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Abstract— Recent computational analyses of protein interac-
tion networks have attempted to understand cellular organiza-
tions, processes and functions. However, they have encountered
difficulties due to unreliable interaction data and the complexity
of the networks. In this paper, we propose the integration of
protein interaction networks with Gene Ontology annotations
for assessing the reliability of current protein-protein interaction
data. The interaction reliability can be used for building weighted
protein interaction networks. We apply an information flow-
based modularization algorithm to the weighted protein interac-
tion networks. Our experimental results show that the interaction
reliability between two proteins is positively correlated to the
likelihood of functional and locational associations. We finally
demonstrate that our approach identifies accurate modules in the
protein interaction networks with high statistical confidence with
respect to biological function and cellular localization. Moreover,
this algorithm outperforms our previous method [5] integrating
with genetic co-expressional profiles.

I. INTRODUCTION

The complete and systematic analysis of protein-protein
interactions is one of the most fundamental challenges in
understanding cellular organizations, processes and functions.
The interactions potentially provide useful insights into func-
tional associations between proteins [11]. Recent large-scale
experimental methods, such as two-hybrid systems [15], [24]
and mass spectrometry [8], [12], have led to the accumulation
of vast quantities of interaction data, which can build complete
protein interaction networks.

Various computational approaches have attempted to dis-
cover functional information from protein interaction net-
works. However, they have encountered difficulties due to
unreliable interaction data and the complexity of the networks.
It is known that the large-scale experiments have yielded
numerous false positives [25], which mean that the interactions
do not occur in real living tissues. Most of the previous works
had a limitation in accuracy because of a large number of false
connections in protein interaction networks.

To avoid inaccuracy resulting from the false connections,
we can extend the unweighted protein interaction network to
a weighted graph [2] by assigning a weight to each edge. We
define the weight of an edge as the reliability of the corre-
sponding interaction, that is, the probability of the interaction
being a true positive. Other biological knowledge can be used
to verify the protein-protein interactions. For example, we can

deal with Microarray expression data for this purpose. The
existence of the correlation between protein-protein interac-
tions and mRNA expression profiles has been shown in [16],
[17]. Several recent studies [4], [22] have integrated protein
interaction networks with genetic co-expressions to evaluate
the strength of the experimental interaction data.

To accurately assess the reliability of protein-protein in-
teractions, we explore Gene Ontology (GO) [10] and its
annotations. Ontology represents the knowledge in which
concepts are described by their meaning and the relationships
to each other [1]. Gene Ontology (GO) is currently one of
the most comprehensive ontology databases in bioinformatics
community. It provides GO terms and their relationships.
GO terms are the shared biological concepts across different
organisms. The relationships include the specific-to-general
and part-to-whole relations between two GO terms.

Genes and gene products have been manually annotated on
each GO term. The GO annotations can be useful resources for
comparative functional analysis of the genes and gene prod-
ucts. Recently, the GO annotation data has been incorporated
into the analysis of Microarray expression data for predicting
biological process [14], measuring the distance of genes to
detect clusters [13], and estimating missing expression values
[23]. It has been also integrated with protein-protein inter-
action data to predict biological functions of uncharacterized
proteins [6].

In our earlier study [5], we proposed the information
flow-based approach to identify modules in weighted protein
interaction networks. We used the genetic co-expressions for
computing the weight for each interaction. In this paper, we
integrate a protein interaction network with GO annotations.
Based on the connectivity between two proteins in a network
and the annotated proteins on each GO term, we provide a
novel measurement for computing the interaction reliability,
which is assigned as a weight to each edge in a protein
interaction network. We then apply the information flow-based
approach [5] for modularization of the weighted network.
The overlapping modules can be detected by the information
flow simulation starting from each essential node. We finally
demonstrate that this approach identifies accurate modules
with higher statistical confidence than other methods, includ-
ing our previous work [5], with respect to biological function
and cellular localization.
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II. METHOD

A. Integration of Protein Interaction Networks with GO An-
notations

The protein interaction network is generally represented
by an undirected, un-weighted graph G(V, E) with proteins
as a set of nodes V and interactions as a set of edges E.
N(vi) denotes the neighbors of vi, which mean a set of nodes
connected to the node vi. The degree of vi is then equivalent
to the number of neighbors of vi, |N(vi)|. We assign a weight
to each edge for building a weighted network. The weight wi,j

indicates the reliability of the interaction between vi and vj ,
which represents the probability of the interaction being a true
positive.

The Gene Ontology (GO) project [10] is a collaborative
effort to provide consistent description of genes and gene
products. GO is a repository of biological knowledge in a com-
putational format. GO provides a collection of well-defined
biological terms, which is called GO terms. The GO terms
are shared across different organisms. They comprise three
categories as the most general concepts: biological processes,
molecular functions and cellular components. The GO terms
are structured by the relationships to each other, such as ”is-a”
and ”part-of”. For example, if a GO term gi has a relationship
”is-a” to gj , then the term gi is more specific than gj . A DAG
(Directed Acyclic Graph) is then formed with the GO terms
as a set of nodes and their relationships as a set of directed
edges. For the relationship ”is-a” or ”part-of” of gi to gj , gi

is a child node of gj and gj is a parent node of gi in a DAG
structure.

Genes and gene products are annotated on each GO term.
The GO annotations follow the transitivity property, which
means if a gene is annotated on a GO term, then it is also
annotated on more general GO terms on the path from the
GO term to the root. Thus, the set of the annotated genes on
a GO term gi is a subset of the annotated genes on a parent
node of gi. Also, the root GO term has the largest number
of annotated genes, while a leaf GO term has the smallest
number of annotated genes among the GO terms on the path
from the root to the leaf.

Suppose a protein vj is annotated on k different GO terms.
St(vj) in the range of 1 ≤ t ≤ k denotes a set of annotated
proteins on the GO term gt, whose annotation includes vj . We
define the interaction coverage of a protein vi to St(vj), based
on the connectivity of vi in a protein interaction network.

Definition 1. The interaction coverage of vi to a set St(vj)
is the intersection between St(vj) and a set of neighbors of
vi including vi itself:

Ct(vi, vj) = St(vj) ∩N ′(vi), (1)

where N ′(vi) = N(vi) ∪ {vi}.

We then compute the probability P (vi, vj) of a protein vi

interacting with vj as:

P (vi, vj) = max
1≤t≤k

|Ct(vi, vj)|/|N ′(vi)|, (2)

where k is the number of the GO terms, on which vj is
annotated. P (vi, vj) indicates the probability of vi interacting
with the annotated proteins on the GO terms. Since vj can
be annotated on several different GO terms, we use the
maximum size out of k possible interaction coverage. If vi

and its neighbors are not annotated in St(vj) with any t,
then P (vi, vj) is 0. If all of them are annotated in St(vj),
then P (vi, vj) is 1. Equation 2 thus satisfies the range of
0 ≤ P (vi, vj) ≤ 1.

We finally compute the reliability of the interaction between
vi and vj using the geometric mean of P (vi, vj) and P (vj , vi).
The reliability can be assigned to the corresponding edge as
the weight wi,j .

wi,j =
√

P (vi, vj)× P (vj , vi). (3)

Since we consider the interaction reliability between two pro-
teins, vi and vj , having experimental evidence of interactions,
vi is one of the neighbors of vj and vj is one of the neighbors
of vi in a network. Then, both P (vi, vj) and P (vj , vi) are
always greater than 0. The weight wi,j is thus calculated in
the range of 0 < wi,j ≤ 1.

This method measures the interaction reliability by the
integration of the connectivity in a protein interaction network
with GO annotations. Since GO terms are described in terms
of biological processes and functions, the interaction reliability
can properly quantify the functional associations between two
proteins.

B. Modularization of Weighted Protein Interaction Networks

In order to identify modules from the weighted protein
interaction network, we apply the information flow-based
modularization approach from our previous study [5]. A mod-
ule represents a maximal set of proteins that have correlated
behaviors with respect to a specific biological feature. For
example, if a group of proteins has the same functional
behavior, then they form a functional module. The module
in a graph G can be identified as a sub-graph G′ that includes
the correlated proteins. Our modularization process consists of
three phases as follows:

Phase 1. Selecting informative nodes.
Phase 2. Detecting preliminary modules by simulating
information flow starting on each informative node.
Phase 3. Merging preliminary modules.

In phase 1, the informative nodes [5] are selected by the
weighted degree, which is defined as the sum of the weights
of the edges between the node of interest and its neighbors.
The weighted degree di of a node vi is:

di =
∑

vj∈N(vi)

wi,j . (4)
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Since the weights are computed on the basis of biological
knowledge such as Gene Ontology annotations, the weighted
degree is both topologically and biologically meaningful. The
nodes with high weighted degrees correspond to not only hubs
in a network but also biologically essential proteins.

Phase 2 simulates the information flow [5] starting from
each informative node. A walk is a sequence of nodes such that
each node is linked to its succeeding node. A path is a walk
such that each node in the walk is distinct. The flow simulation
is based on the concept that the information of a node vs flows
through every possible walk in a weighted network. We thus
quantify the amount of information of vs, which is called the
information rate of vs, flowing on the other nodes. infs(vi)
denotes the information rate of vs that is flowing on vi. The
infs(vi) implies how much vs biologically influences vi. The
influence of vs on vi is a major factor to determine how likely
it is that vs and vi are included in the same module.

We first assign the weighted degree ds to each informative
node vs as an initial information rate infs(vs), whereas 0 to
all non-informative nodes. The initial information is delivered
into all neighbors vi with being reduced by the weight of the
edge.

fs(vs → vi) = ws,i × ds, (5)

where the edge 〈vs, vi〉 ∈ E and 0 < ws,i ≤ 1. The
information rate of vs on vi, infs(vi), is then updated by
adding the sum of all incoming flow to vi.

infs(vi) = inf ′
s(vi) +

∑
vk∈N(vi)

fs(vk → vi), (6)

where inf ′
s(vi) is the old information rate of vs on vi. The

information of vs then traverses all connected edges in the
network by the formula defined as:

fs(vi → vj) = wi,j · infs(vi)
|N(vi)| , (7)

where the edge 〈vi, vj〉 ∈ E and 0 < wi,j ≤ 1. During the
flow, the amount of information on each edge is repeatedly
updated by Formula 6 and traverses the connected edges by
Formula 7. The flow simulation algorithm from an informative
node vs is described in Algorithm 1.

As information flows through an edge, the information rate
is reduced according to the weight of the edge, which is
represented as the reliability of the corresponding interaction.
If the weight is close to 0, then it is quickly reduced. However,
if an edge 〈vi, vj〉 is fully reliable, that is wi,j = 1, then the
information rate of vs on vi can be transferred to vj without
being reduced. Since information visits all the nodes through
every possible walk, densely connected areas generally have
higher information rates than sparsely connected areas.

The flow in a walk stops if the information rate on a
node reaches a minimum threshold, θinf . That means the
amount of information is small enough for the influence to
the node to be ignored. The flow from an informative node vs

terminates when there is no more information of vs flowing in

Algorithm 1 FlowSimulation(G(V, E), vs)

1: infs(vs) and Cs(vs) ← initial rate of vs

2: for each vi ∈ N(vs) do
3: infs(vi) and Cs(vi) ← ws,i · infs(vs)
4: end for
5: Create a list S with all neighbors of vs

6: infs(vs)← 0
7: while |S| > 0 do
8: for each vj ∈ S do
9: Compute sum(vj) =

∑
fs(vi → vj) for all vi ∈

N(vj) and fs(vi → vj) > θinf

10: end for
11: infs( neighbors of vj)← 0 for all vj ∈ S
12: for each vj ∈ S do
13: if sum(vj) > 0 then
14: infs(vj)← sum(vj)
15: Increment Cs(vj) by infs(vj)
16: end if
17: end for
18: Replace S with all distinct neighbors of vj for all vj ∈

S and sum(vj) > 0
19: end while
20: return Cs

the network. A preliminary module Ms is then created with a
set of proteins under the influence of vs.

Ms = {vi|infs(vi) > θinf}. (8)

Simulating information flow from all informative nodes gen-
erates a set of preliminary modules, which allow overlapping.

Phase 3 is a post-processing step of merging preliminary
modules to produce final modules. Each informative node vs

is a representative for a preliminary module. Two preliminary
modules may be similar if two informative nodes are included
into the same module. The similarity S(Ms, Mt) between two
modules Ms and Mt can be measured based on the weighted
interconnectivity defined as:

S(Ms, Mt) =

∑
vi∈Ms,vj∈Mt

c(vi, vj)

min(|Ms|, |Mt|) , (9)

where

c(vi, vj) =




1 if vi = vj

wi,j if vi 	= vj and 〈vi, vj〉 ∈ E
0 otherwise

(10)

and |Ms| is the number of nodes in Ms. The modules with
the highest similarity are iteratively merged in this phase.

III. EXPERIMENTS AND RESULTS

A. Reliability of Protein-Protein Interactions

The experiments for assessing the reliability of protein-
protein interactions were performed on a full protein inter-
action data of Saccharomyces cerevisiae from February 2006
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Fig. 1. The proportions of the interacting pairs, each of which is appearing in the same functions, locations and protein complexes from MIPS. The reliability
was measured by the integration of interaction evidence with Gene Ontology (GO) annotations from (a) specific GO terms, which have more than 50 annotating
proteins, and (b) general GO terms, which have more than 100 annotating proteins.

version of DIP, the database of interacting proteins [19]. It
contains 4823 distinct proteins and 17471 interactions. We also
extracted the annotated proteins for Saccharomyces cerevisiae
from Gene Ontology (GO) Consortium database [10]. 33964
proteins are annotated in September 2006 version.

By the transitivity property of GO annotations, more pro-
teins are annotated on a general term than a specific term.
Similar to previous studies [6], we first filtered out excessively
specific GO terms, on which a small number of proteins are
annotated. Next, we selected terminal GO terms, which mean
the leaf nodes in the DAG structure of GO. In this study,
we experimented with two groups of GO terms. One is the
terminal GO terms with more than 50 annotated proteins. The
other is those with more than 100 annotated proteins. The
first group has more specific GO terms than the second. The
first group has 129 GO terms with 73.89 of the average size
of annotations, while the second has 81 GO terms with the
average size 150.95 of annotations.

To validate the measured reliability for each interaction,
we employed the functional and locational categories and
protein complex data with real physical interactions from
MIPS database [18]. MIPS categorizes 359 different functions
and 50 sub-cellular locations. It also provides the list of total
1063 protein complexes, each of which is composed of more
than one protein. The protein complexes have been detected
by various experiments in literature, including two large-scale
experiments [8], [12].

Figure 1 shows how many interacting pairs, each of which
appears in the same function, localization and protein complex,
are in every range of the reliability scores. For the reliability
measurement, we used the annotations from specific GO terms,
which have more than 50 annotated proteins in Figure 1 (a),
and general GO terms, which have more than 100 annotated
proteins in Figure 1 (b). Among the interacting pairs with
the reliability of greater than 0.7, more than 97% appeared
in the same function, more than 92% appeared in the same
localization, and more than 86% appeared in the same protein
complex, in both cases of Figure 1 (a) and (b). As the
reliability rises, the proportion of the identically categorized

pairs is also increased. The results imply that the interaction
reliability between two proteins is positively correlated to their
functional, locational and physical associations. Moreover, the
proportion of the interacting pairs in Figure 1 (a) is a bit
higher in functional comparison than that in Figure 1 (b). It
is recognized that the reliability can be specifically measured
by our approach in terms of biological function.

B. Significance of Informative Nodes

Our previous study [5] investigated that the weighted degree
integrated with the genetic co-expressional profiles can select
topologically and biologically essential proteins in a protein
interaction network. It was shown that the informative nodes
selected by the weighted degree have higher average clustering
coefficient and higher lethality than the nodes selected by
un-weighted degree and Betweenness centrality. Since the
clustering coefficient of a node represents the effect of the node
on modularity, the selected nodes have topological significance
when we modularize the protein interaction network. The
weighted degree is also an appropriate index for selecting
biologically essential proteins, which are lethal in the protein
disruption test. However, due to the noisy expression data
generated from Microarray experiments, the results from the
previous study may still include false information.

In this study, we integrated the connectivity in a protein
interaction network with GO annotations to compute the
weight of each interaction. We assessed the topological and
biological essentiality of the informative nodes with high
weighted degree in the same way to the previous study [5].
In this experiment, we used a core protein interaction data of
Saccharomyces cerevisiae from DIP [19], which includes 2526
distinct proteins and 5949 interactions. As terminal GO terms,
we chose the terms with more than 50 annotated proteins.

The average clustering coefficients and lethality of the
informative nodes, which are selected by GO annotation based
weighted degree, are compared with the results from our
previous study [5] in Figure 2. Figure 2 (a) shows that the
GO annotation based weighted degree selects more modular
nodes than the co-expression based weighted degree. As for
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Fig. 2. The patterns of (a) the average clustering coefficients and (b) the lethality of the core nodes that are selected by weighted degree in Formula 4. The
weights of interactions were calculated by two different methods: the integration of the network connectivity with Gene Ontology (GO) annotations and gene
co-expressional profiles by Pearson correlation.

the lethality of proteins in Figure 2 (b), top 5% of nodes from
the GO annotation based weighted degree contains more lethal
proteins than those from the co-expression based weighted
degree. When we select top 20% of nodes as informative
nodes, the proportions of lethal proteins are similar in both
cases. However, more lethal proteins are included in top
5% when we use the GO annotation based weighted degree.
Overall, the modularity and essentiality of proteins in a protein
interaction network can be measured by the co-expressional
weighted degree, and even more precisely quantified by the
weighted degree integrated with GO annotations.

C. Accuracy of Identified Modules

We implemented the information flow-based approach for
identifying modules in the yeast protein interaction network.
The terminal GO terms with more than 50 annotated proteins
were used to estimate the reliability of interactions. After
calculating the weighted degree for each node, we selected
top 5% of the nodes as informative nodes. We then simulated
the information flow starting from each informative node with
the minimum information rate threshold of 0.1.

To statistically assess the accuracy of the generated modules
by our algorithm, we compared them with the functional and
sub-cellular locational categories from MIPS database [18].
Similar to our previous work [5], we calculate p-value on the
hypergeometric distribution such that

P = 1−
k−1∑
i=0

( |X |
i

) ( |V | − |X |
n− i

)
( |V |

n

) , (11)

where |V | is the total number of nodes, |X | is the number of
nodes in a category, n is the number of nodes in a module, and
k is the number of common nodes between the category and
the module. Low P in Formula 11 indicates that the module is
similar to the category. After computing P with each category,
we assigned one major function and localization to the module
by finding the lowest P , which means the best match. We
define p-score for each module as the negative of log(P ) with

the assigned function. We then evaluate the overall accuracy
using the average p-score of all modules.

We first compared the accuracy of this work with that of
our previous study [5]. Table I shows that the average p-score
of modules was remarkably improved by the integration of
GO annotations. Node discard rate in Table I represents the
proportion of the nodes that are not included in any modules.
After implementation, we selected the modules whose size is
greater than or equals to 5 as final modules. Thus, the small-
sized modules with less than 5 nodes have been discarded.

The modules resulted from a GO annotation based weighted
network have higher accuracy by more than 100% in function
and more than 70% in localization than those from the co-
expression based weighted network. As a post-process, we
merged similar modules to increase the accuracy of generated
modules. The post-process in GO annotation based method
improved the accuracy by 4% in function and 15% in local-
ization. However, the post-process did not work well for the
co-expression based method. These results indicate that the
GO annotation based method identified more accurate modules
by information flow simulation, and more effectively merged
them than the co-expression based method.

We finally compared the performance of our algorithm with
several other methods, such as the maximal clique algorithm,
the quasi-clique algorithm for finding clusters that maximize
an optimization function [3], [21], and the statistical method
for combining clusters with the significance of neighborhood
[20], the minimum cut algorithm, the interconnection cut
algorithm for iteratively cutting the edge with the highest Be-
tweenness centrality [9], and the Markov clustering algorithm
[7]. Table I demonstrates our approach outperforms the others
in terms of accuracy.

IV. CONCLUSION

Unreliable interaction data is one of the most critical issues
in current research of protein interaction networks. To resolve
this problem, we have studied the integration of protein
interaction networks with other biological knowledge. In this
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TABLE I

COMPARISON OF MODULARIZATION RESULTS.

Number of Average Size Node Discard Average p-Score
Methods Modules of Modules Rate (%) Functions Localization

Information Flow (GO annotation based)
Before Merging 125 45.79 23.2 38.52 22.61
After Merging 99 50.56 23.2 40.06 25.94

Information Flow (co-expression based)
Before Merging 125 33.36 34.8 18.24 15.42
After Merging 115 34.70 34.8 18.27 15.09

Maximal Clique 120 5.65 98.4 10.61 7.93
Quasi-Clique 103 11.17 80.8 11.50 6.58
Neighbor Merging 64 7.91 79.9 9.16 4.89
Minimum Cut 114 13.46 35.0 8.36 4.75
Interconnection Cut 180 10.26 21.0 8.19 4.18
Markov Clustering 163 9.79 36.7 8.18 3.97

paper, we use the annotations in Gene Ontology (GO) database
for assessing the reliability of interactions.

Our experimental results signify that GO annotations help
identifying more accurate modules than Microarray expres-
sional data. The GO annotations are explicitly a useful re-
source to evaluate the functional and locational associations
between two proteins because GO terms are precisely de-
scribed in biological processes, molecular functions and cel-
lular components. Also, it is known that the high-throughput
Microarray experiments typically generate large amounts of
noisy data. The unreliable data in protein interactions cannot
be cured by other noises in Microarray expressions.

Based on this study, we can discover valuable information
from protein interaction networks. For example, we can predict
functions of uncharacterized proteins from the identified mod-
ules. There are still a large number of functionally unknown
proteins in yeast database even though the yeast is one
of the most well-studied organisms. Discovering complete
knowledge of molecular functions may be an ultimate goal
in the field of Bioinformatics research.
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