full network s has 4,514 nodes, only 17 of these are 
present in the Tong01 network, for example. This is because 
of the selection of the top 30,000 most highly weighted 
connections from the full Lee data set to construct the network 
used here. It would be instructive to examine all of the 
individual networks in full, and we intend to do this in the near 
future. 

It is evident from Table 2 that the statistics of the networks 
differ considerably. Their visual appearances are also very 
dissimilar (Fig. 1). 
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Fig. 1. Topologies of some of the fractured networks. The integrated network 
is not show, since its high connectivity makes visualization meaningless. a) 

Largest connected component of the cocitation network; b) Largest connected 
component of the Gavin network; c) Largest connected component of the 

phylogenetic network. 

B. Motif Detection 
As a surrogate for small genetic circuits, all possible 

network motifs of size 3 were exhaustively enumerated in 
each network using the motif detection application FANMOD 
(Wernicke & Rasche, 2006).  The algorithm implemented by 
FANMOD assesses the importance of motifs in terms of their 
frequency of occurrence. The number of each motif occurring 

in the network of interest is compared with the average count 
for a suite (default size 1,000) of randomly-generated 
networks with the same number of nodes and edges, and the 
same connectivity pattern, and motifs which are statistically 
over-represented are reported. 

C. Motif Analysis 
The over-represented motifs and their corresponding 
adjacency matrices were stored in a PostgresSQL relational 
database using custom Java code and then integrated with 
information pertaining to gene functional annotations derived 
from the Gene Ontology database. In order to enable the 
comparison of motifs between and within networks, the 
descriptions of genes comprising motifs were re-ordered by 
reference to a predefined indexed set of genes to ensure 
consistency in the order of genes in the representation of each 
of the three motifs. Their corresponding adjacency matrices 
were also manipulated to reflect this re-ordering, again using 
custom Java programs to perform the necessary 
manipulations. Once in the database, the most genes most 
commonly represented in over-represented motifs from each 
network, and those motifs common between the motif sets of 
individual networks, were identified using SQL queries over 
the database. The relationships between gene functions and 
their annotations of genes in motifs were identified manually 
by reference to the database tables. The data relating to S. 
cerevisiae gene function and mutant phenotypes were 
downloaded from the Munich Information Centre for Protein 
Sequences (MIPS)2 . 

D. Motif Merging 
In most networks one gene participated in multiple 

instances of an over-represented motif. In order to investigate 
the relationship of these genes to each other within a network, 
we extracted from each network the subnetwork consisting of 
those genes which participated in over-represented motifs, and 
examined the characteristics of these subnetworks. 

III. RESULTS 

E. Motif Occurrence 
Two motifs (dubbed 78 and 238 by FANMOD) were over-

represented in 11 of the 12 networks,  and one (78) was the 
only motif over-represented in the small Tong01 network 
(Figure 2). 

                                                       
2 ftp://ftpmips.gsf.de/yeast/archive/
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Figure 2. Motifs over-represented in the networks 

Although the pattern of connectivity between genes—the 
functional genetic circuit—was common to all the networks, 
the genes which were overrepresented in the most common 
motifs differed from network to network, and within networks 
(Table 3). 

TABLE 3. STATISTICS OF GENES IN OVER-REPRESENTED MOTIFS

Network Genes Number of Occurrences 
  Min Max Mean Mode 
All 410 3 34,128 1455.7 3 
Tong01 7 6 18 11.1 6 
Tong02 14 6 90 27.9 6 
Phyl 788 6 30,960 1198.1 6 
Ito 99 6 66 14.2 6 
Ho 189 6 492 39.7 6 
Gavin 379 6 1,476 88.0 6 
Fusion 144 6 1,074 120.5 6 
Uetz 79 6 168 16.9 6 
DIP 868 6 4,530 120.5 6 
Cocite 787 6 1,770 82.0 6 
Coexp 1,444 6 67,320 3,820.0 6 

The number of genes involved in motifs varied from seven 
to 1,444, reflecting, in part, the sizes of the networks. In all of 
the individual networks genes occurred in at least two motifs 
(minimum number of occurrences = 6), but in the integrated 
network the minimum and mode of the number of occurrences 
was three, indicating that most genes were only represented in 
a single motif (although a few were far more frequently 
occurring). The integrated network does indeed seem to 
smooth out the statistics of the individual networks. 

The single gene most frequently occurring in over-
represented motifs also varies from network to network (Table 
4). 

TABLE 4. GENES MOST FREQUENTLY OCCURRING IN OVER-REPRESENTED 
MOTIFS

Net Gene Gene Ontology Function 
All YBR048W ribosomal protein S11.e.B 
Tong01 YDR004W DNA repair protein 
Tong02 YDR388W reduced viability upon starvation 

protein 
Phyl YBR191W ribosomal protein L21.e 
Ito YGR218W nuclear export factor, exportin 
Ho YGR103W similarity to zebrafish essential for 

embryonic development gene 
pescadillo 

Gavin YBR247C effects N-glycosylation 
Fusion YBL112C strong similarity to subtelomeric 

encoded proteins 
Uetz YDR328C kinetochore protein complex CBF3, 

subunit D 
DIP YBR109C calmodulin 
Cocite YBR160W cyclin-dependent protein kinase 
Coexp YBR048W ribosomal protein S11.e.B 

The overlap between the genes involved in over-
represented motifs in different networks was also minimal. 
Most of the genes identified occurred in only network, and 
none occurred in more than eight of the eleven separate 
networks (Figure 2). 
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Figure 2. Most genes in over-represented motifs occur in only one network 

Since many of the individual networks are protein-protein 
interaction networks, it is likely that they are providing similar 
information. To investigate this possibility we looked at the 
distribution of identical motifs (i.e. those involving the same 
genes and the same pattern of connectivity) across the protein-
protein interaction networks (Table 5.). 
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TABLE 5. MOTIFS COMMON TO PROTEIN-PROTEIN INTERACTION NETWORKS

Network 1 Network 2 Network 3 Common Motifs 
Uetz DIP  242 
Uetz Ito  234 
Ito DIP  330 
Ito Uetz  DIP 226 

Table 5 shows that there is, indeed, considerable overlap in 
motifs between the protein interaction networks. 

We hypothesize that genes in statistically over-represented 
motifs which are common to several networks are likely to be 
essential to the viability of the cell. In order to investigate this 
possibility, we annotated the genes summarized in Table x. 
with phenotypic data from the Saccharomyces Gene Database 
(SGD) (Table 6). 

TABLE 6. NUMBER OF ESSENTIAL GENES PER MOTIF IN PROTEIN-PROTEIN 
NETWORKS

Networks Number of motifs with essential genes 
 0 

essential 
1

essential 
2

essential 
3

essential 
Uetz/DIP 120 20 56 44 
Ito/Uetz 104 40 76 12 
Ito/DIP 100 140 60 28 
Ito/Uetz/DIP 192 32 0 0 

The distinction between the individual and the integrated 
networks is particularly marked in Table 6. In all of the 
individual networks the number of motifs in which one or 
more genes is essential is greater than the number in which 
none are essential, but in the integrated network the reverse is 
true. 

The genes participating in over-represented motifs were 
merged to form subnetworks for each network. These 
subnetworks showed considerable variability, with the 
majority of subnetworks being relatively connected (Fig. 3, 4), 
while a few are almost completely unconnected (Fig. 5). 

Figure 3. Merged motifs of complete network

Figure 4.  Genes participating in over-represented motifs in the coexpression 
network 

Figure 5. Genes participating in over-represented motifs in the fusion network 

IV. DISCUSSION 
The average connectivity of the individual networks varies 

from 0.7 to 8.9. This metric would appear to reflect the 
specificity of the technique used to generate the data; the low 
average connectivity  networks were generated using 
approaches such as the detection of functional interactions, 
while the high-connectivity nets arise from techniques such as 
microarray analysis, which is known to be noisy and hence 
will produce many spurious interactions. The high average 
connectivity of the integrated network clearly reflects the 
impact of the coexpression network. 

The result of a functional analysis of the genes encoding 
proteins most commonly represented in the motifs varies 
considerably across the individual networks that comprise the 
overall integrated network. For example, for those networks 
representing protein interactions e.g. protein interaction 
networks (DIP, Ito, Ho, Uetz and Gavin), the proteins most 
heavily represented in the three motifs in fail to show 
significant overall correlation between datasets. This variation 
possibly reflects the fact that even though these networks 
describe the same phenomenon, the underlying experimental 
methodology used to derive them varies considerably.  

The Uetz network (Uetz, 2000), a general yeast two hybrid 
generated network, shows two motifs with cyclin specific 
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proteins such as Pcl2 and Pcl9, cyclin dependant kinase 
regulatory subunits and cyclin like proteins, dominating the 
top 25 most overrepresented proteins. Interestingly motifs 
derived from the both DIP and the Ito protein-protein 
interaction networks show an abundance of proteins localized 
to the nucleus. In the top 20 DIP dataset (from the database of 
interacting proteins, derived mostly by small scale protein 
interaction assays (Xenarios, 2002)) motif proteins show an 
overrepresentation of nuclear proteins (such as Cdc39), 
nuclear export factors such as Crm1, in particular nuclear pore 
proteins such as Nup42, Nup49, Nup60, Nup84 and Nup40.  

The comprehensive yeast two-hybrid derived dataset 
generated by Ito et al. (2001) also demonstrates a statistically 
significant excess of proteins involved in the structure and 
function of the nucleus, including nuclear pore proteins, 
Nup57 and Nup58 and also the nuclear export factor Crm1.  
The dataset generated by Tong and co-workers (2002), was 
also essentially derived from yeast-two hybrid technology, but 
with protein baits consisting of cloned peptide fragments using 
phage display technology. In this case, the most frequent 
motifs from this source involve proteins with a bias towards 
cellular structural components such as the actin binding 
protein Asb1, myosin I (Myo3 and Myo5) and the actin 
binding protein verprolin, encoded by vrp1 (Anderson et al., 
1998). In addition, there are a number of proteins of unknown 
function in the mostly frequently represented proteins. 

The three motifs derived from a dataset generated by 
tandem affinity purification (Ho et al., 2002) demonstrate an 
overrepresentation of proteins that belong to 'functional' 
complexes, in particular the proteosome (responsible for 
protein processing and breakdown, proteolysis). The motifs 
also include structural components of the spliceosome and 
other proteins involved in its assembly, such as Prp43, 
together with proteins responsible for RNA processing and 
maturation. Motifs derived from the Gavin networks (Gavin, 
2002), generated by a similar approach, also show similar 

characteristics including a variety of proteins that are also 
members of complexes, including proteins that are proteosome 
subunits, proteins for proteosome regulation, some members 
of the RNA polymerase complex and proteins required for 
ribosomal biogenesis.  

The Phyl network was generated by Marcotte et al., 1999 
by phylogenetic profiling  based on a comparative genomics  
approach. This network clearly demonstrates an overwhelming 
number of motifs that contain genes encoding proteins which 
are responsible for the structure of ribosomes. Strikingly, more 
than 50 of the most overrepresented proteins in the three 
motifs from this network are ribosomal structural proteins.  

Genes overrepresented in the most common motifs derived 
from the co-citation network show wide variation in their 
functional classification, in contrast to the other networks 
discussed above, that show a bias in the function of the 
proteins involved in their most frequent motifs. Analysis of 
the function of proteins of the three-motifs derived from the 
co-expression network indicates that this network shows the 
most similarity in terms of gene function to those motifs 
derived from the complete integrated network. This 
observation suggests that the coexpression network 
contributes most to shaping the relationships within the 
integrated network, possibly masking out the effect of the 
other datasets, despite the probabilistic approach to accounting 
for data quality. 

Integrated networks, such as the one investigated here, 
seem to be biased to particular data sets, such as protein-
protein interactions. In some ways, this is a reflection of the 
types of ‘omics’ experiments that are around at the time. There 
is a clear requirement for the integration of many other types 
of interactomes that describe different regulatory layers of the 
gene to protein to phenotype process if we are to maximise the 
benefit of the integrated network approach. In particular, 
epigenetic and protein phosphorylation networks are 
conspicuous in their absence.

V. CONCLUSIONS 

The rationale behind the construction of integrated 
functional networks of gene interactions is to make the best 
use of the vast quantities of omics data currently being 
generated. By combining data from different sources, and 
weighting it according to the error rates inherent in the 
different techniques used, researchers aim to generate a more 
detailed picture of functional interactions than can be gained 
from any single experiment. 

We find that, as expected, networks generated from single 
data sources have characteristics very different from those of 
the network produced by integrating all of the data. The 
network we analyzed, that produced for S. cerevisiae by Lee et 
al. (2004) is heavily dependant upon protein-protein 
interaction data, with  six of the 11 data sources being various 
measures of protein-protein interaction. Not surprisingly, the 
protein-protein interaction data have more in common with 
each other than with the other data sources, although they still 
differ in their contribution to the network. 

Since the strength of the integrated network approach is 
argued to be its ability to represent functional, rather than 
merely physical, interactions between genes and gene 
products, we chose to concentrate upon the occurrence of 
three-node motifs in the network;. such motifs have been 
proposed as being crucial to the dynamics of gene expression. 
We found that the same two network motifs are statistically 
over-represented in all of the networks. Since the motifs are so 
small, they occur many times in each network—tens of 
thousands of times in the largest networks—and involve large 
numbers of genes.  The genes participating in these motifs, 
while overlapping, were not identical in each network, an 
observation which supports the suggestion that different types 
of data are providing different information about the 
underlying networks. 

Merging the over-represented motifs reveals the 
connections between the genes which are active in the over-
represented motifs. In most of the networks these genes form a 
small number of connected components, an observation which 
implies that the functional core of the network is tightly 
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integrated.  In the fusion network, however, the genes tend to 
be isolated. 

This confirmation that individual networks provide 
different sorts of information about the underlying biological 
system raises the issue of how best to combine them. The 
approach usually taken, which was adopted by Lee et al., is to 
weight each data set according to how accurately it reproduces 
a “gold standard” set of interactions. The gold standard is 
generally a heavily manually curated data set such as the 
KEGG or Gene Ontology databases. This approach is 
problematic for two major reasons. Firstly it means that the 
most reliable data is automatically excluded from the 
integrated network. The requirement of Bayesian statistics for 
a calculated prior probability means that a gold standard is 
essential, but given how noisy most omics datasets are, the 
exclusion of the highest-quality data from the final network 
will inevitably degrade its accuracy. 

Perhaps more importantly, the variability in information 
content between the individual datasets casts doubt upon the 
whole concept of a gold standard dataset. The power of data 
integration lies in the merging of different lines of evidence 
with regard to genetic interactions, but the fact that different 
types of data capture different information means that the use 
of a single gold standard data set is probably not realistic. This 
issue could be addressed by defining data type categories and 
establishing a gold standard for each data type. However, 
while this may be relatively straightforward for a data 
category such as protein-protein interactions, for which there 
is a lot of data available, gold standards for categories such as 
cocitation or gene fusion would be much harder to identify. 
Further, the use of multiple gold standards compounds the 
problem of omitting valuable data from the integrated 
network. 

Data integration is undoubtedly a powerful tool for 
computational systems biology, offering a principled way to 
incorporate large amounts of diverse data into a single unified 
network of interactions. Integrated networks provide an 
overview of the functional  interactions between genes, and 
will be increasingly important in the analysis of high-
throughput data.  We have found that different types of data 
contribute very different information about genetic control 
circuits, in the form of small network motifs, with the genes 
involved in statistically over-represented motifs being 
different in different data sets, even though the wiring pattern 
of the motifs are the same.  

Although the value of the data integration approach to 
gene network construction is unarguable, the practical and 
statistical issues involved in integrating different data types 
into a single network are complex, and clearly require further 
investigation. 
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