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Abstract— The correct interpretation of many molecular biology
experiments depends in an essential way on the accuracy and
consistency of the existing annotation databases. Such databases
are meant to act as repositories for our biological knowledge as
we acquire and refine it. Hence, by definition they are incomplete
at any given time. In this paper we describe a technique that
improves our previous method for extracting implicit semantic
relationships between genes and functions. We added a number
of weighting schemes to our previous latent semantic indexing
approach. We used this technique to analyze the current anno-
tations of the human genome. The predictions of 15 different
weighting schemes were compared and evaluated. Out of the top
50 functional annotations predicted using the best performing
weighting scheme, we found support in the literature for 82% of
them. For 10% of our prediction we did not find any relevant
publications, and 6% were actually contradicted by existing
literature. This weighting scheme also outperformed the simple
binary scheme used in our previous approach. Our method is
independent of the organism and can be used to analyze and
improve the quality of the data of any public or private annotation
database.

I. INTRODUCTION

Gene annotation databases capture the current biological
knowledge allowing researchers to interpret the results of life
sciences experiments. In spite of their indisputable importance,
significant problems concerning the annotation databases still
exist. One problem is that the annotations databases are cur-
rently incomplete. Organism specific annotation databases do
not contain all the genes for these organisms, and even from
the known genes only a subset are functionally annotated [28].
In addition to this, most of the annotations are introduced by
curators who manually examine the literature. In this process it
is possible that the annotations confirmed in publications might
get overlooked [26]. Another problem is caused by the way
these annotations are stored in the structure of Gene Ontology.
There are, for instance, genes that are annotated for a particular
molecular function but are not annotated for the corresponding
biological process. This is not a problem for a database curator
or a life scientist looking for the annotations of a specific
gene, but this is not how such databases are used most of
the time. In a more typical scenario, the researcher will try
to interpret the results of a high throughput experiment using
software that will query an annotation database in each of
the three main branches of the GO graph and perform an
automatic statistical significance analysis in order to uncover
the biological processes that take place [12], [13], [25], [27],
[2], [5], [22], [33], [40], [41]. This type of analysis will
fail to correctly compute the statistical significance of the

genes involved if they are not correctly annotated for each of
the three GO categories. Lastly, a very important percentage
of the annotations contained in these databases are relations
inferred from electronic annotations (relations added without
supervision of a human curator) [1]. Some of these annotations
may also be incorrect [28], [38].

In order to address these problems, we proposed a method
capable of finding gene-function associations that are not
explicitly represented in the annotation databases [26]. For
this purpose, our technique employs latent semantic indexing
(LSI) on a organism specific annotations database. This method
was demonstrated using the human genome annotations from
the Onto-Tools database [12], [25], which includes all known
annotations from the Gene Ontology Consortium (GO). The
first implementation of our method used a binary representation
of the relationships between genes and their functional annota-
tions: if a gene i is found to be annotated with the function j, in
the Gene Ontology graph, then the element at the intersection
of row i and column j in the gene-function association matrix
will have a value of 1; if this condition is not met the value of
this matrix element is 0.

Clearly, this is limited in various ways including failing to
properly capture the hierarchical relationship between various
terms. Inspiration in how to eliminate these limitations can be
found in information retrieval (IR) research. Previous work in
this area shows that the use of a weighted representation, rather
than a binary one, improves the quality of retrieval operations.
Intuitively, IR term weighting attempts to exploit two simple
observations: terms that appear repeatedly in a document are
better suited to describe the topic of the document than terms
that are rarely used, and infrequent terms across the document
collection are better differentiators between documents than
terms that appear in most or in all documents. Similar rela-
tionships might exist between genes and their annotations. For
instance, genes that are annotated with only a few functions
are most likely better suited to differentiate between functions
in comparison to genes that are annotated with a large number
of functions. Conversely, specific functions that are associated
to very few genes, provide more information than generic
functions that are associated with many genes. This paper
explores the use of several weighting schemes in the context
of a semantic analysis of biological annotations.

The technique described here is able to (i) discover potential
inconsistencies in existing annotations and (ii) discover implicit
gene-function relationships and propose them to the curators
as novel annotations. Our approach applies latent semantic
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indexing (LSI) to the existing genome annotations databases to
discover the missing functional annotations. LSI uses singular
value decomposition (SVD) to find semantic relationships in the
data that are not explicitly expressed (i.e. hidden) in the initial
data. We present the results obtained with several weighting
schemes on the annotations of the human genome stored in
the Onto-Tools database [12], [25], which includes all known
annotations from the GO Consortium.

Vector Space Model (VSM) [7], [6], [17] has been used
previously to cluster genes by creating a vector space of genes
and MEDLINE abstracts of papers discussing those particular
genes [18]. The similarity between genes was assessed by
computing a distance between the vectors that were represent-
ing them. It was found that weighted vectors improved the
results significantly over boolean vectors (term-matching) [18].
VSM was also used to compute the similarity between Gene
Ontology terms and the results were compared with other two
non-lexical methods of analyzing the GO graph [8]. Latent
Semantic Indexing (LSI) [7], [6], [10] was utilized in recent
years for genome-wide expression data analysis [3]. LSI was
also employed to identify relations between genes by creating
a vector space of genes and MEDLINE abstracts [21]. Earlier
Information Retrieval research has shown that LSI is 30% more
effective than word matching methods [10]. The technique we
are proposing is a novel, organism-independent approach that
analyzes the entire body of annotations for a given organisms. It
applies LSI on a weighted matrix of genes and GO terms. We
used the human genome annotations but the same technique
can be applied on annotation databases constructed for any
organism.

Other approaches able to predict functional annotations for
a given gene do exist. The most commonly used approach
for function prediction uses sequence similarity. This approach
is based on the hypothesis that a function can be transferred
between similar sequences in different organisms since such
similarity has been conserved over long periods of evolu-
tion [11]. This method of annotation transfer can result in
incorrect function predictions due to reasons such as divergence
of function within homologous proteins. Furthermore, this type
of inference can also be incorrect because the annotations are
only transferred from the closest homolog [24]. In order to
overcome these problems, approaches combining sequence sim-
ilarity data with structural information have been proposed [15],
[36]. The guilt by association (GBA) approach [31], [37], [42],
based on the observation that functionally related genes tend to
share similar mRNA expression profiles, has also been widely
applied to predict gene functions [9], [14], [23], [34], [39]. This
approach clusters the genes based on their expression profiles
in order to predict the gene functions. The GBA approaches
are affected by issues such as data transformation [16], [30]
and filtering intended to boost the signal-to-noise ratio [20].
An alternative approach uses sequence similarity and protein
domain data in order to predict functional annotations [35].
Raychaudhuri et. al. [32] proposed a natural language pro-
cessing approach for automatically extracting gene-function

associations from the literature abstracts.

II. METHODS

The technique described in this paper uses the annotations
specific to Homo sapiens contained in GO [4]. GO maintains an
organism-independent ontology of functional annotations that
has a directed acyclic graph (DAG) structure. Each node in this
graph represents a functional category and groups a number of
genes annotated with that category. Researchers and curators
endeavor to annotate the genes with the most specific functional
category available in each case. For instance, if a gene is
known to regulate the cell growth by extracellular stimulus, it is
annotated with the specific category “regulation of cell growth
by extracellular stimulus (GO:0001560)”, instead of a higher
level, more general category such as “regulation of cell growth
(GO:0001558)” or “cell growth (GO:0016049)”. However, a
gene involved in regulation of cell growth by extracellular
stimulus is actually involved in regulation of cell growth which
is indeed part of the cell growth phenomenon. Because of this,
we will consider that a gene annotated with a specific function
f is also associated with the more general functional categories
represented by the ancestors of f . In order to represent this in
our data, we create a gene-function matrix GF as follows:

GF = {gf ij} =




1, if gene gi is known to be
involved in function fj or
any of its subcategories

0, otherwise

(1)

The rows of this matrix correspond to genes, while its
columns correspond to functions. The i-th row of the matrix
GF will represent all functions known to be associated with
gene gi either directly, as found in the literature, or through its
descendants. Similarly, the j-th column of the matrix GF will
represent all genes known to be associated with the function
fj , or any of its descendants.

Functional categories such as ”unknown biological process”
are used in GO in order to ensure a consistency of annotations.
However, such terms lack any semantic content since they
can be seen to group completely unrelated genes. Since our
goal is to construct a model of the semantic relationships
between genes and functions, such terms lacking semantic
content must be removed from the analysis. Similarly, the
top level nodes, “gene ontology” (GO:0003673), “biological
process” (GO:0008150), “molecular function” (GO:0003674)
and “cellular component” (GO:0005575) also lack a specific
semantic content since all genes will appear other each of these
terms. For these reasons, these GO terms are removed from the
GF matrix.

The representation we used for gene-function relationships
up to this point is binary. Previous work in information retrieval
(IR) has shown that the performance of a system can be
improved in terms of both precision and recall by using a more
sophisticated representation [17]. Such representations can
weight differently the associations between specific genes and
functions using a vector space model (VSM). The weighting
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schemes used in this paper will be denoted by three letter codes:
the first letter refers to the local weight, the second letter to the
global weight and the third letter is the normalization method
used for the annotation vector. In our context we define gene
frequency (gf ) as the number of times a gene is associated with
a function in the GO graph, and inverse annotation frequency
(iaf ) as ln (total number of annotations / number of an-
notations that the particular gene considered has ).

The local weight uses gene frequency. A gene frequency
larger than 1 might indicate a stronger relation between the
gene and a particular functional annotation. Inverse annotation
frequency, used by the global weight, can be employed to favor
genes that have only a few functional associations, because they
are better differentiators between annotations. A normalization
factor can be useful to penalize the annotations that are common
to many genes. For instance, the annotations at the root of the
graph are associated with almost all the genes in the gene-
function matrix, therefore we need to normalize the weight so
that functions close to the root will not overwhelm the specific
functions found close to the leaves of GO DAG. Depth can
be another useful factor for computing gene weights. Depth
can be used with both local and global weights, for example
relations close to the root, or relations that are contained in
the gene-function matrix but are not found in the original rela-
tionship database (relations between the gene and an ancestor
of the initial function), are not sufficiently specific and can be
penalized.

Because the weighting schemes codes have not been
used consistently in publications, we are giving here the
definitions of the weighting schemes factors, the way
they are employed in this paper. For local weights: n
(none) means simple gene frequency, m (max) means gene
frequency divided by maximum gene frequency in each
annotation vector, a (augmented) equals (0.5 + 0.5 * (gf /
(max gf in the annotation vector)), l (logarithmic) equals
1 + ln(gf); for global weights: t refers to inverse annotation
frequency, which is equal to ln (total number of annotations /
number of annotations that the gene has);
for normalization factor: n (none) indicates that
normalization is not used, m (max) equals weight /
(maximum weight in the annotation vector), s
(sum) equals weight / (sum of weights in the an-
notation vector), c (cosine) equals weight /
(sqrt (sum of squared weights in the annota-
tion vector)), where weight equals local weight *
global weight for each element in the gene-
function matrix. Maximum and augmented local weights are
employed to compensate for high gene frequencies; cosine
normalization can be used to compensate for annotations
common to a large number of genes. Based on these codes,
the following 8 weighting schemes were tested in a first stage:
ntn, ntm, ntc, mtn, atn, atm, atc and lts.

A depth correction was applied to both local and global
weights. The weight of an indirect relationship between a gene
gi and a GO term tj should diminish with the increase of

Fig. 1. Singular value decomposition of the gene-function association matrix
GF . There are g genes and f functions. Sm is a diagonal matrix such that
Sij = 0, if i �= j and Sij ≥ 0, if i = j.

the distance between the terms ti and tj (gi is in a direct
relationship with ti, i.e. gi is annotated with ti in the GO
database): if tj is the parent of ti then the relationship between
gi and tj is most likely strong; however, if gi is a gene
annotated with a function ti, found on a leaf of the GO tree,
then the relationship between gi and the annotations at the
top of the GO tree (e.g. GO:0008150 - biological process)
are not informative. Therefore, we would like to decrease the
weight of an indirect relationship depending on the depth of
the indirect relationship, which in the example above is the
distance between ti and tj . For this purpose the local weight
was multiplied with 1.7(−distance to the direct GO relationship).
Similarly, the global weight was multiplied with (1 −
1.7(−distance to the root)), a factor that diminishes the global
weight by almost half with every level up in the tree, to the
root of the GO DAG. In-depth descriptions of VSM weighting
schemes and the reasons behind them can be found in [17].

The next step is to decompose the matrix of weights GF as
follows:

GF = Gm × Sm × FT
m (2)

In the equation above, Gm and Fm are matrices of the left
and the right singular vectors. Gm and Fm have orthonormal
columns, i.e. GT

mGm = FT
mFm = I , columns that are eigen-

vectors of the square matrices (GF )(GF )T and (GF )T (GF ),
respectively [19]. Sm is an m × m diagonal matrix. The
elements of Sm are the singular values of GF and m is the
rank of GF (i.e., the number of linearly independent rows or
columns). The matrices Gm and FT

m are the basis sets of size
g ×m and m× f , respectively. All non-zero values in the i-th
column of matrix Gm represent the genes known to be involved
in the i-th function of matrix Fm. Similarly, all non-zero values
in the i-th row of matrix FT

m lists all functional categories
the i-th gene of matrix Gm is known to be involved in. The
decomposition of the matrix GF is represented in Fig. 1.

In Vector Space Models it is assumed that terms are in-
dependent, an assumption that is often false, because many
terms are semantically related, or even equivalent. Term in-
dependence presupposition makes VSM easy to implement
and conceptualize, but the accuracy of retrieval is negatively
affected by it. However, there are IR techniques that can take
advantage of the term dependence, LSI being one of them.
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Fig. 2. The dimensionality reduction from m to k produces an approximation
matrix ĜF of the original matrix GF . By reducing the dimensionality we force
the new matrix to capture the latent semantics and filter out the noise. This
essentially will capture those interactions that are strongly represented in the
data.

In our case, genes are not independent - groups of genes can
be involved in more than one function. When this situation
occurs it can be viewed as an indication that the group of genes
might be semantically related. SVD projects co-occurring genes
onto the same dimension and independent genes onto different
dimensions. Such dependencies help us cluster the related genes
and functions, but also provide us with the opportunity to
approximate the same data in a space with fewer dimensions.

SVD works by rotating the m dimensional vector space
and projecting the data into a new vector space where the
highest variation of the data is found along the first dimension,
the second highest variation along the second dimension and
so forth. A useful SVD property is that we can reduce the
dimensionality of the vector space. This is achieved by selecting
only the k largest singular values of Sm and their corresponding
vectors in Gm and Fm matrices, creating the matrices Sk, Gk

and Fk. The product of these, ĜF , is a matrix which is the
closest rank k approximation of GF in the least squares sense
(see Fig. 2):

ĜF = Gk × Sk × FT
k (3)

We reduce the dimensionality, by selecting the largest k sin-
gular values (i.e., the k largest independent linear components)
from Sm, in order to construct a model of the relationships
between the genes and the functions. This model eliminates
much of the noise, and also allows us to extract implicit gene-
function relationships from the data. The matrix ĜF only
contains the associations that are strongly represented in the
data. We should note that such strong relationships will be
present in ĜF , even if they were not included in the original
annotation database.

Once the matrix ĜF is computed, we can investigate the
semantic relationships between genes and their functional an-
notations, by selecting a threshold T . A value of ĝf ij greater
than the threshold T might indicate that gene i has function
j. Gene-function relationships which had gf ij = 0 in the
original GF matrix and now have ĝf ij > T correspond to
newly discovered associations between genes and functions.
Gene-function relationships which had gf ij �= 0 in the original
GF matrix and now have ĝf ij ≤ T in our projection space

correspond to known functional annotations that have weak
semantic support in the data, according to the method. Nev-
ertheless, we should not conclude that these relationships are
incorrect, novel phenomena may appear in contradiction with
the rest of the annotations just because there are not enough
annotations related to them at the time the investigation is made.

The choice of VSM weighting schemes is driven by analysis
of results on various data sets. For each of the eight weighting
schemes the first 50 best scoring relationships were evaluated
manually by an expert. The scheme that performed the best,
ntn, was altered in another six different weighting schemes in
order to identify the terms in the weighting scheme that helped
it achieve the best performance. We defined one new local
weight and two new global weights: the local weight, called
n2, had the same local depth factor but the gene frequency was
not used (i.e. it has value 1 for all the genes); the global weight
nt had the same global depth factor but the inverse annotation
frequency was not used; for the global weight nt2 both the
global depth factor and the inverse annotation frequency were
not used. The six new weighting schemes derived from ntn
were: nntn, n2tn, n2tm, n2ntn, n2ntm and n2nt2n. The
weighting terms, other than the three new terms defined here,
have the same meaning as before.

III. RESULTS AND DISCUSSION

The method described above was used to examine the
existing functional annotations for the human genome. We were
interested in analyzing the GO annotation graph in order to find
relationships between genes and functions that are captured
in the semantic layer of the graph, but are missing from the
GO database. For the purpose of improving the performance
of the method over our previous effort [26] we applied vector
space model weighting schemes. VSM weighting schemes are
considered better for retrieval purposes than a simple binary
representation of the relationships between genes and their
annotations. The performance of eight widely used weighting
schemes was investigated on our dataset. The best performing
weighting scheme was selected for a second round, where it was
modified into six slightly different schemes, for fine tuning, and
tested again.

The gene-function matrix GF was built using the human
annotations contained in the Gene Ontology database, released
in May 2003. The initial GF matrix contained 10,078 genes
and 4,693 functional annotations, for a total of 300,204 re-
lations between genes and functions. Relations that involved
the annotations at the root of the Gene Ontology graph were
not included in the GF matrix, to prevent these annotations
from overwhelming the others: GO:0003673 (Gene Ontol-
ogy), GO:0003674 (molecular function), GO:0008150 (biolog-
ical process), GO:0005575 (cellular component). GO:0005554
(molecular function unknown), GO:0000004 (biological pro-
cess unknown), GO:0008372 (cellular component unknown)
were also excluded from the matrix, because they cluster unre-
lated genes. The genes and GO terms that had no associations
were not included in the GF matrix, because they do not add
semantic information.
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TABLE I

AUTOMATIC ASSESSMENT RESULTS: EACH NUMBERED ROW CONTAINS THE NUMBER OF CONFIRMED PREDICTIONS IN MAY 2006 GO DATABASE FOR A

PARTICULAR WEIGHTING SCHEME; atm, atn, ntn AND ntm PERFORMED BEST, BUT THE RESULTS WERE NOT CONCLUSIVE.

number of relations atn atm atc mtn ntn ntm ntc lts

25 2 3 0 1 1 1 0 2
50 6 5 1 1 1 3 0 2
100 7 8 1 1 4 3 3 2
200 7 13 1 1 15 12 3 3
400 18 22 13 1 23 20 13 3
800 31 32 21 10 38 28 22 9

1600 53 39 29 16 57 47 31 20
3200 - - 57 - 93 84 60 25
6400 - - 105 - 149 153 100 -
12800 - - 175 - - 228 176 -
25600 - - 296 - - 255 304 -

confirmed relations 53 39 331 16 149 255 339 25
relations above threshold 1552 1035 29552 1576 6040 14418 29033 2790

threshold used 0.17 0.34 0.04 0.04 0.02 0.12 0.04 0.04

TABLE II

THE RESULTS OF THE MANUAL ASSESSMENT IN THE FIRST STAGE: THE MOST SUCCESSFUL WEIGHTING SCHEME, ntn, OUTPERFORMED THE SIMPLE

BINARY REPRESENTATION SCHEME, bin.

atn atm atc ntn ntm ntc mtn lts bin prev

2 18 21 12 35 26 19 3 4 18 -
1 4 9 7 5 6 5 5 7 9 -
0 16 17 15 7 12 20 19 34 18 7
-1 0 0 0 0 0 0 0 0 1 -
-2 10 1 6 3 6 6 5 4 2 -

obsolete 2 0 - 0 0 0 1 1 2 0

TABLE III

THE RESULTS OF THE MANUAL ASSESSMENT IN THE SECOND STAGE: THE WEIGHTING SCHEMES ANALYZED IN THE SECOND STAGE DID NOT SHOW

IMPROVED RESULTS OVER THE EARLIER BEST PERFORMING SCHEME, ntn, BUT SOME OF THEM WERE COMPUTATIONALLY LESS DEMANDING.

nntn n2tn n2tm n2ntn n2ntm n2nt2n ntn bin

2 34 34 29 28 27 25 35 18
1 5 7 6 8 4 7 5 9
0 7 5 12 7 13 9 7 18
-1 0 1 0 1 1 1 0 1
-2 4 2 2 4 3 5 3 2

obsolete 0 1 1 2 2 3 0 2

We decompose the matrix GF using SVD and reduce its
dimensionality to the largest 500 eigenvalues. The ĜF matrix
is constructed as in Fig. 2, by multiplying the reduced matrices
resulted after SVD. We compute the value for the threshold T
mentioned above, in following manner. We assume that the an-
notation database used to construct matrix GF contains mostly
correct but also some incorrect gene-function relationships. For
the purpose of defining a threshold, we assume that the true
gene-function associations are those indicated by the LSI, i.e.,
those captured by ĝf ij . In this hypothesis, the gene-function
associations for which gf ij �= 0 in the original GF matrix
and ĝf ij > T are true positives (TP). The gene-function
relationships for which gf ij = 0 in the original GF matrix
and ĝf ij > T are false negatives (FN). In the same hypothesis,
gene-function relationships for which gf ij �= 0 in the original
GF matrix and ĝf ij ≤ T are false positives (FP) and the

associations that were not in the database initially (gf ij = 0),
and are also not revealed by the LSI (ĝf ij ≤ T ) are true
negatives (TN). A threshold close to the maximum value of
ĝf ij will fail to discover many new functional annotations,
but it also would imply that the database used has many FP
relations (note that the maximum value of ĝf ij is greater than
1 for the weighting schemes that do not use the normalization
factor, like ntn for instance). Clearly, this cannot be the case
since most relationships are verified experimentally and known
to be true. Similarly, for a threshold close to zero, the algorithm
associates many genes with many functions which would imply
that the original data set had many FNs. Using a criterion
analogous to Occam’s razor, we chose the value of the threshold
T that corresponds to the assumption that the initial data set
has the minimum amount of errors (FP + FN ). This method
preserves the large majority of the known relationships, but
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several relations not previously found in the database will score
higher than the threshold, indicating that they might be valid
associations between genes and functions.

Initially we tried to automatically evaluate the accuracy of
the weighting schemes by counting the number of confirmed
relationships in the annotation database released three years
after the data used for input. That is the new associations
obtained from the annotation data released in May 2003 were
compared with the data released in May 2006. The thresholds,
the number of gene-function relationships that scored above the
threshold and the number of confirmed relationships for each
of the weighting schemes investigated in the first stage can be
found in Table I. While ntn, ntm, atn and atm performed
better than the other schemes, in terms of discovery rate,
this automatic assessment could not differentiate well enough
between them. In order to overcome this difficulty a biologist
evaluated manually the first 50 highest scoring relations for
each of the weighting schemes. The results of this examination
can be seen in Table II. The rows of the table represent the
scores given to the relationships. A score of 2 means that
at least two papers were found proving that the relationship
is correct, or that the relationship is already included in the
annotation databases. A score of 1 was given when papers or
tests suggest that the relationship is correct. Relationships for
which no support was found in the literature able to confirm or
contradict them, were given a score of 0. A score of −1 was
given when papers were found suggesting that the relationship
is not correct, and a score of −2 was given when strong
literature support was found to prove that the relationship is not
correct. The manual evaluation clearly showed that ntn was the
best performing scheme: among its 50 relationships that were
evaluated 35 are strongly supported in the literature, another
5 are confirmed by various research, about 7 of them there
is nothing published yet, and only 3 were contradicted in the
literature. In the second stage n2tn performed as good as ntn,
in spite of its lower computational overhead (Table III). Out
of the 50 manually evaluated functional annotations predicted
using n2tn, we found support in the literature for 82% of them.
For 6% of the annotations we found evidence to the contrary
and for 10% we did not found any relevant publications.

Two such predictions made using the n2tn scheme are
the ”SLC2A10 - glucose transporter activity” and ”SLC2A9
- glucose transporter activity”. The human gene SLC2A10 is
the solute carrier family 2 (facilitated glucose transporter),
member 10 (a validated, well-documented structure). Obvi-
ously, SLC2A10 has ”glucose transporter activity”. Yet, it is
not annotated for this biological category. It is annotated for the
biological process ”glucose transport”, but not for the molecular
function ”glucose transporter activity”. The annotations for
the molecular function are far less specific than ”glucose
transporter activity”: ”sugar porter activity” and ”transporter
activity”. The human gene SLC2A9, the solute carrier family
2 (facilitated glucose transporter), member 9, is in the same
situation.

Another possible application of our predictions is to help

increase the specificity of the annotations. For example, we
predicted the relationship ”AQP1 - water channel activity”.
AQP1, the human gene aquaporin 1 (Colton blood group),
appears annotated for ”porin activity”, ”transporter activity”,
and ”water transporter activity”. In spite of the fact that these
annotations do not offer the user the precious information that
aquaporin forms a channel for the water molecules (research
awarded with the Nobel Prize in Chemistry in 2003) [29], not
any other type of transporter, but a water channel.

IV. CONCLUSION

Gene annotation databases represent an essential resource
for modern research in genetics. Such databases are used on a
daily basis by thousands of researchers worldwide. However, it
is well known that these annotations are incomplete and it is
likely that some annotations are also incorrect. In this paper, we
compared 15 weighting schemes that can be used to perform a
global semantic analysis of the contents of such databases. As
shown in Table II and Table III, use of gene frequency, inverse
annotation frequency, and local and global depth provide better
results than the binary approach (i.e., bin) that we used before
[26]. Out of the top 50 functional annotations predicted using
the best performing weighting scheme, we found support in
the literature for 82% of them. For 10% of our prediction we
did not find any relevant publications, and 6% were actually
contradicted by existing literature. In addition, Table II shows
that any normalization applied to the local weights deteriorates
the accuracy. This technique is able to predict novel functional
annotations for known genes, and is independent of the organ-
ism. It can be used to analyze and improve the quality of the
data of any public or private annotation database.
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[12] Sorin Drăghici, Purvesh Khatri, Pratik Bhavsar, Abhik Shah, Stephen A.
Krawetz, and Michael A. Tainsky. Onto-Tools, the toolkit of the
modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-
Translate. Nucleic Acids Research, 31(13):3775–81, July 2003.
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