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Abstract─Identification of short repeated patterns (motifs) in 

genomic sequences is the key to many problems in 
bioinformatics. The promoter regions of genes are an important 
target of search for such motifs (Transcription Factor Binding 
Sites). We present a new algorithm, Mottice, for detecting 
potential binding sites which are present in a given set of genomic 
sequences. An informed search is performed by organizing the 
input patterns and their variants in a graph. Such a strategy 
efficiently leads to the desired solutions. The background is 
modeled as a Markov process and a composite score function is 
used. We demonstrate the performance of our algorithm by 
testing it on real-life data sets from yeast and human promoter 
sequences. We compared the performance with several popular 
algorithms and found that other algorithms work well with lower 
organisms like yeast but only a couple of them work well with 
human data. We show that our algorithm scales linearly with the 
size of input dataset. We compare the computational efficiency of 
our algorithm with other algorithms and show that it performs 
faster for different datasets and motif sizes. 

I.  INTRODUCTION 

The completion of many genomic projects has generated 
huge amount of sequence data. Such data needs to be 
functionally annotated for it to be of any practical use. On the 
other end, computational intelligence techniques have been 
used for more than a decade to find useful information from 
large datasets. However, biological data provides unique 
challenges which give an impetus to generating novel data 
mining paradigms for assigning functional roles to raw DNA 
(and protein) sequences. 

In addition to the long functional regions like genes, there 
are many short sequences in the genome which play an 
important role in the cellular processes. Search for such short 
repeated patterns is known as the motif discovery problem. 
Though there are many variants of this problem, here we focus 
on detection of Transcription Factor Binding Sites (TFBS). 

The transcription of a gene is initiated by proteins called 
transcription factors (TFs). These proteins bind to specific 
locations (TFBS) on the DNA to regulate the transcription of 
the gene. Typically, a number of TFs act in combination to 
activate or repress transcription. Discovery of these individual 
or modular TFBSs is important as it helps in understanding the 
gene regulatory mechanism. 

A number of bioinformatics approaches are in vogue for 
identification of the TFBSs. Conventionally, a sequence is 
scanned for motifs that match known TFBSs which have been 
experimentally identified from promoters or other regulatory 
sites. Experimental data of the specific binding sites of most 
well-characterized TFs have been compiled in databases such 
as TRANSFAC [1] or JASPAR [2]. Examples of such 

programs include MatInspector [3] or MATCH [4] which are 
used to compare a genomic sequence input to all the binding 
site data in the TFBS libraries, and return a list of potential 
TFBSs based on a statistical match between a region in the 
sequence and a binding site. However, these approaches result 
in a large number of false positives. Additionally, the 
completeness of the TFBSs libraries is a major limitation. Not 
all TFBSs have been identified, and even for some of the 
known TFs, their binding specificity has not been fully 
characterized yet. 

An alternative approach to overcome this problem involves 
a search for common or over represented sequence motifs 
within the upstream regions of a group of genes. The main 
advantage of these approaches is the potential to discover 
novel TFBSs. Several programs are currently available for this 
purpose – each with its own advantages and caveats (see 
section II on Related Work). There is clearly room for 
improvement, especially when predicting regulatory regions in 
higher metazoans wherein TF cooperativity is much more 
widespread than in lower eukaryotes or yeast. 

The identification of TFBSs – the short functional motifs - 
is challenging because these binding sites are small and 
degenerate. For example, if the experimentally validated 
binding site for a specific transcription factor is ACGTACGT, 
the transcription factor can still bind to sites that are slightly 
different than ACGTACGT (AGGTACTT, CCATACGT, 
etc.). An example is show in Fig. 1. 

 

atcgctatctgtctatccAgGTACtTaggtcct 
atttgatcCaTACGTacaccggcaacctgaa 
aaACGTAaGTgcaccctctcttcgtggctctg 
tgccacccctattacatcttACGTcCaTataca 

 

Fig. 1. Four instances of motif ACGTACGT 

The motif ACGTACGT is present in all the 4 sequences, 
albeit with one or more variations. These patterns are called 
the instances of the motif in the input sequences. The 
instances are marked in bold and the base which does not 
match the known motif is shown in lower case. 

A recent review [5] brings forth two computational (or 
statistical) tasks in the de novo motif discovery process; the 
search step and the scoring step. The search step is a 
comprehensive identification of patterns which are 
overrepresented in the input sequences. We call such patterns 
candidate motifs. The scoring step is separating likely motifs 
from patterns which occur just by chance. Usually a score is 
assigned to each candidate motif based on some statistics. The 
motifs are then ranked according to the score and the top 
ranking motifs are reported to the user. 

For the search step, the definition of a binding site motif is 
itself disputed but the commonly accepted formulation of the 
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motif discovery problem is defined in the following way – 
given t sequences of length n (usually promoter regions of co-
regulated genes), find the set of binding sites of size l present 
in all (or some) of the sequences with at most d mutations 
(mismatches) [6], [7]. Such a search for binding sites in 
genomic sequences is found to be NP-Hard [8]. So a complete 
polynomial solution is not likely to exist. Moreover, a naïve 
search may discover thousands of candidate motifs which 
satisfy the constraints but not all of them may be true motifs. 

For the scoring step, the challenge is to predict the likely 
motifs from the large number of false positives. Since the size 
of these motifs is very small (6-15 base pairs), the probability 
of multiple occurrences of a pattern by chance is very high. 
There is no direct way of assessing if a transcription factor 
indeed binds at a predicted site. Usually the predicted results 
are experimentally verified which may take a few months. 
Statistical measures are used to find the chance that the match 
is not just a random occurrence. 

We present the Mottice algorithm for de novo sequence 
motif discovery. We address both the search and the scoring 
aspects of the problem. We develop an exhaustive yet efficient 
search method coupled with a composite scoring function. The 
scoring function is also used for pruning the candidates during 
the search process. The use of auxiliary information such as 
orthologous sequences, phylogenetic footprinting, etc. is 
known to improve the prediction of the motifs. However, [5] 
suggests the use of such information, if available, as a post-
processing step. In this paper the focus is on the computational 
challenges of the problem. 

II.  RELATED WORK 

The motif discovery problem has been studied extensively 
over the last decade. There are a large number of tools 
available; we will focus on some of the most important ones. 
MEME [9], one of the earliest tools, is profile-based method 
using expectation maximization for selecting the motifs. 
Consensus [10] is also based on profiles. It starts by creating a 
profile from the n-mers (strings of size n) in the input 
sequence and then does pair-wise merging of profiles to 
construct more prevalent motifs. These algorithms make 
approximations while searching for frequently occurring 
patterns and may not get the right output in each case. Quite a 
few tools are based on Gibbs sampling strategy such as 
AlignAce [11] and BioProspector [12]. There are some other 
algorithms based on oligo/dyad-analysis [13], etc. The search 
is based on local search techniques so such methods are often 
trapped in local minima. Ref. [14] compared some of these 
methods and found that they work well with low complexity 
genomes such as yeast but perform poorly on human genomes, 
etc. 

Pattern based enumerative algorithms have performed 
better in recent comparisons [14], [16]. Weeder [7] stores the 
input sequences in a suffix tree. All the possible motifs are 
enumerated and searched in the suffix tree for finding their 
occurrences in the input sequences [17]. Such an approach is 
computationally expensive. Since the number of possible 
patterns is exponential in the length of the pattern, heuristics 

are applied to speed up the search. Another recent pattern 
based algorithm, MaMF [16], searches the input space by 
starting with pairs of patterns which share a short subsequence 
of length 4-6. These pairs are then combined to get larger sets 
of related patterns. It has been shown to work better than other 
algorithms but the greedy search strategy is not guaranteed to 
find the best solution. 

We propose the Mottice algorithm which is deterministic 
and exact. Unlike enumerative algorithms, all possible 
solutions are not generated; the patterns present in the input 
are organized in a graph to quickly find the solutions.  

Graph based search methods such as WINNOWER [6] and 
[18] have been proposed earlier. These algorithms perform 
either a local optimization search or an almost exhaustive 
search of possible solutions. In order to conquer the 
exponential nature of the search space we need to do an as 
informed a search as possible so that non promising parts of 
the search space may be pruned away early. Our proposed 
approach uses a scoring function at each stage of the search 
process to successively narrow down the space of possible 
hypotheses. Most other approaches use the scoring function 
only after the exhaustive search to evaluate the motifs. Our 
robust search technique works well with noise in data; the 
performance remains good even when motifs are only present 
in only some of the input sequences, a situation often 
encountered in real-life. Further, these methods have been 
tried on synthetic challenge data sets or low complexity 
bacterial or fungal genomes. We couple our efficient search 
method with a hybrid scoring function which performs well 
even with real-life datasets of more complex eukaryotic 
genomes apart from prokaryotic genomes. 

In addition to the different search strategies, a large number 
of scoring schemes have also been proposed by different 
groups. A popular method is to train a Markov model on the 
background and then predict the probability of occurrence of 
the motif based on the model. Consensus [10] uses the p-value 
of motif profile, [19] proposes the use of z-score, etc. These 
scores capture different properties of the motif. Methods based 
solely on one of these do not perform well. On the other hand, 
methods which perform well use a combination of these 
statistics. Weeder [7] uses the z-score and posterior 
probabilities while MaMF [16] uses the conservation of bases 
between the different instances of the motif and its probability 
of occurrence based on third order Markov model. 

Most of the above algorithms focus very little on 
computational efficiency and scalability. As more data is 
being made available, these issues will become more 
important. In this paper, we focus on these aspects of the motif 
discovery process. 

Further, the current algorithms work like a black box as 
they only report the instances of the motifs found. Our graph 
based framework enables us to not only find a motif but also 
provides the relationship between its different instances.  

III.  METHODS 

The motif discovery problem is formally defined as 
following. Given a set of t sequences S = {S1, S2, ···, St}, each 

198

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



of length n, find a pattern p of length l, such that there exists a 
pattern qi in each Si, i =  1, 2, ···, t, and dH(p, qi) ≤ d. The 
distance measure, dH(a,b) is the hamming distance which 
measures the number of mismatches between patterns a and b. 
If such a pattern p exists, it is called a (l,d) motif. The 
parameters l and d are usually provided by the user; typical 
values for l are 6-15 and d is usually 0-30% of l. Since there is 
a chance that the motif may not be present in all the input 
sequences, the quorum condition is relaxed, i.e., all motifs 
which are present in q (out of t) sequences are reported. It may 
be noted that the pattern p may or may not occur explicitly in 
S as shown in Fig. 1. Typical value of n, the length of the 
promoter region is 500-1000 base pairs. Finally, the candidate 
motifs are ranked based on the likelihood of their being a non-
random pattern. 

In this case the similarity measure is the hamming distance 
which is the number of mutations between two patterns. If 
patterns a and b differ at exactly k positions (dH(a,b) = k) then 
pattern a is called a k-mutant of b and vice-versa.  

A.  Search using Multi-level Graph 
The patterns, the motif and the intermediate patterns are 

arranged as nodes in a graph. (Intermediate patterns are the 
patterns which are generated during the search for motifs). 
The l-mers derived from the input sequence form the nodes in 
the bottom level (level 0) of the graph. Patterns in level 1 are 
1-mutants of patterns in level 0. Similarly, patterns in level k 
are 1-mutants of patterns in level k-1. In the graph, each 
pattern is connected to its 1-mutants. A pattern a in level i is 
connected to a pattern b in level j if a is a |j-i|-mutant of b. The 
(possible) motifs are nodes of the graph which are connected 
to at least one node from q sequences in level 0. The 
connection may be through intermediate nodes. 

 
 

Seq 1: GCGCTA 
Seq 2: GCTCGA 
Seq 3: GCGCGA 

 

Fig. 2. A sample dataset with 3 sequences of length 6 each 

A sample dataset is shown in Fig. 2. The dataset contains 3 
sequences of length 6 each to illustrate the construction of the 
graph structure. Fig. 3 shows part of the graph for the dataset 
in Fig. 2. We search for motifs (6,2), i.e., find patterns of 
length 6 which has at most 2 mismatches from a pattern in 
each input sequence. The patterns from the 3 sequences form 
level 0 of the graph. The 1-mutants of each node in level 0 are 

added to level 1 as a new node and a connection is made 
between the nodes. (Not all the 1-mutants are shown in the 
figure). Similarly, 1-mutants of nodes in level 1 are added to 
level 2. Before adding a 1-mutant to a higher level, this 
(higher) level is searched for the presence of that pattern. If it 
already exists, simply a new connection is made. For example, 
pattern GCGCTA in level 0 adds its 1-mutant GCTCTA to 
level 1. Now the pattern GCTCGA in level 0 also generates a 
1-mutant GCTCTA. Since GCTCTA already exists in level 1, 
a new node is not created but a connection is made from the 
parent node (GCTCGA) to the existing node (GCTCTA). The 
patterns themselves are also directly added to the next higher 
level. The top-most level is used to create the next higher level 
in each iteration of the algorithm. The method is similar to 
Consensus [10]. However, instead of generating all possible 
Position Weight Matrices (PWM), only 1-mutants are 
generated so it works much faster. 

In this example there is (6,1) motif and a (6,2) motif which 
are indicated by a thick oval. The node GCGCGA in level 1 is 
connected to one node from each sequence in level 0 so it is a 
(6,1) motif. The node GCTCAA in level 2 is connected to one 
node from each sequence in level 0 (through intermediate 
nodes in level 1) so it is a (6,2) motif. A motif in level k is 
always a (l,k) motif as it is at most k apart from the patterns in 
the input sequence in level 0. 

B.  Search Algorithm 
The Mottice algorithm is based on exhaustive enumeration 

of all 1-mutants of a pattern to generate the next higher level. 
The algorithm is shown in Fig. 4. 

Step 1 of the algorithm gets all the l-mers from the input 
sequences and constructs the bottom level of the graph. An 
input sequence of length n will have (n-l+1) overlapping l-
mers. All the nodes of a level are expanded by generating its 
1-mutants (patterns p). If the pattern already exists in the next 
higher level (step 5), then an edge is drawn between the two 
nodes else a new node is created (step 6). Once the graph is 
constructed, the nodes in the graph which meet the quorum are 
reported as candidate motifs for measuring their statistical 
significance and ranking. (The quorum is computed by 
counting the number of input sequences in which a motif is 
present. This is found out by looking at the nodes at level 0 to 
which a node is connected.) 
 

GCTATA GCTCAA GCATGA

GCGCAA

GCGCGA

GCACGAGCGCGAGCTCTAGCGCCA

GCGCTA GCTCGA

Level 1

Level 2

Level 0
 

Fig. 3. The graph for a sample dataset 
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Input: t sequences, l, d, q 
 
1 Form level 0 with all l-mers of all the t sequences 
2 for each level Li, i = 0 to (d – 1) 
3 for each pattern aij, aij ε Li 

4 Generate all 1-mutants of aij  (patterns p) 

5 if p already exists in level Li+1, form a connection 
between the two nodes 

6 else create a new node in level Li+1 and connect 
the new node to aij 

7 Nodes in the graph which are connected to at least one 
node from q sequence in level 0 are the motifs. 

Fig. 4. Algorithm Mottice 

t input sequences will give rise to t(n-l+1) input patterns. 
As n >> l, number of nodes in Level 0 is almost equal to tn. 
Each pattern will produce 3l 1-mutants, not all of which will 
be different from the existing patterns. However, in the worst 
case, the number of nodes in Level 1 will be tn(3l). Similarly, 
the number of nodes in Level 2 will be tn(3l)2.  

Generalizing this, number of nodes in level k = tn(3l)k. 
Total number of nodes in the graph with d levels = tn + tn(3l) 
+ tn(3l)2 + … + tn(3l)d  = tn((3l)d + 1 - 1)/(3l - 1) = O(tn(3l)d). 

Similar argument can be made for finding the time-
complexity of Mottice. In the first iteration of the algorithm, 
each of the tn nodes of Level 0 has to be processed. Time 
required will be proportional to tn. When processing Level k, 
nl(3l)k nodes have to be processed. So time required = 
O(tn(3l)d) 

So, the worst case complexity is a linear function of the 
input size (tn) and a polynomial function of the length of the 
motif but exponential in the number of allowable mismatches. 
This is not surprising as the problem is NP-Hard. However, 
the worst case scenario is not encountered in practice as many 
duplicate patterns are generated at each level as we start with 
only the patterns in the input sequences.  

C.  Modeling the Background 
The promoter regions are not just random sequences of the 

four bases; they often have strong biases. For example, 
human promoter sequences of genes regulated by the 
transcription factor E2F have 29% ‘G’s and ‘C’s while they 
have only 21% ‘A’s and ‘T’s. Further there are many 
repetitive patterns like CG repeats, etc. A lot of patterns 
generated by the algorithm may simply be an artifact of the 
bias of the input sequences rather than true signals. So we 
need a way to discriminate between a signal and the 
background (the input sequences). 

First, the known repetitive elements in DNA (such as ‘A’ 
repeats) are discarded using RepeatMasker [21]. Second, the 
input sequences are modeled as a third order Markov process. 
Though the choice of order is debatable, third order Markov 
model is ideal as many common genomic signals are 4 bases 
long, e.g., TATA boxes. Using such a model, the probability 
of a sequence s in the context of its background is calculated 
as follows. 

 

P(s) = P(s1s2s3)P(s4|s1s2s3) P(s5|s2s3s4)…P(sl|sl-3sl-2sl-1) 
 

where P(s) is the probability of the occurrence of sequence s 
of length l and si is the ith letter of s. Such a model may be 
constructed locally or globally for a data set. In the former, 
the background model is created using only the promoter 
sequences in which motif is being searched while in the latter 
all the promoter sequences of the genome are used to 
construct the model. We use a local model for two reasons. 
Firstly, tools like BioProspector [12] allow both options but 
they perform better with local models. This is reasonable as a 
local model will capture the fine nuances in the input 
sequences. Secondly, it is not always possible to construct a 
global model as data of all the promoter regions of the 
genome may not be easily available, especially for newly 
sequenced genomes. 

Having constructed the model, the probability of each of 
the candidate motifs is calculated. The motifs which have low 
values of probability signify that they represent a potentially 
true signal, and they are not merely an artifact of the sequence 
biases. 

D.  Ranking the Candidates 
The algorithm described in the section III.B generates a 

large number of candidates, very few of which are likely to be 
true motifs. Simply measuring the probability of a candidate 
sequence using the background model (as described in section 
III.C) does not suffice to discover true motifs. Various 
statistical measures have been proposed to measure the 
likelihood of a candidate being a true motif [9], [10], [19], 
[11]. Each of these measures captures a different type of 
information about the motif. E.g., for a given set of 
occurrences of a motif, relative entropy measures the level of 
conservation of a base at each position of the motif pattern. It 
is found that the relative entropy score is usually high for 
known motifs. However, such measures fail to discriminate 
the true motifs when used alone. So we propose a composite 
scoring function S(M) given as: 
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where M is the motif, Mi is the ith occurrence of the motif, 
q is the total number of occurrences of the motif in all the 
input sequences, Po(Mi) is the probability of observing pattern 
Mi by the background model, pij is the probability of 
observing base j at position i in the motif profile, PBj is the 
background probability of observing base j, l is the length of 
the motif and dH(Mi,MJ) is the hamming distance between 
patterns Mi and Mj. 
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Each component captures a different type of information 
about a candidate motif. The first component, Sp, measures 
the average of logs of the probability of occurrence of the 
instances of the motif. The second component, Sic, compares 
the information content (or relative entropy) of all the 
instances of the motif with the known background probability 
of each base. The third component, Ss, measures the mutual 
similarity between the different instances of the motif. 
Together they should be more helpful in picking the true 
motifs as a true motif will score high in each measure. 

After the candidates are generated by the algorithm, a 
score is assigned to each candidate motif. They are ranked 
based on decreasing order of the score and a few top ranking 
motifs are reported to the user. 

E.  Pruning the Search Space 
Modeling the background also helps in pruning the graph 

for speeding up the search. The idea is that a pattern which 
has a high probability of occurrence is not likely to be an 
instance of a motif. So the nodes in the graph which have a 
probability higher than a fixed threshold are not expanded 
further. As a heuristic, we fix this threshold to be the mean of 
the probability of the patterns in the input. The probability of 
true motifs is much less than the mean so such a pruning 
strategy will discard patterns which occur by chance. We see 
in the following sections that it improves the efficiency of the 
search without decreasing the sensitivity. 

IV.  RESULTS 

The algorithms were implemented in C++ and tested on a 
wide variety of datasets for correctness and efficiency. The 
most time-consuming part of the program was searching for 
existing patterns in a level while adding a new node. We 
found that storing the level as a hash table improved the 
performance. 

A.  Performance Evaluation 
We tested the performance of the algorithm on real-life 

datasets of yeast and human promoter sequences. 
 

Yeast dataset: The gene regulation mechanism is simpler and 
well studied in lower organisms like yeast (when compared to 
mammalian genomes). Therefore it makes a good starting 
point for testing new algorithms. 

The yeast transcription factor protein Mcm1 acts as 
activator or repressor for genes involved in cell-type 
determination, mating, cell-cycle control, etc. [22]. We ran 
our algorithm on a set of promoter sequences of genes which 
are known to be regulated by Mcm1. There were 17 such 
promoter sequences [16], each of length 1000 bases. We 
searched for motifs of length 11, allowing at most 3 
mismatches. Since all the 17 genes were known to be 
regulated by Mcm1, only motifs present in all the sequences 
were reported. 

The top ranking motif reported by our algorithm is shown 
in Fig. 5 as a sequence logo. The eleven stacks of letters 
correspond to the 11 bases of the motif. The overall height of 
the stack indicates the degree of conservation of the base 

while the tallest letter of a stack indicates the most frequent 
base at that position. It matches very well with the known 
binding motif for Mcm1 (CCGAATTAGGA) [1]. 

 
Fig. 5. Binding motif of Mcm1 found by our algorithm 

This motif was also recognized by other programs such as 
Weeder [7], MaMF [16], AlignAce [11], Consensus [10], 
MEME [9] and BioProspector [12]. This suggests that lower 
organisms set the bar for accuracy of motif search algorithms. 

 
Human dataset: The regulatory modules in higher species 
like human are much more complex. The discovery of 
binding sites is more challenging; most of the motif discovery 
algorithms perform poorly. Recent studies have found that 
even the best methods fail to find the known motifs in more 
than 50% cases [14], [16]. Even when the correct motif is 
identified, it may not be the highest ranked motif returned by 
the algorithm. Tompa, et al. Ref. [14] suggests the use of top 
N motifs returned by the algorithm for assessing the 
performance of the algorithm. Hon and Jain [16] use N = 30 
and further suggest the use of a similarity threshold (8 out of 
11 bases, 73% identity) for classifying a reported motif as a 
true match. In summary, if a motif in the top 30 motifs 
returned by the algorithm matches a known motif at 75% 
positions (bases), it is said to be a true match. We use the 
same criteria for testing the performance of our algorithm. 

We tested our algorithm on the promoter sequences of 8 
genes [16], each of length 1200 bases, which are known to be 
regulated by the transcription factor E2F. The E2F family of 
transcription factors is well studied for its role in regulation of 
cell proliferation [24]. The search step identified over a 
thousand candidate motifs. The 10th ranking motif reported by 
our algorithm is shown in Fig. 6. It matches the known motif 
(TTCGCGCCAAA) [1] at 8/11 positions. The first 9 hits may 
be just noise or they could be novel motifs which need to be 
experimentally verified. 

 
Fig. 6. Binding motif of E2F found by our algorithm 

This motif was also recognized by Weeder and MaMF 
(both match at 9/11 positions) but it was not recognized by 
AlignAce, Consensus, MEME and BioProspector. This 
suggests that motif search is more challenging in mammalian 
genomes and many existing methods fail to discover the 
known motifs. 

B.  Comparison of Run-time with other Algorithms 
In a recent survey [14], it was found that the Weeder 
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algorithm [15] outperformed other algorithms in accuracy by 
a clear margin in a wide variety of tests. It has been 
demonstrated that the performance of MaMF [16] is 
comparable to Weeder but the software is not available for 
comparison. Further, other methods do not even find the right 
motifs for mammalian genomes. Therefore we restricted the 
time comparison of our algorithm with Weeder. 

The source code for Weeder was downloaded from the 
author’s website [15] and compiled on our machine for a fair 
comparison. Again, for fairness, we compared the programs’ 
performance on the following data sets of promoter sequences 
obtained from Weeder website: 

 

1. 5 yeast promoter sequences of length 1000 bp each 
2. 11 human promoter sequences of length 500 bp each 

 

Our algorithm was able to extract all the motifs detected 
by Weeder. Fig. 7 shows the runtime comparison of the two 
algorithms. The figure clearly shows that Mottice takes one 
fifth the time as Weeder for all motif sizes and for both yeast 
and human datasets.  
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Fig. 7. Comparison of runtime of Weeder and Mottice 

Weeder is based on the idea of enumerating all 4l patterns 
of length l and then searching them in a generalized suffix 
trees built using the input sequences [17]. To speed up the 
computation, some approximations are made about the 
position of the mismatches [7] so that the results are obtained 
in a reasonable time. On the other hand, we use the input 
patterns and generate their variants, changing one base at a 
time, mimicking the mutations of the binding site. This way 
the search space grows in a controlled fashion and the results 
are found much more quickly. 

It may be noted that the solution found by Mottice is 
complete; it finds all the motifs, without making any 
approximation. On the other hand, Weeder uses a heuristic to 
speed up the search and may miss parts of the search space. 
Still, Mottice outperforms Weeder by a wide margin. This is 
possible because of efficient structure of input patterns. The 
performance of Mottice can be further improved by applying 
pruning of the search space. 

C.  Pruning the Search Space 
We measured the improvement in performance of the 

search after applying pruning (as discussed in section III.E). 

In particular, we tested the effect on the number of nodes 
added to the search graph and the number of candidates 
generated at the end of the search process after applying 
pruning at every level. To assess the effect of pruning, we ran 
the algorithm with different input dataset sizes. We created 12 
secondary datasets (from the Mcm1 dataset) with 2 to 13 
sequences in each. Since each promoter was of length 1000 
bases, the total input size varied from 2000 bases to 13000 
bases. We first ran the program without pruning and then with 
pruning. For each input size, the number of nodes in the graph 
and the number of candidate motifs were observed.  

Fig. 8 shows the variation of the total number of nodes 
examined by the search process for different input sizes. Fig. 
9 shows the variation of the total number of candidates 
generated as the final output of the search process. A 
logarithmic scale is used for the y-axis in Fig. 9 to 
demonstrate the difference when number of candidates is low. 
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Fig. 8. Effect of pruning on total number of nodes in the graph 
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Fig. 9. Effect of pruning on total number of candidates generated 

In Fig. 8, the number of nodes expanded increases at a 
slower rate as input size increases. The reduction in number 
of nodes due to pruning decreases as input size increases. 
This happens as the upper limit for maximum number of 
patterns (4l) is reached. We observe that pruning is more 
effective for smaller input sizes. On the other hand, Fig. 9 
shows that as the number of sequences increases, number of 
candidates decreases. This happens as fewer patterns are able 
to meet the quorum requirements (the pattern must be present 
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in q out of the t sequences). In this case, pruning is more 
effective for larger input sizes. When using 13 input 
sequences (13000 bases), the number of candidates generated 
with pruning is less than 2 orders of magnitude compared to 
the number of candidates without pruning. Since the total 
number of candidates is of interest, pruning is more effective 
for large input sizes. 

Such a pruning improves the efficiency without 
compromising the sensitivity of the search. This is because 
only the nodes having a low probability of being a motif are 
pruned. The experiments in section IV.A were done with 
pruning and yet the correct motifs were discovered in both the 
cases. 

D.  Scalability 
Since the time and space complexity is linear with respect 

to the input size, the algorithm should scale linearly with 
increasing input size. To verify this, we ran the algorithm for 
different input sizes from the Mcm1 dataset. We created 16 
secondary datasets with 2 to 17 sequences in each. Since each 
promoter was of length 1000 bases, the total input size varied 
from 2000 bases to 17000 bases. For each input size, the time 
required to find the motifs was calculated. The results are 
shown in Fig. 10. It is evident that the algorithm does scale 
linearly. Recent studies [20] have conjectured that the length 
of the active promoter region may be as high as 90 kb. Our 
algorithm will be useful for mining such datasets. 
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V.  DISCUSSION 

Our algorithm is able to identify the motifs in data with 
noise, i.e., motifs which are present in any subset of the input 
sequences are also identified in the process and may be 
reported based on user preference. Typically, binding site 
identification programs are tested on promoters of a group of 
related genes which are expected to be under the influence of 
a common regulatory mechanism. However, it is difficult to 
judge a priori the fraction of the gene-promoters which share 
the common TFBSs or motifs. Mottice is especially useful in 
such cases as it can report all motifs which are present in a 
(user-given) fraction of sequences without any extra 
computational overhead. The algorithm scales linearly with 

the input size so it will be useful for large sequences. It can 
also trace the evolutionary profile of a motif by simply tracing 
back the path in the graph. If the promoter region corresponds 
to say, same gene in different species, then such profiles 
readily facilitate construction of phylogenetic trees.  

The use of auxiliary information is known to improve the 
accuracy of motif prediction. One of the most popular 
approaches for enhancing motif prediction is searching in 
promoters of similar genes from other related organisms. If 
the reported pattern is a true motif, then it is likely to be 
conserved in promoters of such orthologs. Such ideas have 
been successfully applied to improve the prediction of motifs 
[25]. However, we have deliberately avoided a comparative 
genomics based approach for two reasons. First, there is no 
known correlation between sequence conservation and 
function results, in part, from the presence of a large amount 
of highly conserved non-coding sequences in the human 
genome (for e.g. the ultra conserved regions, some of which 
are longer than 1 kb). Second and most importantly, not all 
TFBSs are conserved among species. For instance, it has been 
estimated that roughly one third of TFBSs are not conserved 
between human and rodents. This could be either due to the 
degeneracy of TFBSs (the same TF may bind to sequence 
variants of the TFBS that are present in different species) or 
the redundancy of regulatory elements (a single TFBS could 
be gained or lost without affecting the overall expression of 
the gene). Use of structural class of the transcription factor 
(basic leucine zipper, forkhead, basic helix loop helix, etc) 
also aids in the de novo discovery of motifs [26]. So we 
propose use of auxiliary information, if available, only as a 
post-processing step. 

VI.  CONCLUSION 

We have presented Mottice, a new efficient and scalable 
method for finding motifs in genomic sequences. We have 
illustrated the idea by identifying transcription factor binding 
sites in promoter sequences but the method may be readily 
applied to other problems as well. The search space is 
structured as a graph which leads to efficient discovery of 
motifs. The algorithm does not make any assumption about 
the motif, it is deterministic and complete; it exhaustively 
finds all motifs which meet the constraints provided by the 
user. The background genomic sequence is modeled by a 
third order Markov model. The candidate motifs are ranked 
based on a composite scoring function.  

The Mottice algorithm was implemented and applied to a 
wide spectrum of real-life data sets. It was able to detect the 
motifs in promoter regions of both yeast and human. All the 
popular algorithms tested worked well with yeast data but 
most of them failed for human promoters. Run time 
comparisons were done with algorithms which worked well 
with human promoters and Mottice produced the results more 
than five times faster. The use of pruning further helped speed 
up the search by producing fewer candidates. The method 
scales linearly with input size (number of sequences and their 
length) which makes it useful for analyzing large datasets. 
Even though the worst-case complexity is exponential in d 
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(the number of allowable mismatches), the value of d is very 
small (1-4) so the performance does not suffer in case of real 
data.  Further, the use of graph structures provides more 
meaningful insight into the evolution of a binding site. 

Currently we are developing more efficient representation 
of the patterns and the graph. We are working on identifying 
additional heuristics to prune the tree and speed up the search 
process allowing quick approximations. We are also working 
on dividing the search space into equivalence classes for an 
efficient parallelization of the search process. 
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