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The accurate prediction of enzyme catalytic sites remains an

open problem in bioinformatics. Recently, several structure-

based methods have become popular; however, few robust

sequence-only methods have been developed. In this report, we

demonstrate that three different feed forward neural networks,

trained on a variety of sequence-based properties, can reliably

predict enzyme catalytic sites. To the best of our knowledge, this

is only the second report using neural networks to predict

catalytic sites, and is the first relying solely on sequence-derived

information. Scaled conjugate gradient is used during training of

the models. The simplest of the models uses only sequence

conservation, diversity of position and residue identity within the

input. Surprisingly, model accuracy is largely unaffected when

sequence-based predictions of structural properties (i.e. solvent

accessibility and secondary structure) are added to the input. A

similar lack of improvement is observed when evolutionary

information in the form of phylogenetic motifs is included. These

results are noteworthy because they indicate that routine neural

network architectures can accurately predict catalytic using only

residue identity and conservation inputs. However, applying

these methods on a per protein basis still produces a significant

number of false positives, which significantly reduces the

model’s utility to experimentalists.

I. INTRODUCTION

The identification of protein functional and/or catalytic

sites is an especially important bioinformatic problem. This

information is important because it can aid understanding of

catalysis, identify new drug targets and predict the effects of

nonsynonymous single nucleotide polymorphisms. There are

currently several widely used protein functional site

prediction strategies (see [1] and [2] for two recent reviews);

however, most are (at least in part) based on protein structure.

Due to the fact that the number of solved protein structures

continues to lag behind sequence coverage by at least three

orders of magnitude, the utility of such methods is restricted.

Moreover, the gap between sequence and structural coverage

will continue to grow as more and more high-throughput

genome sequencing efforts are completed. Consequently, the

importance of being able to accurately predict functional sites

from sequence will continue to be important post-genomic

task.

Previously [3], we have demonstrated that phylogenetic

motifs (PMs), which are sequence alignment fragments that

approximate the overall familial phylogeny, are very good

predictions of regions surrounding enzyme active sites. PMs

are similar in spirit to the evolutionary trace approach, yet

they are explicitly designed to not rely on structural

information. Our previous investigations across a wide range

of protein architectures and functional classes demonstrate

that PMs consistently cluster around protein active sites

and/or substrate binding epitopes [3,4]. Moreover, through

comparison to Poisson-Boltzmann electrostatic calculations,

we have elucidated the functional role of many PM residues

[5]. Frequently, these residues makeup evolutionarily

conserved electrostatic networks at the enzyme active site that

serve to fine-tune the activity of the catalytic sites.

Catalytic sites are defined as residues that are directly

involved in the enzyme-mediated reaction pathway, meaning

that catalytic sites represent a small subset of all functional

sites. In this investigation, we attempt to predict enzyme

catalytic sites from sequence information alone. Toward this

goal, several different neural networks are trained on residue,

sequence alignment and sequence-derived information. The

inspiration for this work is from the recent report from

Gutteridge et al. [6], where a neural network was successfully

trained on a combination of sequence and structure inputs.

While neural networks are frequently applied to a wide

variety of bioinformatic problems (i.e., secondary structure,

contact map and splice site prediction), the Gutteridge et al.

effort is, to the best of our knowledge, the only other report

applying neural networks to the catalytic site problem. The

accuracy of the earlier effort is a consequence of both the

sequence and the structural inputs.

In order to partially compensate for the loss of structural

information in our sequence-only effort, we test the ability of

sequence-derived predictions of structural quantities (i.e.,

solvent accessibility and secondary structure) to improve

learning. Surprisingly, our results indicate that model

accuracy is largely unaffected, if not slightly reduced, when

including such predictions. A similar performance decrease is

observed when PMs are encoded within the input. These

results are noteworthy because they demonstrate that accurate
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catalytic site prediction can be achieved using only residue

identity and familial conservation within routine neural

network architectures.

II. METHODS

A. Neural network

In this investigation, we use the multilayer perceptron,

which is a feed forward neural network, implemented within

MATLAB [7]. A scaled conjugate gradient search algorithm

is used during training. Our dataset is composed of 132

proteins taken from the Catalytic Site Atlas (CSA) [8]. The

CSA is a well-curated database of experimentally validated

and predicted (from homologous entries) enzyme catalytic

sites. Each site within the database is annotated as catalytic or

not, making supervised learning straightforward. In this

report, we only utilize the experimentally validated sites. For

training and assessment, the dataset is randomly divided into

nine similarly sized groups. Training is performed on eight of

the datasets, and network performance is assessed by

predictions on the ninth. Thus, nine different data

permutations are investigated.

Training on the complete CSA is problematic due to the

limited number of catalytic sites within each protein. On

average, each enzyme has only 3-6 catalytic sites, whereas the

average enzyme length is greater than 200 residues.

Consequently, successful learning on such sparse data is an

exceedingly difficult computational problem. In order to

circumvent this, we employ the same solution adopted by

Gutteridge et al. All catalytic sites are included in the training

set; however, only a randomly selected fraction of the non-

catalytic sites are utilized. By testing several different ratios,

Gutteridge et al. found that a ratio of 1 to 6 (catalytic to non-

catalytic) resulted in the best network performance. We use

the same ratios here.

Systematic testing of model performance vis-à-vis the

number of neurons within the single hidden layer reveals

twenty to be ideal (results not provided). Twenty neurons are

used within all of the results reported here. In order to

facilitate comparisons between different inputs, all networks

are trained to a fairly consistent error threshold. The number

of epochs required to reach the threshold is provided in Table

1. The approximate amount of compute time within in Table

1 is ~1.8 seconds/epoch. In all cases, the log-sigmoid transfer

function is used between the input and hidden layers, as well

as between the hidden and output layers.

B. Input encoding

Our inputs closely resemble those from Gutteridge et al. A

unique vector describes each site within an input protein

sequence. An example input vector is provided in Figure 1.

Within each vector, amino acid identity is orthogonally

encoded over twenty different elements. In order to provide

sequence conservation information, each input sequence is

PSI-BLASTed [9] against the NCBI Non-Redundant Protein

Database [10]. All homologs from four PSI-BLAST iterations

are collected. A Diversity of Position Score (DOPS) and a

Conservation Score (CS) are calculated from the PSI-BLAST

alignment using the program SCORECONS [11]. The DOPS

and CS values are rescaled as floating-point numbers (0.0-

1.0) and added to the input vector. Inclusion of these three

properties only constitutes our sequence only neural network

(SeqNN).

In an attempt to compensate for the lack of explicit

structural information, sequence-based predictions of residue

solvent accessibility (RSA) and secondary structure (SS) are

included. Structurally derived RSA and SS were included in

the input by Gutteridge et al. RSA and SS predictions are

calculated using third-party one-dimensional recurrent neural

network programs. RSA is predicted using ACCPro [12],

whereas SS is predicted using SSPro [13]. Both are from the

SCRATCH suite of programs [14] from the University of

California at Irvine. As done previously by Gutteridge et al.,

we orthogonally encode three SS states (helix, sheet and coil)

within the input vector. For example, {0 0 1} corresponds to

coil. The RSA predictions from ACCPro are simply binary

values (exposed or buried); consequently, RSA is

orthogonally encoded in the same way directly from the

ACCPro predictions.

Fig. 1. An example of the neural network encoding. A unique vector

describes the attributes of each residue within the dataset. The vector shown

corresponds to the CompNN; the NoPMM and SeqNN exclude the PM and

the RSA + SS + PM elements, respectively.

C. Phylogenetic motif identification

Not surprisingly, one of the most heavily weighted

structural metrics within the Gutteridge et al. investigation

was cleft information. It is well known that catalytic sites

generally reside in the depths of active sites clefts within the

protein structure [15]. Using Surfnet [16], Gutteridge et al.

identified all clefts within the input structure before

constructing the input. Cleft information was orthogonally

divided into four categories: no cleft, largest cleft, second or

third largest cleft and fourth to ninth largest cleft.

Unfortunately, reliable predictions of protein clefts from

sequence remain elusive. Therefore, we alternatively encode

PM information into the input in an attempt to compensate for

the lack of cleft information.

As stated above, PMs consistently correspond to enzyme

active site regions, which should, at least partially, offset the

loss of cleft information. Across a structurally and

functionally diverse protein family dataset, PMs consistently

correspond to known functional sites defined by surface

loops, active site clefts, and partially buried regions

interacting with prosthetic groups. This point is exemplified

in Figure 2. In each, it is clear that the identified PMs cluster

around the active site.
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Fig.2. PMs consistently correspond to known functional sites. This figure

shows a sampling of the structurally diverse examples previously

investigated. Identified PMs are structurally clustered and correspond to

functional sites in: (a) TIM, (b) inorganic pyrophosphatase, (c) myoglobin,

(d) TATA-box binding protein and (e) CuZn superoxide dismutase. Dark

spheres represent PM -carbons; light spheres represent the substrate analog,

pyrophosphate, heme, and copper/zinc ions in (a), (b), (c) and (e),

respectively. The PMs in (d) correspond to the DNA binding site.

PMs are identified using MINER [17], which is our

automated PM identification software. MINER begins by

sliding a window across an input multiple sequence

alignment. A phylogenetic tree is constructed for each

alignment fragment, which is then compared to the complete

familial phylogenetic tree using a modified bipartition metric

[18]. All overlapping windows that score past some tree

similarity threshold are deemed to be a PM. In our early

implementation of the approach, this threshold had to be set

manually for each trial. Threshold values vary significantly

between different examples, meaning that no single threshold

is robust enough for large-scale application of the method.

Threshold determination was subsequently automated using a

novel algorithmic approach in order to determine ideal

thresholds on a case-by-case basis [4].

Based on the way PMs are defined, encoding PM

information into the input vector poses two challenges. The

first challenge arises from the fact that a single PM is defined

to be the union of several overlapping sequence windows,

each with its own bipartition score. Furthermore, these

constituent bipartition scores can vary significantly. Simply

averaging these scores to define a global score might be

attractive due to ease; however, there is no theoretical rational

to support such an approach. In order to circumvent this

global score problem, we simply coarse-grain each site into a

binary (1, 0) depending on whether it (does, does not)

correspond to a PM. A second problem with encoding PM

information is due to the fact that the automated threshold

identification algorithm within MINER is explicitly designed

to be overly stringent, meaning that it is biased towards false

negatives versus false positives. However, a qualitative

analysis of the PM results vis-à-vis the Catalytic Site Atlas [8]

indicates it to be overly stringent when predicting catalytic

sites (unpublished results). Therefore, we have added a

second, less stringent, threshold to the PM results. The second

threshold is exactly one standard deviation away from the

automated threshold. If a site scores past the second

threshold, but not the automated threshold, then a value of

0.66 is added to the input. If the site scores past the automated

threshold, then a 1.0 is input, else the site receives a 0.0.

The neural network based on the complete set of input

metrics, which is described in Figure 1, is denoted CompNN.

In order to test the ability of PMs to add information to the

network, a third neural network is constructed. The NoPMNN

includes all elements of the CompNN except the final element

encoding the MINER results is omitted.

III. RESULTS AND DISCUSSION

A. CompNN

The ability of CompNN to successfully learn on the

training data is described in Table 1. The dataset designation

corresponds to predictions on that portion of the dataset based

on training on the remainder. Predictive abilities are assessed

by Receiver Operating Characteristic (ROC) graphs. ROC

plots sensitivity values (true positive rate) versus 1-specificity

values (false positive rate). Overall model performance is

based on the area under the ROC curve. A method is

considered better than random if its curve is over the y = x

curve, whereas a method is worse than random if it is beneath

the y = x curve. An example ROC plot is provided in Figure

3.

As can be seen from the area under the ROC curves

(Figure 3 and Table 1), the quality of the CompNN

predictions is much better than random. In all cases, the plots

are shifted significantly to the left of the y = x line. An ROC

curve can be thought of as the tradeoff between true and false

positive rates at every possible threshold. In this example, it is

clear that the tradeoff between the two is very good,

especially at low false positive rates. In catalytic site

prediction, it is common to consider false positive rates below

20% acceptable [19]. Figure 3 demonstrates that at a false

positive rate of 20% (indicated by the vertical dashed line),

the true positive rate is 80%. These results are very good,

especially considering they lack any structural information.

For example, these results are inline with those reported in

Amitai et al. [19] and Thibert et al. [20], both of which use an

immerging structure-based catalytic site prediction scheme. In

both, the protein structure is recast as a topological network,

and residues with the highest centrality values are put forth as

catalytic site predictions.

The above ROC results are reinforced by examining the

data in a second way. Figure 4 plots the neural network score

for all sites within dataset 7, which, based on ROC

performance, is rank-ordered only fifth of nine. Using a

prediction threshold of 0.75 (meaning network scores greater

than 0.75 are considered to be catalytic site predictions), there

are 16 false negatives and only 5 false positives. This

translates to a total error of 8.5%; total error is calculated by:

(# false negatives + # false positives) / total sites * 100. The

overall accuracy is simple 1 – error. Interestingly, the error in

dataset 7 is the best of the nine CompNN examples, despite

the fact that its performance is judged to only be average by

the ROC analysis. Similar contradictions between accuracy
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and ROC areas are observed within the other data

permutations.

TABLE 1

SUMMARY OF TRAINING AND ROC RESULTS

CompNN

Dataset Error Epochs ROC Area

1 0.0189 1,803 0.599

2 0.0190 3,324 0.518

3 0.0190 2,012 0.622

4 0.0189 1,985 0.696

5 0.0189 1,549 0.559

6 0.0189 5,016 0.650

7 0.0194 15,000 0.635

8 0.0190 15,000 0.757

9 0.0190 15,000 0.676

SeqNN

Dataset Error Epochs ROC Area

1 0.0241 35,000 0.547

2 0.0240 77,002 0.589

3 0.0228 80,000 0.639

4 0.0233 80,000 0.665

5 0.0228 80,000 0.741

6 0.0251 104,852 0.886

7 0.0243 80,000 0.631

8 0.0270 85,076 0.661

9 0.0265 100,751 0.633

NoPMNN

Dataset Error Epochs ROC Area

1 0.0199 2,336 0.595

2 0.0199 3,217 0.658

3 0.0190 3,537 0.598

4 0.0199 4,956 0.670

5 0.0199 8,764 0.552

6 0.0199 2,895 0.634

7 0.0200 7,771 0.694

8 0.0199 3,331 0.800

9 0.0199 4,059 0.713

Fig. 3. Example ROC plot. Sensitivity (TP rate) is plotted against 1-

specificity (FP rate). Dataset number 8 is shown. The area under the ROC

curve is 0.757. The dashed diagonal line indicates the random expectation.

The vertical dashed line demonstrates that at false positive rates below 20%,

the true positive rate is 80%. ROC curves are calculated using the Matlab

ROC toolkit (http://theoval.sys.uea.ac.uk/matlab/default.html).

Table 2 highlights the false negative, false positive and

total errors for all nine datasets. The average error over all

nine datasets is an impressive 12.0% (the standard deviation

is 2.6%). Equally encouraging is the fact that the CompNN

results are very specific. Overall, the total number of false

positives (161) is less than the total number of false negatives

(174). This global result is observed in all but two of the

individual datasets.

Fig. 4. Neural network scores for all sites within dataset 7. The sites have

been sorted such that all non-catalytic sites are to the left, whereas, as

indicated, the catalytic sites are to the far right. In this example, there are five

false positive and 16 false negatives, which corresponds to an error of 8.5%.

B. SeqNN and NoPMNN

In general, it is much more difficult to train SeqNN

compared to CompNN. In fact, 80,000 epochs of training are

unable to match the training errors of CompNN (which

average 6,743 epochs of training). Moreover, extensive

training, over 200,000 epochs in one case (data not shown),

the error never approached those achieved by CompNN.

Nevertheless, the overall prediction accuracy of SeqNN is

similar to the CompNN results. In fact, the average error and

ROC areas of the SeqNN results (see Figure 5) are slightly

better than those from CompNN. Based on the conclusions

drawn within the Gutteridge et al. report, we naively assumed

that, despite the innate problems associated with secondary

structure and solvent accessibility predictions, the additional

descriptors would improve prediction accuracy. This is

clearly not the case, which is exciting because it demonstrates

that residue identity and alignment conservation are all that is

required to accurately predict catalytic sites using current

neural network techniques.

When an error estimate of one standard deviation is added,

the differences between CompNN and SeqNN are shown to

be statistically equivalent. (Future work will apply more

sophisticated statistical analyses to the two methods.) A case-

by-case comparison of the ROC areas further highlights how

similar the accuracies of the two methods actually are.

CompNN outperforms SeqNN five times (out of the nine

total), whereas SeqNN outperforms CompNN five times

when considering total errors. As before, the total number of

250

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



false positive (142) is again less than the total number of false

negatives (179).

TABLE 2

FALSE POSITIVES (FP) VS. FALSE NEGATIVES (FN)1

CompNN

Dataset #FP #FN Total Error

1 42 33 461 16.3%

2 14 26 294 13.6%

3 5 19 236 10.2%

4 9 14 230 10.0%

5 19 23 294 14.3%

6 14 15 251 11.6%

7 5 16 248 8.5%

8 31 15 341 13.5%

9 22 13 351 10.0%

SeqNN

Dataset #FP #FN Total Error

1 50 32 461 17.8%

2 13 23 294 12.2%

3 9 18 236 11.4%

4 5 15 230 8.7%

5 9 15 294 8.2%

6 11 8 251 7.6%

7 5 23 248 11.3%

8 20 25 341 13.2%

9 20 20 351 11.4%

NoPMNN

Dataset #FP #FN Total Error

1 62 31 461 20.2%

2 6 26 294 10.9%

3 4 21 236 10.6%

4 4 13 230 7.4%

5 11 22 294 11.2%

6 23 19 251 16.7%

7 3 16 248 7.7%

8 15 25 341 11.7%

9 24 20 351 12.5%
1 In all cases, a prediction threshold of 0.75 is used.

Removing PM information from the CompNN (called

NoPMNN) does not change the results appreciably. Based on

both performance measures used above, the NoPMNN results

are statistically indistinguishable from the CompNN and

SeqNN results (Figure 5). As before, the uniformity of

method accuracy is demonstrated by case-by-case

comparisons of the three networks (Table 3). Like the

previous two models, the total number of NoPMNN false

positive (152) is again less than the number of false negatives

(193).

While we were initially surprised by the uniformity of the

results from the three networks, careful consideration reveals

that we should have expected it. This is because within the

Gutteridge et al. paper, they surprisingly demonstrate that the

input element with the largest relative weight is simply

whether or not the amino acid in question is histidine. The

second most important input element is sequence

conservation, followed by whether or not the amino acid is

lysine, cysteine, aspartate, glutamate and arginine --- which

are all included within the SeqNN. Relative solvent

accessibility is the most important of the structural

characteristics within the Gutteridge et al. results, which is

only the eighth most heavily weighted across their whole

input. The diversity of position score, which is a “chemical”

conservation metric is the ninth most heavily weighted. The

10
th

-15
th

most important input elements in Gutteridge et al.

are whether or not the residue is serine, tyrosine, glutamine,

threonine, asparagines, methionine and glycine, meaning that

14 of the 15 most important input elements are included

within the simple SeqNN. The fact that 13 of the top 15 input

elements corresponds to a specific residue identity highlights

that only certain amino acids have the appropriate

physiochemical properties to be catalytic. The observation

that alignment conservation is so important highlights the

evolutionary pressures acting on an enzyme family to

conserve function.

Fig. 5. Performance of the three different models employed here. Reported

values are the average value over all nine datasets; the standard deviation of

the distribution is used as an error estimate. While the total errors reported in

Table 2 are percentages, the 1-Error (i.e., accuracy) values reported here are

simply one minus those values (scaled 0 to 1).

The inability of the predicted solvent accessibility

information to improve catalytic site prediction accuracy

demonstrates again how limited the predictions are. While the

authors of ACCpro report an accuracy >77%, all predictions

are returned as a binary --- exposed or not. The explicit

structure determined accessibilities used by Gutteridge et al.

were floating-point descriptions of the percent burial. It is a

well-known phenomenon [15] that catalytic sites are

frequently partially exposed; for example, they are commonly

found partially buried within the depths of the active site

cleft. Presumably, coarse graining the predicted

accessibilities, coupled with their innate inaccuracies, is the

reason that the CompNN fails to improve upon the SeqNN

results. SSpro is consistently among the best of the

benchmarked secondary structure prediction algorithms.

However, even if the predictions are 100% accurate, the point
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is largely moot because as Gutteridge et al. demonstrate, they

are the least important of all elements within the input vector.

TABLE 3

CASE-BY-CASE ACCURACY COMPARISONS

ROC Area 1 – Error

CompNN / SeqNN 5 / 4 4 / 5

CompNN / NoPMNN 5 / 4 4 / 5

SeqNN / NoPMNN 6 / 3 4 / 5

The fact that the CompNN and NoPMNN results are so

similar is again surprising to us. Based on our earlier results

(see Figure 2), we expected the PMs to act as surrogate for

the cleft data in Gutteridge et al. The lack of improvement

within CompNN is likely due to two factors. First, we have

utilized here the simplest possible encoding of the PM data.

Perhaps it would be better to scale the PM results as a

floating-point number to more finely discriminate the

phylogenetic data. Future work will investigate other methods

of encoding PM information. Second, it follows from the

discussion above that the most important inputs within

Gutteridge et al. are all, except for solvent accessibility,

sequence-based. This result suggests that even if the PMs

results did corresponded one-to-one with cleft data (which

they do not), the model accuracy would not be changed

significantly.

C. Specific enzyme examples

Figure 6 plots the CompNN scores against residue number

for the enzyme phosphoenolpyruvate mutase (PEPM). The

results provided are after training on dataset 7, which has the

lowest error of the nine data permutations. The SeqNN and

NoPMNN plots look qualitatively similar. According to the

CSA, this enzyme has four catalytic sites: Gly47, Leu48,

Asp58 and Lys120. As can clearly be seen from Figure 7, the

network significantly over-predicts catalytic sites within

PEPM. This result should not be confused with the false

positive vs. false negative discussions above. In the results

above, the dataset includes only a partial set of non-catalytic

residues (1:6); however, in this example, the network is

applied to the entire protein sequence. Figure 6 is inline with

the per protein predictions by Gutteridge et al. In both cases,

too many false positives occur to provide real utility to

experimentalists wishing to use the approach to guide large-

scale mutation efforts. In fact, Gutteridge et al. applied a

structural clustering algorithm to post-process the network

predictions in order to improve model accuracy. Since we are

overtly investigating sequence-only methods, we are unable

to apply such an approach.

The four PEPM catalytic sites are structurally highlighted

in Figure 6 (PDBid: 1PYM). Two of the sites (Leu48 and

Asp58) are strongly predicted to be catalytic. A third (Gly47)

is weakly predicted, whereas Lys120 is not predicted at all.

The observation that the three correct predictions are

clustered in sequence is tantalizing because it is possible that

this could be exploited to improve results. A cursory analysis

of several other proteins reveals similar overall performance.

However, sequence clustering is not observed elsewhere,

indicating that it is just a coincidence in the PEPM case. In

fact, there is a large body of biochemical evidence that

establishes that catalytic sites are generally nonlocal in

sequence. The total error for the complete protein sequence

ranges between 15 and 20%; the error in the PEPM example

is 15.4%. It should be pointed out that if structural clustering

within Figure 7 were used (as done by Gutteridge et al. to

post-process the neural network predictions), the prediction

accuracy would improve due to the close proximity of Gly47,

Leu48 and Asp58. Additionally, note that the catalytic site

predictions are occurring uniformly across solvent exposed

and inaccessible regions, which is likely due to the poor

quality of sequence-based RSA predictions.

IV. CONCLUSIONS

This report clearly demonstrates that prediction of enzyme

catalytic sites from sequence is viable using standard neural

network techniques. In all cases, ROC and total error analyses

demonstrate the predictions to be much better than random; in

fact, prediction accuracies average ~88%. Moreover, the

balance between false positives and false negatives is

satisfactory upon the 6:1 (non-catalytic:catalytic site)

datasets. Surprisingly, the addition of phylogenetic motif and

sequence-derived predictions of structural properties to the

input provides no appreciable accuracy increase. This result is

mostly due to the importance of residue type and familial

conservation on the ability to predict enzyme catalytic sites;

nevertheless, it is likely to also reflect the limited quality of

such predictions. We are currently exploring this result in

more detail using more detailed PM inputs. Future work will

utilize other methods of predicting RSA and SS, additional

input permutations and alternate neural network architectures.

Applying the method on a per protein basis is less exciting

due to false positives. Future work will also attempt to figure

out ways of improving the per protein results.

Fig. 6. Neural network score vs. residue number for phosphoenolpyruvate

mutase. The four catalytic sites are indicated by arrows and boldface. The

total error in this example is 15.4%. Qualitatively similar plots are observed

in other protein examples.
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Fig. 7. Structure of phosphoenolpyruvate mutase. Alpha-carbons of the

CompNN predictions of catalytic sites (using the 0.75 threshold) are shown

in grey. The four catalytic sites are shown (dark grey) in spacefill.
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