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Abstract— Phylogenetic heuristics attempt to find the best
trees within a limited amount of time in an exponentially-
sized tree space. It is believed that better-scoring trees are a
good approximation of the “true” evolutionary history of a set
of organisms. Previous work by the authors investigated the
usefulness of cooperative heuristics as an efficient parallel algo-
rithm. Cooperative heuristics are similar in spirit to evolutionary
algorithms since they use a population of diverse solutions to
search an exponentially-sized tree space for better-scoring (and
thus more accurate) trees.

In this paper, we study whether cooperation can lead to a
competitive sequential algorithm for inferring phylogenetic trees
quickly and accurately. The two algorithms under investigation
are Rec-I-DCM3, one of the best maximum parsimony algorithms
available for reconstructing phylogenies, and its cooperative
counterpart, Cooperative Rec-I-DCM3. We compare their con-
vergence rates to best-known scores on two datasets consisting
of 921 and 2,000 taxa. Instead of strictly relying on wall-
clock time, we devise a new performance measure called tree
performance, which provides more robust comparisons across dif-
ferent architectures and implementations. Under both measures,
Cooperative Rec-I-DCM3 is a competitive sequential algorithm
as it outperforms Rec-I-DCM3 on both datasets.

I. INTRODUCTION

One of the grand challenges facing biology is assembling
“The Tree of Life,”, the evolutionary history of all-known
organisms. Science and society would benefit enormously
from detailed and accurate knowledge of the phylogenetic
relationships among the world’s organisms. Unfortunately,
we cannot know the true evolutionary history of a set of
organisms (or taxa), so the problem is often reformulated as
an optimization problem. Under the criterion of interest, trees
are given a score, and better scoring trees are assumed to be
better approximations of the truth. For n taxa, the number of
possible hypotheses (or trees) is (2n − 5)!!. It is infeasible
to consider all possible explanations for any moderately-sized
dataset (> 30 taxa). Instead, phylogenetic heuristics attempt
to find the best possible trees within a limited amount of time.

In this paper, we reevaluate the performance of Cooperative
Rec-I-DCM3 [1], [2] as a competitive sequential algorithm that
uses a memetic-based, computational-intelligence approach [3]
to infer evolutionary trees. Cooperative algorithms use a
diverse population of solutions to guide the search for the
best-scoring maximum parsimony (MP) trees. Under MP, the
tree that explains the data with the fewest evolutionary events

(i.e., mutations) is the one that is preferred. MP is an NP-
hard problem [4], but the problem of scoring a fixed tree
is polynomial [5]. Previous work by the authors shows that
cooperation worked quite well as a parallel approach [1], [2].
However, we were curious whether cooperation can lead to an
improved sequential algorithm. Thus, our results are meant to
show that cooperation—although an embarrassingly parallel
approach—can be used as a general-purpose technique for the
development of sequential and parallel phylogenetic heuristics.

Here, we study the sequential performance of Coopera-
tive Rec-I-DCM3 and its non-cooperative counterpart, Rec-
I-DCM3 [6]. Rec-I-DCM3 is the newest member of the
family of Disk-Covering Methods (DCMs) [7], [8], [9], [6],
which use a divide-and-conquer approach to reconstructing
evolutionary trees. Experimental results have shown that Rec-
I-DCM3 performs quite well over a large range of datasets.
Given that good performance from a search algorithm is due to
a balance of exploration (the generation of new tree solutions
in untested regions of the search space) and exploitation (the
concentration of the search in the vicinity of known good
solutions), it is unclear whether both of these objectives can be
met by search algorithms such as Rec-I-DCM3 that manipulate
a single tree. On the other hand, a population-based approach
such as Cooperative Rec-I-DCM3 seems better adapted to
balance both of these objectives.

In this study, algorithms are compared in terms of their
convergence rate to best-known scores on two biological
datasets consisting of 921 and 2,000 taxa. Of particular interest
to us is the convergence rate of the algorithms as both a
function of time (wall-clock performance) and number of
trees searched (tree performance). Tree performance is a new
measure that provides an architecture- and implementation-
independent assessment of an algorithm’s convergence rate.
One benefit of this measure is that an algorithm is not
penalized because of its implementation. Thus, wall-clock per-
formance and tree performance provide a more balanced view
of a search algorithm’s performance. Our results demonstrate
that Cooperative Rec-I-DCM3 is a competitive sequential
algorithm. The improvement is impressive; it is the best-
overall performer in terms of wall-clock performance and tree
performance on both biological datasets studied here.
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II. MAXIMUM PARSIMONY AND HEURISTIC
PERFORMANCE

Maximum parsimony (MP) is an optimization problem for
inferring the evolutionary history of different taxa, in which it
is assumed that each of the taxa in the input is represented by
a string over some alphabet. The symbols in the alphabet can
represent nucleotides (in which case, the input are DNA or
RNA sequences), or amino-acids (in which case the input are
protein sequences), or may even include discrete characters
for morphological properties. It is also assumed that the
strings are put into a multiple alignment, so that they all
have the same length. Maximum parsimony then seeks a tree,
along with inferred ancestral sequences, so as to minimize
the total number of evolutionary events (counting only point
mutations).

A. Formal definition of maximum parsimony

Formally, given two sequences a and b of the same length,
the Hamming distance between them is defined as |{i : ai 6=
bi}| and denoted as H(a, b). Let T be a tree whose nodes
are labeled by sequences of length k, and let H(e) denote the
Hamming distance of the sequences at each endpoint of edge
e. The parsimony length of the tree T is

∑
e∈E(T ) H(e). The

MP problem seeks the tree T with the minimum length; this
is the same as seeking the tree with the smallest number of
point mutations for the data. MP is an NP-hard problem [4],
but the problem of assigning sequences to internal nodes of a
fixed leaf-labelled tree is polynomial [5].

B. Measuring the performance of MP heuristics

Performance studies of MP heuristics have generally fo-
cused on speed. Hence, studies that explore speed have exam-
ined how much running time each heuristic can solve MP (or
reach the current best known score) for specific real biological
datasets (see [10], [6], [2], [11] for examples of such studies).
Maximum parsimony searches are based on the assumption
that better scoring trees are more accurate approximations of
the true evolutionary relationships between a set of organisms.
Thus, heuristics that converge quickly (in terms of running
time) to the best-known score are of most interest to the
phylogenetic community.

However, relying simply on running time to judge the
merits of a phylogenetic heuristic has several limitations. In
particular, running time (or wall-clock performance) is neither
an architecture- nor implementation-independent measure of
performance. For example, suppose we are interested in com-
paring the running time of two phylogenetic heuristics A and
B. If heuristic A requires less running time to converge to the
best-known score than heuristic B, it is unclear whether A is
algorithmically superior or better implemented than B. Ideally,
we would prefer A’s dominance to be a result of algorithmic
superiority and not programming tricks. We cannot know why
A is better than B if we rely strictly on running time as a
performance measure.

Besides running time, additional performance measures are
needed to provide an overall assessment of a phylogenetic

heuristic. In this paper, we devise a new measure called tree
performance that when combined with running time provides
a more informative assessment of heuristic performance. Here,
tree performance measures the convergence rate of a phyloge-
netic heuristic as function of the total number of output trees
returned from the search (see Section VI-B).

Ultimately, better performance measures lead to better as-
sessments of phylogenetic heuristics. Moreover, these im-
proved measures will motivate the design of better phyloge-
netic heuristics, which lead to more accurate depictions of
evolutionary relationships.

III. REC-I-DCM3: A SINGLE-POINT PHYLOGENETIC
HEURISTIC

Recursive-Iteration DCM3 (Rec-I-DCM3) [6] is a single-
point heuristic, for finding the best trees in tree space. Single-
point refers to the way the heuristic achieves its goal, by work-
ing to improve a single solution. Most popular phylogenetic
heuristics [10], [12], [13] manipulate a single solution at a
time. As its name suggests, Rec-I-DCM3 implements a disk-
covering method (DCM) [7], [8], [9], [6] to improve the score
of the trees it finds. A DCM is a divide-and-conquer technique
that consists of four stages: divide, solve, merge, and refine.
At a high level, these stages follow directly from DCM being
a divide-and-conquer technique.

During the divide phase, the input tree’s leaf nodes, which
contain the taxa, are divided into subproblems, or overlapping
subsets of taxa. Each subset contains one or more taxa that
can be found in another subset. (This overlapping property of
the subsets becomes important for the merge phase.) Next, the
DCM solves each of the subproblems, utilizing some existing
phylogeny reconstruction technique. The result is a collection
of phylogenies that correspond to the subsets of taxa from the
divide stage of the DCM. Since each of these subproblem tree
solutions overlap in the taxa they contain, they can be merged
together using a consensus technique like strict consensus [7].
Strict consensus forms a new tree from two input trees by
preserving the subtrees found in both input trees. This process
is repeated until one tree remains. The preserving of subtrees
during this process is what tends to produce multifurcations
in the merge stage of the DCM, which is why the merged tree
must be refined into a bifurcating tree.

Rec-I-DCM3, involves all of the above stages, but in addi-
tion, is both recursive and iterative. The recursive part concerns
the divide stage of the DCM, where after dividing the input
tree’s leaf nodes into overlapping subsets of taxa, or subprob-
lems, the subproblems themselves may be further divided into
smaller subproblems. This is an important enhancement to the
DCM approach since for very large datasets, the subproblems
remain too large for an immediate solution. Thanks to the
recursion, the subproblems are eventually small enough that
they may be solved directly using some chosen base method.
At this point, Rec-I-DCM3 uses strict consensus merger to do
the work of recombining the overlapping subtrees to form a
single tree solution. The iterative part of Rec-I-DCM3 refers to
the repetition of the entire process just described. That is, the
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resulting tree solution becomes the input tree for a subsequent
iteration of Rec-I-DCM3.

Despite merging subtrees, it is important to remember
that Rec-I-DCM3 is a single-point heuristic. The trees being
merged are not multiple trees from tree space, since their leaf
nodes are only a subset of the taxa from the original dataset.
Thus, only one tree’s solution is being evolved throughout
Rec-I-DCM3’s entire process. Each iteration represents one
step in the evolution of its final solution; the input and output
of each iteration is a single tree.

IV. COOPERATIVE REC-I-DCM3: A POPULATION-BASED
APPROACH

Cooperative Rec-I-DCM3 [1], [2] leverages multiple tree
solutions to to guide its search for better trees. Figure 1
provides a schematic diagram depicting the essential difference
between the two algorithms studied here. Cooperative Rec-I-
DCM3 consists of the following four steps.

1) Create a population of µ initial tree solutions.
2) For each of the µ trees, run Rec-I-DCM3.
3) Create a new tree population by performing selection

and recombination on the trees from step 2.
4) Repeat steps 2 and 3 for the desired number of iterations.

The starting tree population can be created using any method
such as random sequence addition [14]. In subsequent itera-
tions, the starting tree population will come from the previous
iteration’s merged tree population. An iteration is divided into
two phases (steps 2 and 3 above). In the first phase, a local
search is performed on each tree in the starting tree population.
Upon conclusion of the µ local searches, a new population of
trees is ready for the next phase. During the second phase,
trees are selected for inclusion into the merged tree population
on the basis of their MP scores. The merged tree population
serves as the starting tree population for the next iteration of
the algorithm.

A. Selection and recombination

The selection process decides which solutions will enter the
population of the next iteration. The µ trees from step 2 are
ranked based on their MP scores, with the best scoring MP tree
having the best rank. Next, the trees are placed into sets (A,B,
and C) based on their rank. The algorithm also keeps a list
of trees with the best solution found by the current iteration
of the search. These elite trees are placed into set A. The
top-ranking trees from step 2 are placed into set B, and the
lower-ranking trees are put into set C. These sets of trees
comprise the new population. However, trees in set C may be
recombined with any tree in A,B, or C to create new (and
more diverse) solutions. If t ∈ C is chosen for recombination,
it will be replaced by the resulting tree from the recombination
phase.

For each tree t ∈ C, there is a p% chance that it will
undergo recombination with a random tree t′ ∈ A ∪ B. t
and t′ are recombined by computing their strict consensus
tree, which contains all of the bipartitions that are common
between the trees. Since the strict consensus tree typically

results in a multifurcating tree, it is refined into a binary
tree and subjected to a global search using Tree-Bisection and
Reconnection (TBR) [12]. In our experiments, trees in set A
are comprised from the top 40% of trees found from the µ local
searches. Moreover, the percentage of recombination was set
to 25%.

B. Comparison to Rec-I-DCM3

A comparison of Cooperative Rec-I-DCM3 and Rec-I-
DCM3 shows that both algorithms are examples of divide-
and-conquer strategies designed to boost the performance
of existing algorithms. In fact, the use of populations in
cooperative algorithms is a natural extension of subproblems
in DCMs. However, the essential difference between the two
approaches is that Rec-I-DCM3 uses a single tree to guide
its search whereas Cooperative Rec-I-DCM3 incorporates a
diverse population of solutions.

Also, both approaches employ the notion of decomposition
and merging quite differently. The use of a population of
trees in cooperative algorithms may be viewed as a partial
decomposition of the exponentially large space of tree solu-
tions. Each of the tree solutions represents a decomposition of
that space. DCMs decompose the original problem of n taxa
into a population of overlapping subsets. Hence, in DCMs, the
population represents partial solutions to the original problem
whereas in cooperative algorithms the population contains
complete solutions. Moreover, the purpose of merging in
both approaches is quite different. Cooperative algorithms
use merging (or recombination) to create new, more diverse
solutions. DCMs, on the other hand, require merging in order
to obtain a single, complete solution on the entire dataset from
the partial solutions.

Similarities to our cooperative approach is evident in other
single-point heuristic used in phylogenetic software packages
such as TNT [10]. Tree fusing and sectorial searches are very
much in the spirit of our cooperative approach. Specifically,
we could substitute the tree fusing algorithm into the recombi-
nation phase of our cooperative algorithm. Furthermore, one
could have a collection of sectorial searches cooperate with
each other to achieve greater performance.

C. Comparison to genetic algorithms

Our cooperative algorithms are analogous to techniques
used in evolutionary algorithms. Indeed, we are using a
memetic-based approach [3] to design a population-based
heuristic. Memetic algorithms combine a population-based
global search and an individual local search. While we are
unaware of other phylogenetic techniques that use a memetic-
based approach, there are several phylogenetic heuristics that
employ genetic algorithms to search for phylogenetic trees
based on maximum likelihood [15], [16], [17], [18].

The essential difference between our cooperative approach
and genetic algorithms is how the approaches use an individual
solution. In a typical genetic algorithm, individuals in the
population are subjected to function evaluation followed by
selection, recombination, and mutation. Each individual in the
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recidcm3
input output crecidcm3
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Fig. 1. A schematic depicting one iteration of the Rec-I-DCM3 and Cooperative Rec-I-DCM3 algorithms. Rec-I-DCM3 uses a single tree to guide its
decisions. Cooperative Rec-I-DCM3, on the other hand, uses multiple trees (or a population) as its mechanism for finding better trees.

population is not subjected to an individual local search in a
genetic algorithm approach.

In our Cooperative Rec-I-DCM3 algorithm, each solution in
the population is the input to a local search algorithm, which
is Rec-I-DCM3. However, we could easily use other local
search algorithms such as parsimony ratchet [13]. The outputs
of the Rec-I-DCM3 searches are the new individuals of the
Cooperative Rec-I-DCM3 population, which is then subjected
to selection and recombination. At present, our approach does
not mutate the individual tree solutions.

V. EXPERIMENTAL METHODOLOGY

A. Datasets

Although simulated datasets can be used, phylogenetic
researchers have noted that MP seems easier to solve on
simulated data than on real data. Since simulated data is not
sufficiently realistic, we chose to use biological datasets in our
study. While our results are biologically relevant, we do not
know the “true” evolutionary history of our data. Therefore,
we use tree scores based on maximum parsimony as an
approximation of the Our experimental results are based on
the following two biological datasets.

1) A set of 921 aligned Avian Cytochrome b DNA se-
quences [19].

2) A set of 2,000 aligned Eukaryotic sRNA sequences
(1251 sites) obtained from the Gutell Lab at the Institute
for Cellular and Molecular Biology, The University of
Texas at Austin.

B. Parameter settings

Our overall objective is to study whether cooperation has
a positive impact on sequential performance. We study this
question by observing the behavior of Rec-I-DCM3 and Coop-
erative Rec-I-DCM3. We set the parameters of each algorithm
according to the recommended settings in the literature. For
Rec-I-DCM3, it is recommended that the maximum subprob-
lem size is 50% for datasets with 1,000 or less sequences and
25% for larger datasets not containing over 10,000 sequences.
Hence, the maximum subproblem size for Dataset #1 and
Dataset #2 is 461 and 500 taxa, respectively. We used the rec-
ommended settings established by Roshan et. al [6] for using
TNT as a base method within the Rec-I-DCM3 algorithm.

The above parameter settings of Rec-I-DCM3 were also
used when incorporated into the local search step of Coopera-
tive Rec-I-DCM3. For our runs of Cooperative Rec-I-DCM3,
we used a population size of eight. Cooperative algorithms also
require selection and recombination parameter settings, which
are described in Section IV-A. Finally, each algorithm requires
the number of iterations to be specified. But, this varies in
our experiments depending upon the performance measure of
interest. We defer discussion of this parameter setting until
Section VI.

C. Implementation and Platform

We used TCP Linda [20], an implementation of Gelernter’s
Linda [21] model of concurrency, to implement our coopera-
tive algorithm. Although Cooperative Rec-I-DCM3 can take
advantage of a parallel platform, we limited its execution
to a single processor for the experiments in this paper. Our
TCP Linda programs were written in the C-Linda language,
which augments the C language with four primitive operations
that permit process creation and access to tuple space —
an associative, distributed shared memory. Rec-I-DCM3 is
open-source software provided by Usman Roshan. TNT [10]
was used as the base method for Rec-I-DCM3, and we
used TNT’s implementation of TBR. We used PAUP*’s [14]
implementation of strict consensus.

Our experiments were performed on an Apple Workgroup
Cluster for Bioinformatics, which consists of four, 64-bit,
dual-processor nodes (eight total CPUs) with gigabit-switched
interconnects. The cluster consists of Xserve G5 nodes, each
of which contains two, 2 GHz PowerPC G5 processors. Each
processor contains 512 KB of L2 cache and a 1 GHz front-
side bus; the two processors on each node share 4 GB of DDR
400 MHz SDRAM (16 GB total RAM across the cluster).

VI. EXPERIMENTAL RESULTS

Since our study is based on biological datasets, the true tree
cannot be known precisely. We use MP scores as an approxi-
mation of the true tree. Let st represent the best score found
by time t. Hence, we show performance in terms of number
of steps (st − b) from the best-known score, b, of a dataset.
Of particular interest to us is an algorithm’s convergence
rate (in terms of number of steps) to the best-known score.
Since Rec-I-DCM3 is a single-point heuristic, it produces a
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Algorithm Dataset #1 Dataset #2
it tree it tree

Rec-I-DCM3 52.99 52.99 109.57 109.57
Cooperative Rec-I-DCM3 499.78 62.47 1449.07 181.13

TABLE I
THE RUNNING TIME (IN SECONDS) IS BROKEN INTO TWO

COMPONENTS—THE TIME TO COMPLETE AN ITERATION AND THE TIME

TO RETURN A SINGLE TREE (OR SOLUTION). FOR REC-I-DCM3, EACH

ITERATION IS RESPONSIBLE FOR PROVIDING A SINGLE SOLUTION. UNDER

COOPERATIVE REC-I-DCM3, EACH ITERATION PROVIDES EIGHT TREES.
EACH VALUE IN THE TABLE IS THE AVERAGE OF THREE RUNS.

single tree every iteration. Our sequential runs of Cooperative
Rec-I-DCM3, on the other hand, used a population of size
eight, which is based on our previous experiments with the
algorithm.

A. Wall-clock performance

Table I shows the running time required for each algorithm
on our experimental platform. An iteration of Cooperative Rec-
I-DCM3 requires more time to complete than Rec-I-DCM3.
However, since Cooperative Rec-I-DCM3 outputs eight trees
every iteration, the time to produce a single tree is comparable
to the iteration time of Rec-I-DCM3. The addition of the
selection and recombination accounts for the extra overhead
in the Cooperative Rec-I-DCM3 algorithm.

However, even with this additional overhead, Figures 2(a)
and 3(a) show the performance gain attained by using a co-
operative approach. The total time shown in the plots is based
on how long it takes Cooperative Rec-I-DCM3 to complete
100 iterations. Hence, in Figures 2(a) and 3(a), Cooperative
Rec-I-DCM3 requires 13.88 and 40.25 hours to complete 100
iterations, respectively. During the same amount of time, Rec-
I-DCM3 completes 944 and 1,324 iterations on Dataset #1 and
Dataset #2, respectively. Under wall-clock performance, Co-
operative Rec-I-DCM3 is a competitive sequential algorithm
for phylogenetic search when compared to Rec-I-DCM3. It
establishes itself as the best algorithm on both datasets within
eight hours. Once the time limit is reached, Cooperative Rec-
I-DCM3 is within eight and two steps of the best-known score
for Dataset #1 and Dataset #2, respectively.

B. Tree-performance

Given that a phylogenetic analysis must complete in a
reasonable amount of time, wall-clock performance is a very
important performance measure. However, wall-clock perfor-
mance captures any overhead that is associated with an algo-
rithm. Hence, it is neither an architecture- nor implementation-
independent measure of performance. Algorithms with poor
implementations will always fair poorly under this measure.
For such algorithms, it is unclear whether they are truly
inferior algorithms or simply poorly-implemented ones.

One way to approach having an architecture- and
implementation-independent performance measure is to repre-
sent the algorithms as black boxes where we only observe their

input/output behavior (see Figure 1). Here, the total number
of output trees serves as a substitute for time. Thus, we can
measure the convergence rate of the algorithms as function of
the total number of output trees returned. The CPU speed in
which the trees are returned is ignored.

Figures 2(b) and 3(b) shows the performance of the al-
gorithms in terms of their tree performance. Once again,
Cooperative Rec-I-DCM3 outperforms Rec-I-DCM3. Hence,
Rec-I-DCM3 has to consider more trees in order to potentially
reach the performance levels of Cooperative Rec-I-DCM3.
However, the most striking feature of the plots is how well
tree performance mimics the wall-clock performance curves.
The plots correlates well with the fact that each algorithm
records its execution time at the end of each iteration.

Thus, nothing is lost by looking at the convergence rates of
the algorithms in terms of their tree performance. However, the
benefits of having such a measure is significant. In particular,
it allows one to compare the essence of the algorithms,
which may be hidden because of the way an algorithm is
implemented. For our cooperative algorithm, both measures
show that there is essentially no penalty for using cooperation
as an enhancement to the Rec-I-DCM3 algorithm. Further-
more, the tree performance measure shows that Cooperative
Rec-I-DCM3’s good overall performance is not a result of
implementation heroics or parallel execution.

The use of the tree performance measure also implications
for parallel phylogenetic heuristics. Parallelization does not
improve the tree performance of a phylogenetic heuristic.
However, running time is improved. Thus, parallelization
allows heuristics to produce an output of t trees faster than
can be done sequentially.

C. Distribution of tree scores

Next, we look at the distribution of the tree scores for both
datasets and the two heuristics being compared: Rec-I-DCM3
and Cooperative Rec-I-DCM3. For each dataset and heuristic,
over the course of three experimental runs, 2,400 total trees
were returned (800 trees per run). Figures 4 and 5 provide
the respective histograms of the MP scores for each dataset,
by Rec-I-DCM3 and Cooperative Rec-I-DCM3. Histograms
provide a visual representation of where an algorithm spends
its time in terms of MP scores. Each step along the x-axis of
the histograms represents a subset of trees with the same tree
score.

For both datasets, Cooperative Rec-I-DCM3 finds more
trees with MP scores closer to each respective dataset’s best
scores than does Rec-I-DCM3. In the case of Dataset #1, the
smaller dataset, the subsets of trees are similar in terms of MP
scores and steps above the best score. Even so, the histograms
reveal Cooperative Rec-I-DCM3 finds better trees overall. For
example, Cooperative Rec-I-DCM3 finds more trees than Rec-
I-DCM3 within 20 steps of the best score, and fewer trees than
Rec-I-DCM3 over 40 steps from the best score. Dataset #2,
the larger dataset, tells a dramatically different story. Almost
all of the trees found by Cooperative Rec-I-DCM3 are within
20 steps of the best score for Dataset #2, and about half of
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Fig. 2. Performance of the algorithms on Dataset #1 (921 taxa). Each data
point represents the average best score found over three runs. The best score is
40,494. (a) The time limit was established by how long it took for Cooperative
Rec-I-DCM3 to complete 100 iterations. In the same amount of time, Rec-
I-DCM3 completed 944 iterations. (b) With eight solutions per iteration for
Cooperative Rec-I-DCM3, 800 trees is equivalent to 100 iterations. Rec-I-
DCM3 required 800 iterations to output 800 trees.

those are within 10 steps of the best score. For Rec-I-DCM3,
almost all of the trees found are within 30 steps of the best
score, with fewer than half of those trees within 15 steps of
the best score.

VII. CONCLUSIONS AND FUTURE WORK

Our study clearly shows the improvement that results from
placing Rec-I-DCM3 in a cooperative framework. On both
biological datasets, it outperforms Rec-I-DCM3 in terms of
wall-clock and tree performance. While we consider tree
performance a more neutral measure of performance, other
studies have considered counting the number of branch swap
operations (e.g., TBR moves) as a measure of computational
effort. Although branch-swapping is a fundamental opera-
tion in phylogenetic search, the composition of phylogenetic
heuristics is more than a series of TBR operations. For
example, some steps of the Rec-I-DCM3 algorithm do not
require branch-swapping (e.g., problem decomposition and
merging subproblems). So, counting branch-swaps wouldn’t
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Fig. 3. Performance of the algorithms on Dataset #2 (2,000 taxa). Each
data point represents the average best score found over three runs. The best
score is 74,534. (a) The time limit was established by how long it took for
Cooperative Rec-I-DCM3 to complete 100 iterations. In the same amount
of time, Rec-I-DCM3 completed 1,324 iterations. (b) With eight solutions
per iteration for Cooperative Rec-I-DCM3, 800 trees is equivalent to 100
iterations. Rec-I-DCM3 required 800 iterations to output 800 trees.

necessarily measure the influence of such steps on Rec-I-
DCM3’s performance.

Ultimately, what matters the most in a phylogenetic search
is the quality of the inferred tree. The tree performance
measure treats the phylogenetic heuristic as a black box and
simply measures its output behavior on an iterative basis. This
measurement doesn’t penalize an algorithm for the amount of
time it takes to produce a tree. The tree performance measure
simply measures the worthiness of the output regardless of
the time required to produce it. Of course, in the end, the
time required to produce good trees does matter. Thus, tree
performance coupled with wall-clock performance provides a
more balanced assessment of the empirical performance of a
search heuristic. Under both of these measures, the cooperative
approach substantially improves the Rec-I-DCM3 algorithm.

For future work, we plan to continue studying the im-
plications of using tree performance (as well as other
implementation- and architecture-independent measures) as a
substitute for running time. In particular, we are interested in
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Fig. 4. Distribution of tree scores on Dataset #1 (921 taxa). Each run of
the algorithm returned 800 trees. Over the course of three runs, there were a
total of 2,400 trees, which is the number of trees reflected in the histograms.

applying the measure to other heuristics such as parsimony
ratchet [13]. Although this paper focused on cooperative
search algorithms for maximum parsimony, our methodology
should be equally applicable to maximum likelihood. Hence,
our future plans include applying our approach to improve the
convergence rates of maximum likelihood searches. Finally,
our study focused on evaluating phylogenetic trees based on
their MP scores. Thus, we also plan to evaluate search algo-
rithms in terms of the distances between the tree topologies
found.
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