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Abstract— This paper presents an algorithm for RNA sec-
ondary structure prediction based on Simulated Annealing (SA)
and also studies the effect of using different types of anneal-
ing schedules. SA is known to be effective in solving many
different types of minimization problems and for being able
to approximate global minima in the solution space. Based on
free energy minimization techniques, this permutation-based SA
algorithm heuristically searches for the structure with a free
energy value close to the minimum free energy ∆G for that
strand, within given constraints. Other contributions of this
paper include the use of permutation-based encoding for RNA
secondary structure and the swap mutation operator. Also, a
detailed study of the convergence behavior of the algorithm
is conducted and various annealing schedules are investigated.
An evaluation of the performance of the new algorithm in
terms of prediction accuracy is made via comparison with the
dynamic programming algorithm mfold for thirteen individual
known structures from four RNA classes (5S rRNA, Group I
intron 23 rRNA, Group I intron 16S rRNA and 16S rRNA).
Although dynamic programming algorithms for RNA folding are
guaranteed to give the mathematically optimal (minimum energy)
structure, the fundamental problem of this approach seems to be
that the thermodynamic model is only accurate within 5− 10%.
Therefore, it is difficult for a single sequence folding algorithm to
resolve which of the plausible lowest-energy structure is correct.
The new algorithm showed comparable results with mfold and
demonstrated a slightly higher specificity.

I. INTRODUCTION

”Just when scientists thought they had deciphered
the roles played by the cell’s leading actors, a
familiar performer has turned up in a stunning
variety of guises. RNA, long upstaged by its more
glamorous sibling, DNA, is turning out to have star
qualities of its own.” [1]

Over the past decade, it has become evident that Ribonucleic
Acid (RNA) not only plays a central role within living cells but
also performs a variety of tasks in many different biological
contexts. While Deoxyribonucleic Acid (DNA) consists of a
sequence of molecules made from the 4 nucleotides Adenine
(A), Cytosine(C), Guanine (G), and Thymine (T), RNA con-
sists of A, C, G, and Uracil (U), which replaces Thymine.
In the translation process, a ribosome uses the additional
tRNA available in the cell to produce a protein where 3

RNA nucleotides form a codon which encodes for one of
the 20+ amino acids. Our knowledge of RNA’s importance
is still expanding rapidly [2]. RNA is no longer just a passive
messenger of information and scaffold for proteins, it has a
central and active role in the functioning of the cell [3]. There
is a resurgence of interest in the RNA secondary structure
prediction problem due to the discovery of many new families
of non-coding RNAs with a variety of functions [2] [3].

The functions of RNA molecules are determined largely
by their three-dimensional structure. X-ray diffraction and
Nuclear Magnetic Resonance (NMR) data are often too costly
to be used to deduce the 3D form of a long RNA where, as
in many cases, only the single RNA sequence (the primary
structure), without further information regarding its functional
form, is available. Computational methods for prediction of
RNA secondary structure from the base sequence can help
shed light on the three-dimensional structure and functions of
these molecules. More fundamentally, experience with such
computer algorithms can also help us understand the physical
principles that determine how RNA molecules fold [4].

A. RNA Secondary Structure Prediction Algorithms

Determining the secondary structure of an RNA molecule
is widely seen as a first step towards understanding its bi-
ological function [4]. Comparative folding algorithms yield
good results but require multiple sequences and large sample
size (typical 1,000 structures), which are both time-consuming
and requires significant insight [5][6]. When the number of
available sequences with high similarity is small or when there
is only a single RNA molecule, prediction of RNA structure
based on free energy minimization is the most widely used
approach.

Free energy minimization of a single RNA sequence has
been studied since the early 1970s [7] and a number of
Dynamic Programming (DP) algorithms have been developed.
Matthews [8] has provided a review to the development
of these algorithms. Among these algorithms, a very pop-
ular algorithm for finding the minimum free energy (MFE)
pseudoknot-free secondary structure of an RNA molecule was
used by Zuker and Stiegler [9] [10]. This algorithm uses the
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primary RNA sequence as input and a DP algorithm to search
for a pseudoknot-free secondary structure with the MFE.
Although DP algorithms for RNA folding are guaranteed to
give the mathematically optimal (minimum energy) structure,
the fundamental problem of this approach seems to be that the
thermodynamic model is only accurate within 5 − 10%, and
a surprising number of alternative RNA structures lie within
5 − 10% of the predicted global energy minimum [11]. In
other words, the MFE structure is not guaranteed to be the
native structure. Therefore, it is difficult for a single sequence
folding algorithm to resolve which of the plausible lowest-
energy structures is correct [12]. Furthermore, for reasons
of computational complexity, pseudoknots are ignored in this
folding program.

As a result, different researchers had tried different heuris-
tic approaches: Van Batenburg [13] has shown that it is
possible to approximate the folding pathway of an RNA
molecule via a genetic algorithm by adding and deleting
stems. Furthermore, it is reasonable to expect that most RNA
molecules exist naturally in their most thermodynamically
stable configurations [4]. This is generally believed to be a
state close to minimum ∆G. Based on the hypothesis that
the natural folding process of RNA into a minimum energy
state is very similar to the annealing process, a stochastic
optimization algorithm such as SA should be a good candidate
for solving this problem. Schmitz and Steger’s [14] research
used Simulated Annealing (SA) for RNA secondary structure
prediction. However, their research was only able to provide
very limited results from a single RNA sequence (PSTVd) and
they could only claim that “the examples shown for PSTVd
RNA agree with experimental data”, without any quantitative
results reported. As a result, their results were very narrow
and the significance of the approach was not well established.
In contrast, the proposed algorithm SARNA-Predict not only
uses a more efficient permutation-based encoding for the RNA
secondary structure, but also uses a novel mutation operator
for structural mutation.

Today, most algorithms that predict RNA secondary struc-
tures cannot easily predict non-nested structures, such as
pseudoknots. Pseudoknots are tertiary RNA structure that are
formed by Watson-Crick pairing between a secondary loop
structure and compliment bases outside the loop. The general
problem of predicting RNA secondary structures including
pseudoknots has been proven to be NP-complete for an ideal-
ized thermodynamic model [15]. Because of the limitation of
our current thermodynamic model, the current reported results
of SARNA-Predict are only those that are pseudoknot free
structures. However, SARNA-Predict is capable in principle
of predicting structures with pseudoknots.

This paper presents results based on previous work [16] in
an algorithm for RNA secondary structure prediction based
on Simulated Annealing (SA) and also includes studies in
the effect of using different types of annealing schedules. The
permutation-based encoding for RNA secondary structures of
the proposed algorithm is based on a permutation-based Evolu-
tionary Algorithm (EA) [17]. In this encoding, different helices

were encoded as a permutation, where the final candidate RNA
secondary structure can be obtained by a decoder.

In addition, the current algorithm employs a modified SA
as its search engine. This is facilitated by combining a novel
mutation operator and different annealing schedules. Overall,
the algorithm has shown excellent results. The objectives of
this paper are as follows:
• To present a permutation-based simulated annealing algo-

rithm for RNA secondary structure prediction based on
free energy minimization techniques (SARNA-Predict).

• To study the effect of an adaptive annealing schedule for
RNA secondary structure prediction.

• To improve the prediction accuracy of longer structures
(> 100 nt) by measuring the results of SARNA-Predict
against the results of a DP algorithm (mfold). The pre-
dicted structures will be compared to thirteen individual
known native structures from four RNA classes (5S
rRNA, Group I intron 16S rRNA, Group I intron 23S
and 16S rRNA).

II. METHOD: SARNA-PREDICT

1) Permutation-based coding for RNA secondary structure:
The primary structure of RNA is an oriented linear sequence
of four nucleotides, denoted G, C, A and U (guanine, cytosine,
adenine, and uracil). RNA is a single stranded sequence and
this strand can fold back onto itself. Intra-molecular base pairs
can form between different nucleotides, folding the sequence
onto itself. The most stable and common of these base pairs are
GC, AU, and GU, and their mirrors, CG, UA, and UG. These
pairs are called canonical base pairs. A base pair does not
form in isolation in this model. It considers stacked pairs, or
helices, to form only when three or more adjacent pairs form.
Also, the loop connecting the stacked pair must be at least
three nucleotides in length. By using these rules, it is possible
to enumerate all the possible helices under our model that can
form in a structure. The challenge is in predicting which ones
will actually form in the native structure. The collective listing
of the paired bases of an RNA strand defines the secondary
structure.

The RNA secondary structure of the proposed algorithm
is encoded as a permutation which allows SARNA-Predict to
solve the RNA folding problem. Using SARNA-Predict, we
can view the problem of predicting the secondary structure of
RNA as one of picking the subset S of helices from the set
of all possible helices H , such that the free energy E(S) is
minimized and that no helices in S share one or more bases. If
the set of all helices, H , contains n helices, then a permutation
of length n may be used to represent a candidate solution.
The order in which a helix appears in the permutation is the
order in which it is picked by the decoder to be inserted
into the final structure. Helices that are incompatible with
any previously selected helices are rejected. For example, for
a given permutation, Pi = 〈h1, ...hi...hj ...hn〉, where n is
the total number of possible helices, if the helix h2 is in
conflict with h3 (they share one or more bases), then during
the decoding, h3 will not be included into the final structure.
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The main advantage of this approach is that this algorithm
will ensure that only valid secondary structures are produced
by the SARNA-Predict.

2) Algorithm: Simulated annealing (SA) was originally
motivated by the physical annealing process [18], it mimics
this process of material being heated and then slowly cooled
into a uniform structure. Thirty years later, Kirkpatrick et
al. [19] were the first to apply SA to optimization problems.
SARNA-Predict, a SA based algorithm for RNA secondary
structure prediction is shown in Figure 1.

1 Structure = Initial_Structure;
2 FreeEnergy = Evaluate(Structure);
3 Temperature = Initial_Temperature;

4 While (Temperature > Final_Temperature)
5 for (i=1 to Number_of_iterations)
6 New_Structure = Mutate(Structure);
7 New_FreeEnergy = Evaluate(New_Structure);
8 Delta_Energy = New_FreeEnergy - FreeEnergy;
9 if (Delta_Energy <= 0 OR

with probability
exp(-Delta_Energy/Temperature))

10 FreeEnergy = New_Energy;
11 Structure = New_Structure;
12 end if
13 end for
14 decrease Temperature;
15 end While

Fig. 1. Structure of the simulated annealing algorithm in RNA secondary
structure prediction

SARNA-Predict accepts all decreased energy structures and
probabilistically accepts increased energy structures in order
to avoid local minima in the search space. The decision to
either accept or reject a new structure configuration is based
upon the change in structure (∆Energy) between new and
current configurations. If ∆Energy ≤ 0, the new structure
will be accepted. However, if ∆Energy > 0, the new structure
will also be accepted with some probability. The Boltzmann
distribution is used to determine this probability. The prob-
ability of accepting the new structure when ∆Energy > 0
is given by Equation 1, where temperature T is the current
temperature (a control parameter in the annealing process) and
E is the energy state. This distribution expresses the idea that a
system in thermal equilibrium at temperature T has its energy
probabilistically distributed among all different energy states
(or values of ∆Energy). Even at low temperature, there is a
chance of the system being accepted.

Probability[Accept] = e
−(Enew−Eold)

T = e
−∆Cost

T (1)

Notice that when Enew < Eold, this probability is greater

than unity; in such cases the change is arbitrarily assigned
a probability P = 1 (i.e. the system always takes such an
option). As a result, this general scheme will most often accept
a new structure with lower free energy ∆G than the previous
one, but sometime will accept a structure with a higher ∆G.
Also, if T is decreased slowly enough, SARNA-Predict is
guaranteed to reach the best solution. However, it will take

an infinite number of moves. Furthermore, if T is high, the
algorithm is in an exploratory phase (all moves have about
the same probability), and if T is low, the algorithm is in an
exploitation phase (the greedy moves are most likely).

3) Cost Function: The main purpose of a cost function is
to evaluate the appropriateness of the current structure. The
method used here to evaluate the appropriateness of the current
structure with the previous best known structure.

∆Cost = ∆G(Snew)−∆G(Sold) (2)

where Snew is the current configuration and Sold is the old
configuration.

For the minimization problem, if the new cost is less than
the current cost, then the new structure should be kept since the
new structure is closer to the goal than the current structure.

In this study, we used the Individual Nearest Neighbor with
Hydrogen Bonds (INN-HB) Model [20], where we calculate
Gibbs free energy ∆G for an RNA secondary structure in
terms of the thermodynamic free energies of the individual
helices. The cost function will be the evaluation of the current
free energy of the current structure. INN-HB [21] was used
as it has been demonstrated to yield good results [20].

4) Mutation Operator: The main goal of the mutation
operator is to alter the structure in a controlled and intuitive
fashion. It randomly chooses control points and moves them
by a random amount to alter the structure. In this research, we
have implemented a novel combination of permutation-based
encoding and swap mutation as our mutation function [22]. In
swap mutation, two random points are selected and the two
digits at these positions are interchanged. For a permutation
vector, p = 〈H1, ...Hi...Hj ...Hn〉 a swap mutation is defined
as

pold = 〈H1, ...Hi...Hj ...Hn〉 → pnew = 〈H1, ...Hj ...Hi...Hn〉
(3)

where i and j ∈ [1, n] are randomly chosen positions. There
are different flavors of this swap mutation; in the classical
SA sense, each perturbation step will only swap by one swap
mutation step. The difference between the new conformation
and the old conformation is one step.

A second original mutation operator used was the per-
centage swap mutation operator, where the number of swap
mutations is the product of the percentage of the total number
of available helices and the current annealing temperature.
As a result, it is possible to have multiple swap mutations
occurring per single perturbation step, with the number of
swap mutations related to the annealing schedule via the
annealing temperature parameter.

NSwap = TCurrent × P (4)

where NSwap is the number of swap mutations performed,
TCurrent is the current temperature of the annealing schedule
and P is the percentage of the total number of available
helices.
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5) Convergence of Simulated Annealing for the RNA do-
main: One of the most important advantages of Simulated
Annealing is that it can be shown that, for any given finite
problem, the probability of the simulated annealing algorithm
terminating with the global optimal solution asymptotically
approaches 1 as the annealing schedule is extended [23].

As Azencott [24] outlined, consider an arbitrary finite set S,
which is the configuration space. In our case S is the set of all
possible RNA secondary structures for a particular sequence.
Let ∆G : S → IR be the function that calculates the score
in free energy ∆G. By definition, this is a generic sequential
annealing algorithm on S generating a random sequence Xn ∈
S of configurations that will tend to concentrate, as n → ∞,
on the set of absolute minima of ∆G.

Configuration i ∈ S is said to be a local minimum of the
energy ∆G if

∆Gi ≤ ∆Gj for j ∈ Si, (5)

and a global minimum of ∆G if

∆Gi = inf
j∈S

∆Gj , (6)

calling Smin the set of configurations that are the global
minima of ∆G.

Also, the cooling schedule (Tn) is asymptotically good if it
satisfies

lim
n→∞

P (Xn ∈ Smin) = 1 (7)

Geman et al. [23] first proved a necessary and sufficient
condition for the convergence of the algorithm to the global
minimum. They showed that if

lim
n→∞

Tn log(n) ≥ R ≥ 0 (8)

with R large enough, then Equation 7 holds. The best value
of the constant has been computed by Hajek [25], who linked
it precisely to the energy landscape.

6) Annealing Schedule: A finite time implementation of the
SA algorithm can be realized by generating Markov chains of
finite length for a finite sequence of descending values of tem-
perature. To achieve this, one must specify a set of parameters
that governs the convergence of the algorithm. These param-
eters are combined in a so-called annealing schedule [26].
Starting from a configuration S, the Metropolis procedure
simulates an equilibration process for a fixed temperature T ,
usually over a large number of time steps. To simulate the
cooling in the physical paradigm, we need only to repeat the
Metropolis procedure for decreasing temperatures, i.e.

To > T1 > ... > Tfinal (9)

which produces gradually decreasing free energies ∆G(S) of
the configurations

∆G(S0) ≥ ∆G(S1) ≥ ... ≥ ∆G(Sfinal) (10)

with S0 denoted as the structure from temperature step zero
and S1 as structure from temperature step one.

Often, the most difficult step in the annealing process is
the development of an appropriate annealing schedule. To
ensure the success of the optimization, the temperature (control
parameter) must be manipulated so that it is high enough to
move off a local minimum, but low enough not to move off
a global minimum. Due to the wide variety and complicated
nature of most combinatorial optimization problems, the most
suitable annealing schedule will be unique for each problem.
Ideally, the temperature should be lowered slow enough to
ensure that a good minimum is achieved, but also quick
enough so that computational time is minimized. In practice,
the classes of annealing schedules that are most widely used
have the following features [26] [27]:
• A high starting acceptance probability
• A very low terminating acceptance probability
• A slow cooling rate, α ∈ [0, 1[ i.e. where α between 0.8

and 0.99 is a recommended value, Tnew = αTold.
• The number of iterations is equal to the number of

neighboring solutions. Neighboring solutions are defined
as two adjacent states that can be reached by a single
move (i.e. (s, s′) ∈ M)

Specifically, an annealing schedule specifies a finite se-
quence of temperature values, which include the following:
a) an initial temperature (starting acceptance probability), b) a
decrement function for decreasing temperature (cooling rates),
c) a final temperature (stop criterion) and d) a finite number
of iterations at each temperature

There are several theoretical and empirical cooling sched-
ules suggested in the literature that can be categorized into
classes such as monotonic schedules, adaptive schedules, ge-
ometric schedules and quadratic cooling schedules [28]. For
further information, readers can refer to Hajek [25], Huang et
al. [29], and Thompson and Dowsland [30].

In the current incarnation of SARNA-Predict, three different
types of annealing schedules were evaluated and they are
shown in Table I. Geometric schedule is defined as Tnew =
αTold, where α is the cooling ratio (set to 0.95); Tnew and
Told are the new and old temperature values respectively.

We are using the adaptive schedule as described in [31]. In
the adaptive schedule, the length of a subchain with constant
temperature is set to the number of the local neighborhood.
The number of iterations per temperature is reduced according
to equation 11.

Tn = Tn−1(1 +
ln(1 + δ)Tn−1

3σ(Tn−1)
)−1 (11)

where σ(Tn−1) is the standard deviation of the values of the
cost function at the current temperature and δ is the distance
parameter. The size of δ determines the speed of the reduction
of the temperature and Aarts et al. [31] suggests the value
δ = 0.1.

III. RESULTS

A. Different Annealing Schedules

Thirteen RNA sequences were taken as test data from the
Comparative RNA Web Site [32]; they were chosen to provide

242

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



(a) (b)

(c) (d)

Fig. 2. Plots of a typical run of the Hildenbrandia rubra Group I intron, 16S rRNA (L19345) sequence. (a) showing the energy landscape using classical SA
with a geometric schedule and (b) showing the comparison of energy landscape of the classical SA and percentage swap mutation using geometric schedule.
(c) showing the energy landscape of using percentage swap mutation and using adaptive schedule. (d) showing a comparison of all three combinations on the
same scale.

TABLE I
THREE DIFFERENT TYPES OF SA BEING INVESTIGATED

Perturbation Coding Schedule
Modified SA (multiple swap muta-
tions move per perturbation step)

Permutation Geometric

Classical SA (one mutation move per
perturbation step)

Permutation Geometric

Modified SA (multiple swap mutation
move per perturbation step)

Permutation Adaptive

a good variety of sequence lengths, organisms and RNA
types. Each sequence chosen had a known structure available
for comparison, determined by comparative methods. Fig. 2
shows the results from a variety of different SARNA-Predict
runs for the Hildenbrandia rubra Group I intron, 16S rRNA
(L19345) sequence using different schedules. In particular,
Fig. 2a shows the results of using the geometric schedule.

This figure presents the graph which indicates the maximum
and minimum free energies that were being accepted during
a single run. Notice that during the initial stage where the
temperature values were high, the probability to accept a
structure with a higher energy was higher. As the temperature
decreased, fewer structures with higher energy were accepted.
Hence, we can observe the convergence behavior of the
algorithm. After about 601,000 moves, the lowest free energy
value reached was -219.28 kcal/mol.

Also, when the classical SA was compared to the modified
SA (Fig. 2b), modified SA found the conformation with a
lower energy structure sooner than classical SA. This is prob-
ably due to the multiple swap mutations occurring in a single
perturbation step, which gives the algorithm an opportunity to
explore more conformations in a shorter period of time when
compared to the classical SA method which only has a single
swap mutation per perturbation step.
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Fig. 2c shows a typical single run with percentage swap
mutation combined with permutation-based coding and adap-
tive schedule, where the adaptive schedule was implemented
according to Aarts et al. [31]. As Equation 11 indicates, to
calculate the temperature parameters it is necessary to calcu-
late the standard deviation of the value of the cost function
of the Markov chain, as a result the time to convergence is
much longer than for other schedulers, such as the geometric
scheduler.

Fig. 2d shows three different runs with three different
annealing schedules and perturbation methods as described in
Table I. One clearly sees that the adaptive schedule took the
longest time to run (about three times as long as classical
SA and nine times as long compared to modified SA). The
adaptive schedule has to compute the factor that decreases the
temperature as the algorithm proceeds, therefore requiring the
consumption of a large amount of CPU time during the SA
run.

Comparing the quality of the structures quantitatively, Ta-
ble II and Table III show the results of Drosophila virilis
16S rRNA (X05914) by using the adaptive schedule and the
geometric schedule respectively. Table II show the best overall
structure that gives the maximum correct base pair matches of
34.3% at ∆G = −178.83 kcal/mol was found with the 0.2%
swap mutation and 1,800 temperature subchain length. Also
note that the structure with the lowest energy value of ∆G =
−184.42 kcal/mol had only 23.6% corresponding base pair
matches. In Table II, the first column shows the cooling ratio
governing the lowering of the temperature. The second column
shows the percentage of the total number of permutations
possible. The third column shows the size of the temperature
subchain, which is the number of moves per temperature step.
The fourth column records the average correct base pairs in
100 runs. The fifth column records the maximum number
of correct base pairs when comparing the predicted structure
with the native structure. Column six shows the corresponding
free energy according to the INN-HB thermodynamic model.
In comparison, Table III shows the results of the modified
SA with adaptive schedule. The best overall structure that
gives the maximum correct base pair matches of 24.8% at
∆G = −200.61 and −199.89 kcal/mol.

Table IV and Table V show the results of Hildenbrandia
rubra Group I intron, 16S rRNA (L19345) by using the adap-
tive schedule and the geometric schedule respectively. Table IV
show the best overall structure that gives the maximum correct
base pair matches of 57.2% at ∆G = −220.00 kcal/mol was
found with the 0.3% swap mutation and 1,600 temperature
subchain length. Also note that the structure with the lowest
energy value of ∆G = −225.89 kcal/mol had only 51.4%
corresponding base pair matches. In comparison, Table V show
the best overall structure that gives the maximum correct base
pair matches of 59.4% at ∆G = −222.77 kcal/mol.

As the above results indicated, the modified SA with
adaptive schedule does not show significant improvement in
terms of the final results in terms of maximum correct base
pair matches when compared to modified SA with geometric

TABLE II
RESULTS OF COMPARISON WITH NATIVE Drosophila virilis 16S rRNA

(X05914) STRUCTURE USING GEOMETRIC SCHEDULE GROUPED BY

NUMBER OF RANDOM SWAP MUTATIONS AND THE SIZE OF THE

TEMPERATURE SUBCHAIN. BEST RESULTS ARE IN BOLD.

Cooling
Ratio

% of
swap
muta-
tions

Temp.
sub-
chain

Average
Correct
BP’s
(%)

Max.
Correct
BP’s
(%)

∆G
(kcal/mol)

0.95 0.1 2000 12.05 23.6 -184.42
0.95 0.1 1800 12.83 24.8 -172.10
0.95 0.1 1600 12.19 24.8 -176.10
0.95 0.1 1400 12.48 27.0 -171.27
0.95 0.1 1200 12.29 23.6 -161.89
0.95 0.1 1000 12.85 23.6 -176.63
0.95 0.2 2000 11.93 27.0 -174.08
0.95 0.2 1800 12.64 34.3 -178.83
0.95 0.2 1600 12.39 29.6 -179.56
0.95 0.2 1400 12.19 25.3 -180.85
0.95 0.2 1200 11.76 23.6 -179.90
0.95 0.2 1000 12.77 21.8 -170.28

TABLE III
RESULTS OF COMPARISON WITH NATIVE Drosophila virilis 16S rRNA

(X05914) STRUCTURE GROUPED BY NUMBER OF RANDOM SWAP

MUTATIONS (PERCENTAGE MUTATION) USING ADAPTIVE SCHEDULE AND

INN-HB THERMODYNAMIC MODEL. BEST RESULTS ARE IN BOLD.

number of
swap mu-
tations

Temp.
subchain

Average
Correct
BP’s (%)

Max. Cor-
rect BP’s
(%)

∆G
(kcal/mol)

0.2 1600 12.41 24.8 -200.61
0.2 1800 12.54 24.8 -199.89
0.2 2000 11.90 23.6 -198.48
0.2 2200 11.39 21.0 -201.74

schedule. (For Drosophila virilis 16S rRNA (X05914), 24.8%
compared to 34.3% and for Hildenbrandia rubra Group I
intron, 16S rRNA (L19345) 59.4% compared to 57.2%.) Also,
the amount of time necessary to run the algorithm for modified
SA with adaptive schedule is prohibitively long (see Fig. 2).
Therefore, we continue our study with modified SA with
geometric schedule.

B. Comparison to mfold

Here, we compare the prediction performance of SARNA-
Predict with the popular dynamic programming algorithm
mfold which uses a complex thermodynamic free energy
model [10].

Table VI used the metrics derived from Baldi et al. [33] for
comparison. In Table VI, “Known bps” is the total number
of base pairs present in the known structure. “Predicted bps”
is the total number of base pairs present in the predicted
structure. “TP” is the true positive base pair count where the
predicted base pairs are present in the known structure. “FP”
is the false positive base pair count where the predicted base
pairs are not present in the known structure. “FN” is the false
negative base pair count where the base pairs are present in the
known structure and not in the predicted structure. Using these
numbers, sensitivity, specificity, and F-measure were computed
according to these formulas: “Sensitivity (%)” = TP/(TP +
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TABLE IV
RESULTS OF COMPARISON WITH NATIVE Hildenbrandia rubra Group I

intron, 16S rRNA (L19345) STRUCTURE USING GEOMETRIC SCHEDULE

GROUPED BY NUMBER OF RANDOM SWAP MUTATIONS. BEST RESULTS

ARE IN BOLD.

Cooling
Ratio

% of
swap
muta-
tions

Temp.
sub-
chain

Average
Correct
BP’s
(%)

Max.
Correct
BP’s
(%)

∆G
(kcal/mol)

0.95 0.2 2000 33.61 51.4 -225.89
0.95 0.2 1800 31.97 50.0 -215.64
0.95 0.2 1600 30.33 53.6 -222.03
0.95 0.2 1400 30.11 48.5 -209.35
0.95 0.2 1200 27.16 51.4 -217.13
0.95 0.2 1000 28.23 54.3 -216.88
0.95 0.3 2000 31.39 53.6 -223.91
0.95 0.3 1800 33.76 56.4 -218.43
0.95 0.3 1600 31.98 57.2 -220.00
0.95 0.3 1400 31.36 50.0 -215.86
0.95 0.3 1200 32.05 53.6 -214.21
0.95 0.3 1000 30.88 54.3 -213.09

TABLE V
RESULTS OF COMPARISON WITH NATIVE Hildenbrandia rubra Group I

intron, 16S rRNA (L19345) STRUCTURE GROUPED BY NUMBER OF RANDOM

SWAP MUTATIONS (PERCENTAGE MUTATION) USING ADAPTIVE SCHEDULE

AND INN-HB THERMODYNAMIC MODEL. BEST RESULTS ARE IN BOLD.

number of
swap mu-
tations

Temp.
subchain

Average
Correct
BP’s (%)

Max. Cor-
rect BP’s
(%)

∆G
(kcal/mol)

0.2 1800 31.97 51.4 -224.85
0.2 2000 33.44 59.4 -220.77
0.2 2200 33.38 58.6 -224.45
0.2 2400 33.64 54.3 -219.76

FN)× 100. “Specificity (%)” = TP/(TP + FP )× 100. “F-
measure (%)” = 2× specificity × sensitivity / (specificity +
sensitivity) ×100. F-measure is a single performance measure
for a predictor which combines both specificity and sensitivity
into a single measure.

Table VI summarizes the comparison of the best structure
from SARNA-Predict and mfold. mfold not only attempts to
find the structure with the minimum energy, it also searches
for sub-optimal structures, which may be closer to the native
structure. To make the following comparison, the mfold re-
sults were generated from the web server version 3.1 with
default settings chosen. The structures with energy values
ranked in the lowest 5% were chosen. These sub-optimal
structures were then compared against the prospective native
structures. Table VI shows the comparison of various mfold
results for the different sequences with SARNA-Predict results.
We found that SARNA-Predict showed comparable average
results when compared to mfold, even though mfold employs a
much more sophisticated thermodynamic model than SARNA-
Predict’s INN-HB. SARNA-Predict was within 1.4% in terms
of Sensitivity, outperforming by 0.5% in terms of Specificity
and within 0.4% of average F-measure when compared to
mfold.

IV. CONCLUSION

We have presented a permutation-based simulated annealing
algorithm for RNA secondary structure prediction (SARNA-
Predict). This paper comprises four significant contributions
to the general problem of RNA secondary structure prediction:
a) the use of permutation based encoding for RNA secondary
structure in an SA algorithm, b) the swap mutation operator,
c) a successful proof of concept in employing SA in RNA
secondary structure prediction with comparable results to
mfold and d) the studies of the impact in using different an-
nealing schedules were examined. The results of thirteen RNA
sequences from a variety of sequence lengths and organisms
were tested in respect to a leading RNA secondary structure
prediction algorithm, mfold.

Overall, the prediction accuracy of SARNA-Predict was
found to be very good for structures with shorter sequences
such as 5S rRNA. Comparing the three types of annealing
schedules investigated, the modified SA with geometric sched-
uler provided a faster convergence behavior. Even though the
adaptive scheduler in a long run can find a structure with a
lower minimum free energy, the amount of running time may
prohibit its use in a practical sense for longer sequences. In
comparing with mfold, the SA algorithm shows comparable
results (in terms of F-measure) even with a less sophisticated
thermodynamic model. In terms of average Specificity, the SA
algorithm has provided surpassing results.

In future work, it will be important to consider incorporating
different thermodynamic models into the SA algorithm since
it is a main factor in controlling the annealing process. mfold
showed a slight advantage over SARNA-Predict in terms of
Sensitivity which may be due to its more sophisticated ther-
modynamic model. Also in the current model, non-canonical
base pairs such as CU and GA were not considered either
by SARNA-Predict or mfold; however, such non-canonical
base pairs are found in these native RNA structures. Future
work includes modeling of non-canonical base pairs to further
increase the prediction performance of SARNA-Predict. While
rRNA structure is relevant to its function [34], in future studies
we plan to include other types of RNA as well. Another
topic for further investigation is finding an optimized adaptive
schedule and a possible hybridization of the SA approach with
an EA.

REFERENCES

[1] J. Couzin, “Breakthrough Of The Year: Small RNA Make Big Splash,”
Science, vol. 298, no. 5602, pp. 2296–2297, 2002.

[2] R. W. Simons and M. Grunberg-Manago, Eds., RNA Structure and
Function. Planview, NY: Cold Spring Harbor Lab. Press, 1997.

[3] P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz, “The
Structural Basis of Ribosome Activity in Peptide Bond Synthesis,”
Science, vol. 289, no. 5481, pp. 920–930, 2000.

[4] I. T. Jr and C. Bustamante, “How RNA folds,” Journal of Molecular
Biology, vol. 293, no. 2, pp. 271–281, 1999.

[5] C. Y. Chan, Y. Ding, and C. E. Lawrence, “Structure clustering features
on the Sfold web server,” Bioinformatics, vol. 21, no. 20, pp. 3926–3928,
2005.

[6] S. Washietl, I. L. Hofacker, and P. F. Stadler, “From The Cover: Fast
and reliable prediction of noncoding RNAs,” PNAS, vol. 102, no. 7, pp.
2454–2459, 2005.

245

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



TABLE VI
COMPARISON OF THE HIGHEST MATCHING BASE PAIR STRUCTURES RESULTS FROM SARNA-Predict AND mfold PREDICTION ALGORITHM IN TERMS OF

SENSITIVITY, SPECIFICITY AND F-MEASURE. BEST RESULTS ARE IN BOLD.

Sequence Length (nt) RNA Class Known Sensitivity Specificity F-measure
(accession number) bps (%) (%) (%)

SA mfold SA mfold SA mfold
S. cerevisiae (X67579) 118 5S rRNA 37 89.2 89.2 84.6 80.5 86.8 84.6
H. marismortui (AF034620) 122 5S rRNA 38 71.1 76.3 90.0 85.3 79.4 80.6
M. anisopliae (3) (AF197120) 394 Group I intron, 23S rRNA 120 62.5 76.7 62.0 79.3 62.2 78.0
M. anisopliae (2) (AF197122) 456 Group I intron, 23S rRNA 115 47.0 45.2 41.2 39.1 43.9 41.9
A. lagunensis (U40258) 468 Group I intron, 16S rRNA 113 64.6 65.5 55.3 55.6 59.6 60.2
H. rubra (L19354) 543 Group I intron, 16S rRNA 138 57.3 60.1 48.8 49.7 47.8 54.4
A. griffini (U02540) 556 Group I intron, 16S rRNA 131 66.4 72.5 51.8 54.6 58.2 62.3
C. elegans (X54252) 697 16S rRNA 189 29.6 21.2 27.7 18.4 28.6 19.7
D. virilis (X05914) 784 16S rRNA 233 34.3 35.2 33.5 32.5 33.9 33.8
X. laevis (M27605) 945 16S rRNA 251 44.6 45.0 44.3 46.1 44.4 45.6
H. sapiens (J01415) 954 16S rRNA 266 43.6 35.7 47.5 36.8 45.5 36.3
A. fulgens (Y08511) 964 16S rRNA 265 35.1 27.9 37.0 30.7 36.0 29.3
S. acidocaldarius (D14876) 1494 16S rRNA 468 48.3 57.9 50.0 54.6 49.1 56.2
Average 181.8 53.1 54.5 51.5 51.0 52.1 52.5

[7] I. Tinoco, O. C. Uhlenbeck, and M. D. Levine, “Estimation of secondary
structure in ribonucleic acids,” Nature, vol. 230, pp. 362–267, 1971.

[8] D. H. Mathews, “Revolutions in RNA secondary structure prediction,”
Journal of Molecular Biology, vol. 359, pp. 526–532, 2006.

[9] M. Zuker and P. Stiegler, “Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information,” Nucl.
Acids. Res., vol. 9, no. 1, pp. 133–148, 1981.

[10] M. Zuker, “Mfold web server for nucleic acid folding and hybridization
prediction,” Nucleic Acids Research, vol. 31, no. 13, pp. 3406–3415,
2003.

[11] S. R. Eddy, “How do RNA folding algorithms works?” Nature Biotech-
nology, vol. 22, no. 11, pp. 1457–1458, 2004.
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