
Efficient and Scalable Motif Discovery using Graph-
based Search

Amit U Sinha and Raj Bhatnagar

Dept. of ECECS, University of Cincinnati, Cincinnati, OH 45221, USA

Abstract─Identification of short repeated patterns (motifs) in

genomic sequences is the key to many problems in
bioinformatics. The promoter regions of genes are an important
target of search for such motifs (Transcription Factor Binding
Sites). We present a new algorithm, Mottice, for detecting
potential binding sites which are present in a given set of genomic
sequences. An informed search is performed by organizing the
input patterns and their variants in a graph. Such a strategy
efficiently leads to the desired solutions. The background is
modeled as a Markov process and a composite score function is
used. We demonstrate the performance of our algorithm by
testing it on real-life data sets from yeast and human promoter
sequences. We compared the performance with several popular
algorithms and found that other algorithms work well with lower
organisms like yeast but only a couple of them work well with
human data. We show that our algorithm scales linearly with the
size of input dataset. We compare the computational efficiency of
our algorithm with other algorithms and show that it performs
faster for different datasets and motif sizes.

I. INTRODUCTION

The completion of many genomic projects has generated
huge amount of sequence data. Such data needs to be
functionally annotated for it to be of any practical use. On the
other end, computational intelligence techniques have been
used for more than a decade to find useful information from
large datasets. However, biological data provides unique
challenges which give an impetus to generating novel data
mining paradigms for assigning functional roles to raw DNA
(and protein) sequences.

In addition to the long functional regions like genes, there
are many short sequences in the genome which play an
important role in the cellular processes. Search for such short
repeated patterns is known as the motif discovery problem.
Though there are many variants of this problem, here we focus
on detection of Transcription Factor Binding Sites (TFBS).

The transcription of a gene is initiated by proteins called
transcription factors (TFs). These proteins bind to specific
locations (TFBS) on the DNA to regulate the transcription of
the gene. Typically, a number of TFs act in combination to
activate or repress transcription. Discovery of these individual
or modular TFBSs is important as it helps in understanding the
gene regulatory mechanism.

A number of bioinformatics approaches are in vogue for
identification of the TFBSs. Conventionally, a sequence is
scanned for motifs that match known TFBSs which have been
experimentally identified from promoters or other regulatory
sites. Experimental data of the specific binding sites of most
well-characterized TFs have been compiled in databases such
as TRANSFAC [1] or JASPAR [2]. Examples of such

programs include MatInspector [3] or MATCH [4] which are
used to compare a genomic sequence input to all the binding
site data in the TFBS libraries, and return a list of potential
TFBSs based on a statistical match between a region in the
sequence and a binding site. However, these approaches result
in a large number of false positives. Additionally, the
completeness of the TFBSs libraries is a major limitation. Not
all TFBSs have been identified, and even for some of the
known TFs, their binding specificity has not been fully
characterized yet.

An alternative approach to overcome this problem involves
a search for common or over represented sequence motifs
within the upstream regions of a group of genes. The main
advantage of these approaches is the potential to discover
novel TFBSs. Several programs are currently available for this
purpose – each with its own advantages and caveats (see
section II on Related Work). There is clearly room for
improvement, especially when predicting regulatory regions in
higher metazoans wherein TF cooperativity is much more
widespread than in lower eukaryotes or yeast.

The identification of TFBSs – the short functional motifs -
is challenging because these binding sites are small and
degenerate. For example, if the experimentally validated
binding site for a specific transcription factor is ACGTACGT,
the transcription factor can still bind to sites that are slightly
different than ACGTACGT (AGGTACTT, CCATACGT,
etc.). An example is show in Fig. 1.

atcgctatctgtctatccAgGTACtTaggtcct
atttgatcCaTACGTacaccggcaacctgaa
aaACGTAaGTgcaccctctcttcgtggctctg
tgccacccctattacatcttACGTcCaTataca

Fig. 1. Four instances of motif ACGTACGT

The motif ACGTACGT is present in all the 4 sequences,
albeit with one or more variations. These patterns are called
the instances of the motif in the input sequences. The
instances are marked in bold and the base which does not
match the known motif is shown in lower case.

A recent review [5] brings forth two computational (or
statistical) tasks in the de novo motif discovery process; the
search step and the scoring step. The search step is a
comprehensive identification of patterns which are
overrepresented in the input sequences. We call such patterns
candidate motifs. The scoring step is separating likely motifs
from patterns which occur just by chance. Usually a score is
assigned to each candidate motif based on some statistics. The
motifs are then ranked according to the score and the top
ranking motifs are reported to the user.

For the search step, the definition of a binding site motif is
itself disputed but the commonly accepted formulation of the

197

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

motif discovery problem is defined in the following way –
given t sequences of length n (usually promoter regions of co-
regulated genes), find the set of binding sites of size l present
in all (or some) of the sequences with at most d mutations
(mismatches) [6], [7]. Such a search for binding sites in
genomic sequences is found to be NP-Hard [8]. So a complete
polynomial solution is not likely to exist. Moreover, a naïve
search may discover thousands of candidate motifs which
satisfy the constraints but not all of them may be true motifs.

For the scoring step, the challenge is to predict the likely
motifs from the large number of false positives. Since the size
of these motifs is very small (6-15 base pairs), the probability
of multiple occurrences of a pattern by chance is very high.
There is no direct way of assessing if a transcription factor
indeed binds at a predicted site. Usually the predicted results
are experimentally verified which may take a few months.
Statistical measures are used to find the chance that the match
is not just a random occurrence.

We present the Mottice algorithm for de novo sequence
motif discovery. We address both the search and the scoring
aspects of the problem. We develop an exhaustive yet efficient
search method coupled with a composite scoring function. The
scoring function is also used for pruning the candidates during
the search process. The use of auxiliary information such as
orthologous sequences, phylogenetic footprinting, etc. is
known to improve the prediction of the motifs. However, [5]
suggests the use of such information, if available, as a post-
processing step. In this paper the focus is on the computational
challenges of the problem.

II. RELATED WORK

The motif discovery problem has been studied extensively
over the last decade. There are a large number of tools
available; we will focus on some of the most important ones.
MEME [9], one of the earliest tools, is profile-based method
using expectation maximization for selecting the motifs.
Consensus [10] is also based on profiles. It starts by creating a
profile from the n-mers (strings of size n) in the input
sequence and then does pair-wise merging of profiles to
construct more prevalent motifs. These algorithms make
approximations while searching for frequently occurring
patterns and may not get the right output in each case. Quite a
few tools are based on Gibbs sampling strategy such as
AlignAce [11] and BioProspector [12]. There are some other
algorithms based on oligo/dyad-analysis [13], etc. The search
is based on local search techniques so such methods are often
trapped in local minima. Ref. [14] compared some of these
methods and found that they work well with low complexity
genomes such as yeast but perform poorly on human genomes,
etc.

Pattern based enumerative algorithms have performed
better in recent comparisons [14], [16]. Weeder [7] stores the
input sequences in a suffix tree. All the possible motifs are
enumerated and searched in the suffix tree for finding their
occurrences in the input sequences [17]. Such an approach is
computationally expensive. Since the number of possible
patterns is exponential in the length of the pattern, heuristics

are applied to speed up the search. Another recent pattern
based algorithm, MaMF [16], searches the input space by
starting with pairs of patterns which share a short subsequence
of length 4-6. These pairs are then combined to get larger sets
of related patterns. It has been shown to work better than other
algorithms but the greedy search strategy is not guaranteed to
find the best solution.

We propose the Mottice algorithm which is deterministic
and exact. Unlike enumerative algorithms, all possible
solutions are not generated; the patterns present in the input
are organized in a graph to quickly find the solutions.

Graph based search methods such as WINNOWER [6] and
[18] have been proposed earlier. These algorithms perform
either a local optimization search or an almost exhaustive
search of possible solutions. In order to conquer the
exponential nature of the search space we need to do an as
informed a search as possible so that non promising parts of
the search space may be pruned away early. Our proposed
approach uses a scoring function at each stage of the search
process to successively narrow down the space of possible
hypotheses. Most other approaches use the scoring function
only after the exhaustive search to evaluate the motifs. Our
robust search technique works well with noise in data; the
performance remains good even when motifs are only present
in only some of the input sequences, a situation often
encountered in real-life. Further, these methods have been
tried on synthetic challenge data sets or low complexity
bacterial or fungal genomes. We couple our efficient search
method with a hybrid scoring function which performs well
even with real-life datasets of more complex eukaryotic
genomes apart from prokaryotic genomes.

In addition to the different search strategies, a large number
of scoring schemes have also been proposed by different
groups. A popular method is to train a Markov model on the
background and then predict the probability of occurrence of
the motif based on the model. Consensus [10] uses the p-value
of motif profile, [19] proposes the use of z-score, etc. These
scores capture different properties of the motif. Methods based
solely on one of these do not perform well. On the other hand,
methods which perform well use a combination of these
statistics. Weeder [7] uses the z-score and posterior
probabilities while MaMF [16] uses the conservation of bases
between the different instances of the motif and its probability
of occurrence based on third order Markov model.

Most of the above algorithms focus very little on
computational efficiency and scalability. As more data is
being made available, these issues will become more
important. In this paper, we focus on these aspects of the motif
discovery process.

Further, the current algorithms work like a black box as
they only report the instances of the motifs found. Our graph
based framework enables us to not only find a motif but also
provides the relationship between its different instances.

III. METHODS

The motif discovery problem is formally defined as
following. Given a set of t sequences S = {S1, S2, ···, St}, each

198

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

of length n, find a pattern p of length l, such that there exists a
pattern qi in each Si, i = 1, 2, ···, t, and dH(p, qi) ≤ d. The
distance measure, dH(a,b) is the hamming distance which
measures the number of mismatches between patterns a and b.
If such a pattern p exists, it is called a (l,d) motif. The
parameters l and d are usually provided by the user; typical
values for l are 6-15 and d is usually 0-30% of l. Since there is
a chance that the motif may not be present in all the input
sequences, the quorum condition is relaxed, i.e., all motifs
which are present in q (out of t) sequences are reported. It may
be noted that the pattern p may or may not occur explicitly in
S as shown in Fig. 1. Typical value of n, the length of the
promoter region is 500-1000 base pairs. Finally, the candidate
motifs are ranked based on the likelihood of their being a non-
random pattern.

In this case the similarity measure is the hamming distance
which is the number of mutations between two patterns. If
patterns a and b differ at exactly k positions (dH(a,b) = k) then
pattern a is called a k-mutant of b and vice-versa.

A. Search using Multi-level Graph
The patterns, the motif and the intermediate patterns are

arranged as nodes in a graph. (Intermediate patterns are the
patterns which are generated during the search for motifs).
The l-mers derived from the input sequence form the nodes in
the bottom level (level 0) of the graph. Patterns in level 1 are
1-mutants of patterns in level 0. Similarly, patterns in level k
are 1-mutants of patterns in level k-1. In the graph, each
pattern is connected to its 1-mutants. A pattern a in level i is
connected to a pattern b in level j if a is a |j-i|-mutant of b. The
(possible) motifs are nodes of the graph which are connected
to at least one node from q sequences in level 0. The
connection may be through intermediate nodes.

Seq 1: GCGCTA
Seq 2: GCTCGA
Seq 3: GCGCGA

Fig. 2. A sample dataset with 3 sequences of length 6 each

A sample dataset is shown in Fig. 2. The dataset contains 3
sequences of length 6 each to illustrate the construction of the
graph structure. Fig. 3 shows part of the graph for the dataset
in Fig. 2. We search for motifs (6,2), i.e., find patterns of
length 6 which has at most 2 mismatches from a pattern in
each input sequence. The patterns from the 3 sequences form
level 0 of the graph. The 1-mutants of each node in level 0 are

added to level 1 as a new node and a connection is made
between the nodes. (Not all the 1-mutants are shown in the
figure). Similarly, 1-mutants of nodes in level 1 are added to
level 2. Before adding a 1-mutant to a higher level, this
(higher) level is searched for the presence of that pattern. If it
already exists, simply a new connection is made. For example,
pattern GCGCTA in level 0 adds its 1-mutant GCTCTA to
level 1. Now the pattern GCTCGA in level 0 also generates a
1-mutant GCTCTA. Since GCTCTA already exists in level 1,
a new node is not created but a connection is made from the
parent node (GCTCGA) to the existing node (GCTCTA). The
patterns themselves are also directly added to the next higher
level. The top-most level is used to create the next higher level
in each iteration of the algorithm. The method is similar to
Consensus [10]. However, instead of generating all possible
Position Weight Matrices (PWM), only 1-mutants are
generated so it works much faster.

In this example there is (6,1) motif and a (6,2) motif which
are indicated by a thick oval. The node GCGCGA in level 1 is
connected to one node from each sequence in level 0 so it is a
(6,1) motif. The node GCTCAA in level 2 is connected to one
node from each sequence in level 0 (through intermediate
nodes in level 1) so it is a (6,2) motif. A motif in level k is
always a (l,k) motif as it is at most k apart from the patterns in
the input sequence in level 0.

B. Search Algorithm
The Mottice algorithm is based on exhaustive enumeration

of all 1-mutants of a pattern to generate the next higher level.
The algorithm is shown in Fig. 4.

Step 1 of the algorithm gets all the l-mers from the input
sequences and constructs the bottom level of the graph. An
input sequence of length n will have (n-l+1) overlapping l-
mers. All the nodes of a level are expanded by generating its
1-mutants (patterns p). If the pattern already exists in the next
higher level (step 5), then an edge is drawn between the two
nodes else a new node is created (step 6). Once the graph is
constructed, the nodes in the graph which meet the quorum are
reported as candidate motifs for measuring their statistical
significance and ranking. (The quorum is computed by
counting the number of input sequences in which a motif is
present. This is found out by looking at the nodes at level 0 to
which a node is connected.)

GCTATA GCTCAA GCATGA

GCGCAA

GCGCGA

GCACGAGCGCGAGCTCTAGCGCCA

GCGCTA GCTCGA

Level 1

Level 2

Level 0

Fig. 3. The graph for a sample dataset

199

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Input: t sequences, l, d, q

1 Form level 0 with all l-mers of all the t sequences
2 for each level Li, i = 0 to (d – 1)
3 for each pattern aij, aij ε Li

4 Generate all 1-mutants of aij (patterns p)

5 if p already exists in level Li+1, form a connection
between the two nodes

6 else create a new node in level Li+1 and connect
the new node to aij

7 Nodes in the graph which are connected to at least one
node from q sequence in level 0 are the motifs.

Fig. 4. Algorithm Mottice

t input sequences will give rise to t(n-l+1) input patterns.
As n >> l, number of nodes in Level 0 is almost equal to tn.
Each pattern will produce 3l 1-mutants, not all of which will
be different from the existing patterns. However, in the worst
case, the number of nodes in Level 1 will be tn(3l). Similarly,
the number of nodes in Level 2 will be tn(3l)2.

Generalizing this, number of nodes in level k = tn(3l)k.
Total number of nodes in the graph with d levels = tn + tn(3l)
+ tn(3l)2 + … + tn(3l)d = tn((3l)d + 1 - 1)/(3l - 1) = O(tn(3l)d).

Similar argument can be made for finding the time-
complexity of Mottice. In the first iteration of the algorithm,
each of the tn nodes of Level 0 has to be processed. Time
required will be proportional to tn. When processing Level k,
nl(3l)k nodes have to be processed. So time required =
O(tn(3l)d)

So, the worst case complexity is a linear function of the
input size (tn) and a polynomial function of the length of the
motif but exponential in the number of allowable mismatches.
This is not surprising as the problem is NP-Hard. However,
the worst case scenario is not encountered in practice as many
duplicate patterns are generated at each level as we start with
only the patterns in the input sequences.

C. Modeling the Background
The promoter regions are not just random sequences of the

four bases; they often have strong biases. For example,
human promoter sequences of genes regulated by the
transcription factor E2F have 29% ‘G’s and ‘C’s while they
have only 21% ‘A’s and ‘T’s. Further there are many
repetitive patterns like CG repeats, etc. A lot of patterns
generated by the algorithm may simply be an artifact of the
bias of the input sequences rather than true signals. So we
need a way to discriminate between a signal and the
background (the input sequences).

First, the known repetitive elements in DNA (such as ‘A’
repeats) are discarded using RepeatMasker [21]. Second, the
input sequences are modeled as a third order Markov process.
Though the choice of order is debatable, third order Markov
model is ideal as many common genomic signals are 4 bases
long, e.g., TATA boxes. Using such a model, the probability
of a sequence s in the context of its background is calculated
as follows.

P(s) = P(s1s2s3)P(s4|s1s2s3) P(s5|s2s3s4)…P(sl|sl-3sl-2sl-1)

where P(s) is the probability of the occurrence of sequence s
of length l and si is the ith letter of s. Such a model may be
constructed locally or globally for a data set. In the former,
the background model is created using only the promoter
sequences in which motif is being searched while in the latter
all the promoter sequences of the genome are used to
construct the model. We use a local model for two reasons.
Firstly, tools like BioProspector [12] allow both options but
they perform better with local models. This is reasonable as a
local model will capture the fine nuances in the input
sequences. Secondly, it is not always possible to construct a
global model as data of all the promoter regions of the
genome may not be easily available, especially for newly
sequenced genomes.

Having constructed the model, the probability of each of
the candidate motifs is calculated. The motifs which have low
values of probability signify that they represent a potentially
true signal, and they are not merely an artifact of the sequence
biases.

D. Ranking the Candidates
The algorithm described in the section III.B generates a

large number of candidates, very few of which are likely to be
true motifs. Simply measuring the probability of a candidate
sequence using the background model (as described in section
III.C) does not suffice to discover true motifs. Various
statistical measures have been proposed to measure the
likelihood of a candidate being a true motif [9], [10], [19],
[11]. Each of these measures captures a different type of
information about the motif. E.g., for a given set of
occurrences of a motif, relative entropy measures the level of
conservation of a base at each position of the motif pattern. It
is found that the relative entropy score is usually high for
known motifs. However, such measures fail to discriminate
the true motifs when used alone. So we propose a composite
scoring function S(M) given as:

sicp SSSMS ××=)(

∑
=

−=
q

i
iop MP

q
S

1
))(log(1

∑∑
= =

=
l

i

T

Aj Bj

ij
ijic P

p
pS

1

log

∑∑
= +=

−=
q

i

q

ij
jiHs MMdlS

1 1
)],([

where M is the motif, Mi is the ith occurrence of the motif,
q is the total number of occurrences of the motif in all the
input sequences, Po(Mi) is the probability of observing pattern
Mi by the background model, pij is the probability of
observing base j at position i in the motif profile, PBj is the
background probability of observing base j, l is the length of
the motif and dH(Mi,MJ) is the hamming distance between
patterns Mi and Mj.

200

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Each component captures a different type of information
about a candidate motif. The first component, Sp, measures
the average of logs of the probability of occurrence of the
instances of the motif. The second component, Sic, compares
the information content (or relative entropy) of all the
instances of the motif with the known background probability
of each base. The third component, Ss, measures the mutual
similarity between the different instances of the motif.
Together they should be more helpful in picking the true
motifs as a true motif will score high in each measure.

After the candidates are generated by the algorithm, a
score is assigned to each candidate motif. They are ranked
based on decreasing order of the score and a few top ranking
motifs are reported to the user.

E. Pruning the Search Space
Modeling the background also helps in pruning the graph

for speeding up the search. The idea is that a pattern which
has a high probability of occurrence is not likely to be an
instance of a motif. So the nodes in the graph which have a
probability higher than a fixed threshold are not expanded
further. As a heuristic, we fix this threshold to be the mean of
the probability of the patterns in the input. The probability of
true motifs is much less than the mean so such a pruning
strategy will discard patterns which occur by chance. We see
in the following sections that it improves the efficiency of the
search without decreasing the sensitivity.

IV. RESULTS

The algorithms were implemented in C++ and tested on a
wide variety of datasets for correctness and efficiency. The
most time-consuming part of the program was searching for
existing patterns in a level while adding a new node. We
found that storing the level as a hash table improved the
performance.

A. Performance Evaluation
We tested the performance of the algorithm on real-life

datasets of yeast and human promoter sequences.

Yeast dataset: The gene regulation mechanism is simpler and
well studied in lower organisms like yeast (when compared to
mammalian genomes). Therefore it makes a good starting
point for testing new algorithms.

The yeast transcription factor protein Mcm1 acts as
activator or repressor for genes involved in cell-type
determination, mating, cell-cycle control, etc. [22]. We ran
our algorithm on a set of promoter sequences of genes which
are known to be regulated by Mcm1. There were 17 such
promoter sequences [16], each of length 1000 bases. We
searched for motifs of length 11, allowing at most 3
mismatches. Since all the 17 genes were known to be
regulated by Mcm1, only motifs present in all the sequences
were reported.

The top ranking motif reported by our algorithm is shown
in Fig. 5 as a sequence logo. The eleven stacks of letters
correspond to the 11 bases of the motif. The overall height of
the stack indicates the degree of conservation of the base

while the tallest letter of a stack indicates the most frequent
base at that position. It matches very well with the known
binding motif for Mcm1 (CCGAATTAGGA) [1].

Fig. 5. Binding motif of Mcm1 found by our algorithm

This motif was also recognized by other programs such as
Weeder [7], MaMF [16], AlignAce [11], Consensus [10],
MEME [9] and BioProspector [12]. This suggests that lower
organisms set the bar for accuracy of motif search algorithms.

Human dataset: The regulatory modules in higher species
like human are much more complex. The discovery of
binding sites is more challenging; most of the motif discovery
algorithms perform poorly. Recent studies have found that
even the best methods fail to find the known motifs in more
than 50% cases [14], [16]. Even when the correct motif is
identified, it may not be the highest ranked motif returned by
the algorithm. Tompa, et al. Ref. [14] suggests the use of top
N motifs returned by the algorithm for assessing the
performance of the algorithm. Hon and Jain [16] use N = 30
and further suggest the use of a similarity threshold (8 out of
11 bases, 73% identity) for classifying a reported motif as a
true match. In summary, if a motif in the top 30 motifs
returned by the algorithm matches a known motif at 75%
positions (bases), it is said to be a true match. We use the
same criteria for testing the performance of our algorithm.

We tested our algorithm on the promoter sequences of 8
genes [16], each of length 1200 bases, which are known to be
regulated by the transcription factor E2F. The E2F family of
transcription factors is well studied for its role in regulation of
cell proliferation [24]. The search step identified over a
thousand candidate motifs. The 10th ranking motif reported by
our algorithm is shown in Fig. 6. It matches the known motif
(TTCGCGCCAAA) [1] at 8/11 positions. The first 9 hits may
be just noise or they could be novel motifs which need to be
experimentally verified.

Fig. 6. Binding motif of E2F found by our algorithm

This motif was also recognized by Weeder and MaMF
(both match at 9/11 positions) but it was not recognized by
AlignAce, Consensus, MEME and BioProspector. This
suggests that motif search is more challenging in mammalian
genomes and many existing methods fail to discover the
known motifs.

B. Comparison of Run-time with other Algorithms
In a recent survey [14], it was found that the Weeder

201

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

algorithm [15] outperformed other algorithms in accuracy by
a clear margin in a wide variety of tests. It has been
demonstrated that the performance of MaMF [16] is
comparable to Weeder but the software is not available for
comparison. Further, other methods do not even find the right
motifs for mammalian genomes. Therefore we restricted the
time comparison of our algorithm with Weeder.

The source code for Weeder was downloaded from the
author’s website [15] and compiled on our machine for a fair
comparison. Again, for fairness, we compared the programs’
performance on the following data sets of promoter sequences
obtained from Weeder website:

1. 5 yeast promoter sequences of length 1000 bp each
2. 11 human promoter sequences of length 500 bp each

Our algorithm was able to extract all the motifs detected
by Weeder. Fig. 7 shows the runtime comparison of the two
algorithms. The figure clearly shows that Mottice takes one
fifth the time as Weeder for all motif sizes and for both yeast
and human datasets.

10-1

100

101

102

103

104

(12,4)(10,3)(8,2)

T
im

e
(s

ec
s)

Motif size (l,d)

Weeder
Mottice

Fig. 7. Comparison of runtime of Weeder and Mottice

Weeder is based on the idea of enumerating all 4l patterns
of length l and then searching them in a generalized suffix
trees built using the input sequences [17]. To speed up the
computation, some approximations are made about the
position of the mismatches [7] so that the results are obtained
in a reasonable time. On the other hand, we use the input
patterns and generate their variants, changing one base at a
time, mimicking the mutations of the binding site. This way
the search space grows in a controlled fashion and the results
are found much more quickly.

It may be noted that the solution found by Mottice is
complete; it finds all the motifs, without making any
approximation. On the other hand, Weeder uses a heuristic to
speed up the search and may miss parts of the search space.
Still, Mottice outperforms Weeder by a wide margin. This is
possible because of efficient structure of input patterns. The
performance of Mottice can be further improved by applying
pruning of the search space.

C. Pruning the Search Space
We measured the improvement in performance of the

search after applying pruning (as discussed in section III.E).

In particular, we tested the effect on the number of nodes
added to the search graph and the number of candidates
generated at the end of the search process after applying
pruning at every level. To assess the effect of pruning, we ran
the algorithm with different input dataset sizes. We created 12
secondary datasets (from the Mcm1 dataset) with 2 to 13
sequences in each. Since each promoter was of length 1000
bases, the total input size varied from 2000 bases to 13000
bases. We first ran the program without pruning and then with
pruning. For each input size, the number of nodes in the graph
and the number of candidate motifs were observed.

Fig. 8 shows the variation of the total number of nodes
examined by the search process for different input sizes. Fig.
9 shows the variation of the total number of candidates
generated as the final output of the search process. A
logarithmic scale is used for the y-axis in Fig. 9 to
demonstrate the difference when number of candidates is low.

0

1

2

3

4

5

 0 5000 10000 15000

N
um

be
r

of
 n

od
es

 (
10

6)

Input size (Num of bases)

no pruning
pruning

Fig. 8. Effect of pruning on total number of nodes in the graph

103

104

105

106

107

 0 5000 10000 15000

N
um

be
r

of
 c

an
di

da
te

s

Input size (Num of bases)

no pruning
pruning

Fig. 9. Effect of pruning on total number of candidates generated

In Fig. 8, the number of nodes expanded increases at a
slower rate as input size increases. The reduction in number
of nodes due to pruning decreases as input size increases.
This happens as the upper limit for maximum number of
patterns (4l) is reached. We observe that pruning is more
effective for smaller input sizes. On the other hand, Fig. 9
shows that as the number of sequences increases, number of
candidates decreases. This happens as fewer patterns are able
to meet the quorum requirements (the pattern must be present

202

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

in q out of the t sequences). In this case, pruning is more
effective for larger input sizes. When using 13 input
sequences (13000 bases), the number of candidates generated
with pruning is less than 2 orders of magnitude compared to
the number of candidates without pruning. Since the total
number of candidates is of interest, pruning is more effective
for large input sizes.

Such a pruning improves the efficiency without
compromising the sensitivity of the search. This is because
only the nodes having a low probability of being a motif are
pruned. The experiments in section IV.A were done with
pruning and yet the correct motifs were discovered in both the
cases.

D. Scalability
Since the time and space complexity is linear with respect

to the input size, the algorithm should scale linearly with
increasing input size. To verify this, we ran the algorithm for
different input sizes from the Mcm1 dataset. We created 16
secondary datasets with 2 to 17 sequences in each. Since each
promoter was of length 1000 bases, the total input size varied
from 2000 bases to 17000 bases. For each input size, the time
required to find the motifs was calculated. The results are
shown in Fig. 10. It is evident that the algorithm does scale
linearly. Recent studies [20] have conjectured that the length
of the active promoter region may be as high as 90 kb. Our
algorithm will be useful for mining such datasets.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 4000 8000 12000 16000 20000

T
im

e
(s

ec
s)

Input size (Num of bases)
Fig. 10. Scalability of the search for motifs

V. DISCUSSION

Our algorithm is able to identify the motifs in data with
noise, i.e., motifs which are present in any subset of the input
sequences are also identified in the process and may be
reported based on user preference. Typically, binding site
identification programs are tested on promoters of a group of
related genes which are expected to be under the influence of
a common regulatory mechanism. However, it is difficult to
judge a priori the fraction of the gene-promoters which share
the common TFBSs or motifs. Mottice is especially useful in
such cases as it can report all motifs which are present in a
(user-given) fraction of sequences without any extra
computational overhead. The algorithm scales linearly with

the input size so it will be useful for large sequences. It can
also trace the evolutionary profile of a motif by simply tracing
back the path in the graph. If the promoter region corresponds
to say, same gene in different species, then such profiles
readily facilitate construction of phylogenetic trees.

The use of auxiliary information is known to improve the
accuracy of motif prediction. One of the most popular
approaches for enhancing motif prediction is searching in
promoters of similar genes from other related organisms. If
the reported pattern is a true motif, then it is likely to be
conserved in promoters of such orthologs. Such ideas have
been successfully applied to improve the prediction of motifs
[25]. However, we have deliberately avoided a comparative
genomics based approach for two reasons. First, there is no
known correlation between sequence conservation and
function results, in part, from the presence of a large amount
of highly conserved non-coding sequences in the human
genome (for e.g. the ultra conserved regions, some of which
are longer than 1 kb). Second and most importantly, not all
TFBSs are conserved among species. For instance, it has been
estimated that roughly one third of TFBSs are not conserved
between human and rodents. This could be either due to the
degeneracy of TFBSs (the same TF may bind to sequence
variants of the TFBS that are present in different species) or
the redundancy of regulatory elements (a single TFBS could
be gained or lost without affecting the overall expression of
the gene). Use of structural class of the transcription factor
(basic leucine zipper, forkhead, basic helix loop helix, etc)
also aids in the de novo discovery of motifs [26]. So we
propose use of auxiliary information, if available, only as a
post-processing step.

VI. CONCLUSION

We have presented Mottice, a new efficient and scalable
method for finding motifs in genomic sequences. We have
illustrated the idea by identifying transcription factor binding
sites in promoter sequences but the method may be readily
applied to other problems as well. The search space is
structured as a graph which leads to efficient discovery of
motifs. The algorithm does not make any assumption about
the motif, it is deterministic and complete; it exhaustively
finds all motifs which meet the constraints provided by the
user. The background genomic sequence is modeled by a
third order Markov model. The candidate motifs are ranked
based on a composite scoring function.

The Mottice algorithm was implemented and applied to a
wide spectrum of real-life data sets. It was able to detect the
motifs in promoter regions of both yeast and human. All the
popular algorithms tested worked well with yeast data but
most of them failed for human promoters. Run time
comparisons were done with algorithms which worked well
with human promoters and Mottice produced the results more
than five times faster. The use of pruning further helped speed
up the search by producing fewer candidates. The method
scales linearly with input size (number of sequences and their
length) which makes it useful for analyzing large datasets.
Even though the worst-case complexity is exponential in d

203

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

(the number of allowable mismatches), the value of d is very
small (1-4) so the performance does not suffer in case of real
data. Further, the use of graph structures provides more
meaningful insight into the evolution of a binding site.

Currently we are developing more efficient representation
of the patterns and the graph. We are working on identifying
additional heuristics to prune the tree and speed up the search
process allowing quick approximations. We are also working
on dividing the search space into equivalence classes for an
efficient parallelization of the search process.

ACKNOWLEDGMENT

We would like to thank Anil Jegga and Haiyun Bian for
many useful discussions and comments on the manuscript.

REFERENCES
[1] V. Matys, E. Fricke, R. Geffers, et al., “TRANSFAC: transcriptional

regulation, from patterns to profiles,” Nucleic Acids Res., 31, 374-378,
2003.

[2] A. Sandelin, W. Alkema, P. Engstrom, et al., “JASPAR: an open-access
database for eukaryotic transcription factor binding profiles,” Nucleic
Acids Res., 32, D91-94, 2004.

[3] K. Cartharius, K. Frech, K. Grote, et al., “MatInspector and beyond:
promoter analysis based on transcription factor binding sites,”
Bioinformatics, 21, 2933-42, 2005.

[4] Match. Gene-Regulation.com, http://www.gene-regulation.com/cgi-
bin/pub/programs/match/bin/match.cgi, (2006).

[5] K.D. MacIsaac, and E. Fraenkel, “Practical strategies for discovering
regulatory DNA sequence motifs,” PLoS Comput Biol, 2(4), e36, 2006.

[6] P. Pevzner, and S.H. Sze, “Combinatorial approaches to finding subtle
signals in dna sequences,” in Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology, 269-278,
2000.

[7] G. Pavesi, G. Mauri, and G. Pesole, “An algorithm for finding signals
of unknown length in DNA sequences,” Bioinformatics, 17 Suppl. ,
S207-214, 2001.

[8] M. Li, B. Ma, and L. Wang, “Finding similar regions in many strings,”
in Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, 473-482, 1999.

[9] T.L. Bailey, and C. Elkan, “Fitting a mixture model by expectation
maximization to discover motifs in biopolymers,” in Proceedings of the
2nd International Conference on Intelligent Systems for Molecular
Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994.

[10] G.Z. Hertz, and G.D. Stormo, “Identifying DNA and protein patterns
with statistically significant alignments of multiple sequences,”
Bioinformatics, 15, 563-577, 1999.

[11] J.D. Hughes, P.W. Estemp, S. Tavazoie, and G.M. Church,
“Computational identification of cis-regulatory elements associated
with groups of functionally related genes in Saccharomyces cerevisiae,”
J. Mol. Biol., 296, 1205-1214, 2000.

[12] X. Liu, D.L. Brutlag, and J.S. Liu, “BioProspector: discovering
conserved DNA motifs in upstream regulatory regions of co-expressed
genes,” in Proceedings of the Pac Symp Biocomput., 127-38, 2001.

[13] J. Van Helden, A.F. Rios, and J. Collado-Vides, “Discovering
regulatory elements in non-coding sequences by analysis of spaced
dyads,” Nucleic Acids Res., 28, 1808-1818, 2000.

[14] M. Tompa, et al., “Assessing computational tools for the discovery of
transcriptional factor binding sites,” Nature Biotechnology, 23(1), 137-
144, 2005.

[15] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, “Weeder Web:
Discovery of Transcription Factor Binding Sites in a Set of DNA
Sequences from Related Genes,” Nucleic Acids Research, 32(Web
Server issue), W199-203, 2004.

[16] L.S. Hon, and A.N. Jain, “A deterministic motif finding algorithm with
application to the human genome,” Bioinformatics, 22(9), 1047-1054,
2006.

[17] L. Marsan, and M. Sagot, “Algorithms for extracting structured motifs
using a suffix tree with application to promoter and regulatory site
consensus identification,” J. Comp. Biol., 7, 345-360, 2000.

[18] X. Yang, and J. Rajapakse, “Graphical approach for motif recognition
in DNA sequences,” in Proceedings of the 2004 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational
Biology, 147-152, 2004.

[19] S. Sinha, and M. Tompa, “A Statistical Method for Finding
Transcription Factor Binding Sites in Yeast,” in Proceedings of the 8th
International Conference on Intelligent Systems for Molecular Biology,
344-54, 2000.

[20] Q. Peng, P.A. Pevzner, and G. Tesler, “The fragile breakage versus
random breakage models of chromosome evolution,” PLoS Comp.
Biol., 2(2): e14, 100-111, 2006.

[21] A.F.A Smit, R. Hubley, and P. Green, “RepeatMasker” at
http://repeatmasker.org, 2006.

[22] D.S. Abraham, and A.K. Vershon, “N-terminal arm of Mcm1 is
required for transcription of a subset of genes involved in maintenance
of the cell wall,” Eukaryot Cell., 4(11), 1808-19, 2005.

[23] G.E. Crooks, G. Hon, J.M. Chandonia, and S.E. Brenner, “WebLogo: A
sequence logo generator,” Genome Research, 14:1188-1190, 2004.

[24] K. Helin, “Regulation of cell proliferation by the E2F transcription
factors,” Curr Opin Genet Dev., 8(1):28-35, 1998.

[25] A.G. Jegga, S.P. Sherwood, J.W. Carman, et al., “Detection and
visualization of compositionally similar cis-regulatory element clusters
in orthologous and coordinately controlled genes,” Genome Research,
12(9), 1408-17, 2002.

[26] L. Narlikar, R. Gordan, U. Ohler, and A.J. Hartemink, “Informative
priors based on transcription factor structural class improve de novo
motif discovery,” Bioinformatics, 22(14), e384-92, 2006.

204

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

