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Abstract—Prediction of peptides that bind to Major 
Histocompatibility Complex class II (MHC-II) molecules is vital 
for drug discovery and vaccine development. Prediction of 
peptides binding to MHC-II molecules is complicated because of 
the broad range of their lengths.  Peptides bind to the molecules 
at an ungapped motif present at the binding site. Obtaining an 
alignment of binding sites of binding proteins facilitates 
determining of the binding motif. However, multiple sequence 
alignment often fails on peptides. In this paper, we propose a 
Genetic Annealing Algorithm (GAA) to identify an alignment for 
binding peptides that can subsequently be used to predict binding 
peptides. Our approach is demonstrated with a dataset having 
difficulty in finding a consensus motif through experimental 
means and using existing motif detection methods. GAA based 
approach outperformed Gibbs motif sampler and RANKPEP 
approaches in predicting peptides binding to MHC II molecules. 

Keywords- Genetic algorithm; MHC molecules; motif; peptide 
binding 

I. INTRODUCTION 

Major histocompatibility complex (MHC) molecules play a 
key role in initiating an immune response. They bind to and 
expose an antigen (or short peptides) so that they are 
recognized by T cell receptors (TCR) which then identify the 
foreign peptide and trigger an immune response against the 
infected cell or foreign agent. MHC molecules make multiple 
contacts with the side-chains of a binding peptide, which 
determines the specificity of binding and define the binding 
motifs [1]. Prediction of MHC class II peptide binding is more 
difficult than that of class I [2]. This is due to fewer restrictions 
being imposed on the type of side chains by MHC class II 
molecules and the ability of MHC class II molecules to bind to 
peptides longer than 9 amino acids (aa) (approximately 11 to 
22aa) [1, 3]. A core of 9 aa within a peptide is sufficient to bind 
to a MHC class II molecule [4]. However, the exact location of 
the binding core (motif) within a peptide is unknown. 

A peptide binding motif is represented either by  a 
consensus sequence or  as  a weight matrix [5]. The presence of 
a motif binding to a particular peptide can be determined 
experimentally from a large pool of known binding peptides  
[4, 6]. However, such experimental methods are costly, time 
consuming, and cumbersome. Amino acids at specific positions 
that contribute significantly to the binding are referred to as 

primary anchor residues and the corresponding sites as anchor 
positions. Anchor positions are occupied by preferred residues 
that are tolerated with varying strengths at binding sites but 
alone contribute little to the binding of the peptide to the 
molecule.  Earlier studies, using more comprehensive 
information, found complex matrix models that elaborate the 
exact nature of the binding strength  [7, 8]. These matrix 
models offering position specific binding strength of each 
residue within the binding core are known as Position Specific 
Scoring Matrices (PSSM). 

Advanced classifiers such as artificial neural networks 
(ANN) [9-14], hidden Markov models (HMM) [5, 15], support 
vector machines (SVM) [16-18] and their hybrids [19] have 
been used to discriminate binding peptides (binders) and non-
binding peptides (nonbinders). However, these classifiers 
require the input training peptides be of equal lengths. Given a 
set of peptides of different lengths with known binding 
affinities, the location of the binding core within each peptide 
must be first identified and then extracted before classification. 
Classical multiple sequence alignment techniques often fail to 
detect the binding cores due to weak instances of binding 
motifs. 

Recently, iterative learning methods [20-23], stochastic 
approaches such as multiple EM elicitation (MEME) [24, 25], 
Gibbs motif sampler [26-29], profile motifs (RANKPEP) [2, 
30], etc., and evolutionary algorithms (EA) [31] have been used 
to try and uncover motifs in datasets of peptides with varying 
length. An iterative step-wise discriminant analysis (SDA) has 
been used to derive a quantitative matrix for MHC class II 
peptide data of variable length [20, 21]. Given two mutually 
exclusive sets, SDA is able to build a Bayesian discriminant 
function that is used to implement a binary classifier by 
generating binders based on a predefined anchor motif. The 
results are refined according to a score calculated based on the 
presence of anchor positions specified in the motif. This 
approach is more suitable when binding and non-binding 
sequences are significantly distinct. A linear programming 
model has been utilized as the learning model for the binary 
classification of binders and nonbinders in  [22]. This 
supervised model generates a predictor while learning features 
of the negative samples (nonbinders) and iteratively filtering 
them out of an unlabeled dataset consisting of possible binders 
and nonbinders. The reported results are comparable or better 
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over the Gibbs approach on different datasets. An ant colony 
system (ACS) has been used  to search for an optimal local 
alignment for a set of peptides of variable length [23]. The 
performance of the ACS strategy has rendered comparable or 
better results than the Gibbs sampler for a number of different 
datasets. A set of profile motifs has been used in RANKPEP to 
predict peptide binding to a number of MHC class I and class II 
molecules [2, 30]. MEME [25] and Gibbs sampler [26, 28] are 
two widely used statistical approaches for motif detection in 
unaligned peptide sequences. Gibbs sampler performs a 
random walk through the space of multiple alignments and is 
less prone to get trapped in a local minimum compared to 
greedy algorithms such as MEME. The main drawbacks 
associated with Gibbs sampler include different results at each 
run, frequent false positives, and attraction to local maxima. 

To date, there is no one optimal model or algorithm for 
predicting the peptides that bind to all MHC class I or class II 
molecules. Therefore, different algorithms that perform well on 
previously unseen data are needed. We propose the use of EA 
to align a set of experimentally determined binding peptides at 
their binding cores and subsequently derive the binding motif. 
The accuracy of an EA-based technique mainly depends on the 
fitness function defining the proximity to the optimal solution. 
We explore Genetic Annealing Algorithm (GAA) for 
predicting MHC-II peptide binding. The GAA explores the 
solution space to identify a motif that can best explain the 
peptide binding for a given dataset.  

We demonstrate our method on experimental datasets of 
peptide binding to I-Ag7 molecule obtained from literature 
(Table 1). I-Ag7 is the MHC class II molecule of the NOD 
mouse,  critical for the development of insulin-dependent 
diabetes mellitus (IDDM) and other autoimmune disorders [32-
37] . The knowledge of peptide binding to I-Ag7 is important in 
understanding the molecular basis of the development of 
IDDM in NOD mice. Finding motifs in peptide binding to I-
Ag7 is a non-trivial problem [38, 39]. Despite numerous 
attempts, no consensus has been reached in defining motifs that 
describe the binding rules to Ag7 molecule [32-42]. 
Experiments have demonstrated that I-Ag7 binding peptides are 
9-30 aa long [41]. However, computational analyses on 
multiple datasets show that each experimentally determined 
motif only explains a subset of the rules describing the optimal 
motif. 

II. MATERIALS AND METHODS

A. Genetic Algorithms 
Genetic algorithms (GA) are based on the principles of 

biological evolution and have often been successful in solving 
complex search and optimization problems. GAs find a wide 
spectrum of applications in bioinformatics. The majority  GA 
applications has been concerned with motif discovery, an 
example of which is TFBS detection [43-47]. A few 
researchers have used GAs  for peptide binding predictions 
from protein sequences [31]. For more details on EAs, GA, and 
their applications in bioinformatics, readers are referred to [48-
51]. 

The basic steps of an EA implementation are: (1) the 
representation of input variables as individuals or 
chromosomes (binary or real valued) in a population; (2) the 
formulation of fitness (objective function) to evaluate 
individuals; (3) the formation of a new population by genetic 
operations (reproduction, crossover, and mutation) on the 
present population; and (4) determine whether the population 
has achieved the optimal fitness. The algorithm starts with an 
initial population of individuals and evolves in an iterative 
manner. In a single iteration, each individual is evaluated by 
estimating its fitness. New populations (offspring) are produced 
from highly fit individuals (parents), chosen according to a 
selection criterion, which then undergo genetic operations. 
Each offspring is thereafter paired and compared with its 
parents .The highly fit individuals are retained while the less fit 
individuals are discarded.  

B. Genetic Annealing Algorithm 
The GAA incorporates simulated annealing [51] [52, 53] 

into the crossover process of the GA [54], thereby combining 
the advantages of the both algorithms [55, 56]. The strategy 
behind simulated annealing is to allow moves resulting in 
solutions worse than the current solution in order to avoid 
local minima. In GAA, offspring produced in crossover 
between two parents are evaluated for their fitness. Highly fit 
offspring replace the parents in the next round of crossovers. 
Less fit offspring than their parents only survive with a 
selection probability characterized by Boltzmann distribution: 

 ( )1
( ) exp

( )
f

P
Z T T

f Δ
= −  (1) 

where f is the difference of the fitness between an offspring 
and a parent in the population, T is the temperature of the 
current population and Z(T) is the normalizing function. After 
a new population is formed the temperature is lowered by a 
small fraction ( ) and the process continues until the 
termination criterion is met. The pseudo code for the GAA is 
as  follows [56]: 

An initial temperature,T0, is defined. 
T= T0
Begin: GAA 
   recruit
   Repeat 
 select
 crossover with annealing 

T =  ·T 
Until { good solutions found } 

End 

In the first step, a predefined number of individuals are 
recruited. Next, the selection process is carried out based on the 
fitness of the each individual in the population. For selection, 
the binary tournament selection scheme is used [57]. During 
which, all the individuals are paired up and their fitness values 
are compared; the fittest individual of a pair is retained and the 
other is discarded. The selection process is followed by the 
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annealing crossover operation which, in turn is followed by the 
mutation operation. During the annealing crossover process, a 
highly fit individual (say parent-1) is selected and is allowed to 
mate with a partner (say parent-2) selected randomly from the 
population to produce two offspring. The fitness of the two 
new offspring (say offspring-1 and offspring-2) is evaluated. If 
the fitness of offspring-1 is better than the fitness of parent-1, 
then parent-1 is replaced by offspring-1. Otherwise, Boltzmann 
probability is computed and compared with a normalized 
random number. The less fit offspring is accepted only if the 
random number is less than the calculated probability. This 
process repeats for a predefined number of times to ensure that 
the best possible solution for the starting pair of parents 
(parent1 and parent2) is achieved. This is analogous to 
obtaining thermal equilibrium in simulated annealing at a given 
temperature [56]. After the entire process is completed the 
fittest individual in the population is selected, the temperature 
is reduced, and the entire crossover process is repeated with 
another partner selected at random. 

C. Predicting Peptide Binding to MHC-II I-Ag7

Here, we attempt to find an optimal motif describing 
peptide – MHC-II (I-Ag7) molecular binding from experimental 
binding data that is already available. There are several factors 
that impede the derivation of such a consensus motif. The first 
is the strong resemblance among the peptides isolated in a 
single experiment and the second is the diversity among 
different datasets.  A motif derived from a dataset which lacks 
diversity indicates a bias towards the dataset used to derive the 
motif. Such motifs are difficult to generalize for previously 
unseen datasets. Our aim is to find a consensus motif for I-Ag7

binding data by using an evolutionary approach that can 
alleviate the influences that arise from biased datasets. 

D. Datasets 
Seven I-Ag7 datasets were extracted from literature [34-37, 

39, 58-60] and from Brusic, V.(unpublished data). The 
numbers of binders and nonbinders in each dataset are given in 
Table 1. The datasets consist of short peptides ranging from 9-
30 amino acids in length. Their binding affinities have been 
experimentally determined by independent studies and 
classified as binders or nonbinders based on  an inhibitory 
concentration (IC50) according to the following scheme [35]: 
good binder (IC50=100nM); weak binder (IC50=2000nM); 
nonbinder (IC50=50000nM). The datasets in [34-37, 58-60] 
were combined into a single training dataset and  preprocessed 
by removing duplicates and by discarding: (1) long binder if a 
binder is a substring of another binder and (2) the substring if a 
nonbinder is substring of another nonbinder. Let the 
preprocessed and combined dataset be here onwards referred to 
as training dataset and denoted by D = {(xi, vi): i = 1, 2,….,d}
where d is the number of total peptides and xi is the ith peptide 
sequence with the label vi  {b, nb} indicating whether the 
sequence xi is a binder (b), or a nonbinder (nb). The number of 
peptides in the training set d = 438. Out of which, 304 were 
binders and 134 were nonbinders. 

An independent dataset, Stratmann [39], consists of a 
diverse set of I-Ag7 binding peptides with their binding 
affinities was used as the testing dataset. The number of 

binders and nonbinders in this dataset are 112 and 3, 
respectively. Due to the fewer number of nonbinders in the 
testing dataset, we augmented the number of nonbinders to 
1000 with randomly generated nonbinders. The generation of 
random nonbinders involves adding correct proportions of 
amino acids to each peptide so that the generated peptides 
mimic real protein peptides [61]. Of randomly generated 
peptides, approximately five percent is presumed to be binders 
[58]. The error arising from the five percent of possible binders 
in the randomly generated nonbinder set was taken into account 
when calculating the prediction accuracy. 

E. Binding Score Matrix 
A k-mer motif of amino acids is characterized by a 

positional binding score matrix (BSM), Q = { qia }kx20 where 
qia denotes the binding strength of the site i when it is 
occupied by amino acid a. The binding score of a motif is 
computed by adding the binding scores assigned for each 
amino acid at the respective positions. The binding score 
indicates the likelihood of the motif binding to the molecule. 
The binding score si of the sequence xi is given by the 
maximum value of binding scores calculated for all the k–mer 
subsequences in xi:

max
{1, , 1}

s sili l n k
=

∈ − +  (3) 

where sil denotes the binding score of the subsequence 
beginning at location l of the sequence: 

'( )' 0,1, , 1 '( )

s qil l l xl k i l l

=
+= − +

  (4) 

and assuming one motif instance per sequence, the location of 
the motif is given by  

* arg max { }
{1,2, , 1}

l sill n k
=

∈ − +
 (5) 

That is, if xil denotes the k-mer subsequence starting at site l
of the sequence xi, then the most likely motif instance, say mi,
is given by mi = xil

* .

F. Obtaining an Alignment of Binding Cores with GAA 
This experiment is aimed at identifying an alignment of 

binding cores when the training dataset consists of peptides of 
varying lengths. The alignment is then used to discover the 
consensus motif in the form of a BSM. The positions of the 
binding cores within the peptides are unknown. The elements 
of the BSM, say Q, are represented with linear binary strings, 
by rearranging as a 20k-tuple (qia, : i=1,….k; a ε  ) where a is 
an amino acid in the amino acid alphabet, . Each element in 
the k-tuple is converted to a binary representation with a 
binary word of size  so that qia ∈ [0, 2 −1]. The k-mer motif is 

therefore represented by a 20k  long binary string. Let the 
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binary representation of Q at the tth iteration of a GA evolution 
is denoted by q(t) = {q1(t), q2(t),…… qN (t)} where N is the size 
of the population or the number of individuals. 

The fitness function is designed to arrive at an optimal 
consensus of the motifs, using the information of binding 
peptides, provided in the training dataset. A solution is 
evaluated on its ability to maximize the accuracies in 
identifying true binders (TP) and true nonbinders (TN) as well 
as to widen the gap between scores for binders and 
nonbinders. This is achieved by a fitness function that 
minimizes a linear combination of the sum of false positives 
(FP) and false negatives (FN) as well as the ratio between the 
average cumulative scores of nonbinders and binders.  

The fitness function f is given by   

N ( ) ( )b =1FN FP1 2
N ( ) ( )nb =1

d
s m v nbiiif d

s m v biii

δ
κ κ

δ

=
= + +

=
  (6) 

where s(mi) denotes the score computed for the most likely 
motif instance of sequence xi of the training dataset and the 
Kronecker  is equal to one when the arguments are satisfied, 
otherwise it becomes zero;  Nb and Nnb are the total counts of 
binders and nonbinders in the dataset. The constant 1 ( 
>Nb/Nnb  for Nb > Nnb) was empirically determined to 
minimize the number of false positives with respect to the 
nonbinders. The constant 2 acts as a normalizing parameter 
between the sum of FN and FP and the ratio between the 
average cumulative scores.  

For this experiment, k=9, =7. The GAA was run with a 
population size of N=1000 and the number of generations set to 
40. In each generation, the temperature was adjusted and the 
population was subjected to 20 iterations. One point crossover 
operation was performed with mutation probability, pm=0.035. 
The temperature was initially set to T0=0.2 and at each 
generation was reduced by a proportion  = 0.9. The 
parameters were set as follows, 1 = 5.5 and 2 = 1.0. 

III. RESULTS AND DISCUSSION

We demonstrate the application of GAA determine a 
consensus motif. Seven experimental datasets of binding 
peptides to I-Ag7 molecules obtained from literature were used 
for training [34-37, 58-60] and an independent dataset [39] 
was used as testing dataset to compute prediction accuracy. 
Receiver operating characteristics (ROC) is used as the 
measure of prediction accuracies and the overall quality of the 
prediction is measured using the Area under Receiver 
Operating Characteristics (AUC) [62]. With GAA, the 
consensus motif, with the best fitness, was determined by the 
highest AUC on the training dataset. Of all the attempts, the 
solution with the highest AUC was chosen as the consensus 
motif.  

Table 1 shows the datasets extracted from literature, which 
were used in the training. An independent dataset comprises of 
a diverse set of peptides, the Stratmann dataset, was used as 
the testing dataset. Let the score corresponding to the motif in 

the peptide xi be si. Then whether the peptide is a binder or a 
nonbinder is determined according to a threshold, t, as 
follows:  

t
ˆ

t
i

i
i

b if s
v

nb if s

≥
=

<
 (7) 

We obtained ROC curve by evaluating sensitivity and 
specificity values at various thresholds. The performance of 
GAA on training and testing datasets are given in Table 2. The 
performances are compared with the earlier motif prediction 
approaches RANKPEP [30] and the Gibbs sampler [26]. As 
seen, Gibbs Sampler and RANKPEP exhibit poorer 
performance than GAA on the training dataset. This may be 
due to the fact that, unlike GAA, Gibbs approach searches for 
a motif by using only positive data (binders) and therefore do 
not learn the characteristics of nonbinders. AUC plots are 
shown in Fig. 1.  

TABLE I. I-AG7 PEPTIDE  DATASETS

Dataset Nonbinders Binders Reference 
Reizis 21 33 [34] 
Harrison 19 157 [35] 
Gregori 31 109 [37] 
Latek 8 37 [36] 
Corper 35 13 [58] 
MHCPEP - 176 [59] 
Yu 16 10 [60] 
Brusic 37 - [unpublished] 

TABLE II. PERFORMANCE OF I-AG7 MOTIF DERIVED BY GAA, GIBBS 
SAMPLER, AND  RANKPEP

Performance measured by AUC Motif Training set Testing set 
GAA 0.82 0.85 
Gibbs Sampler 0.60 0.82 
RANKPEP 0.59 0.75 

Figure 1. Comparison of performance of GAA with Gibbs Sampler and 
RANKPEP on the independent dataset for determining  I-Ag7 best motif. 
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IV. CONCLUSIONS

We proposed a GAA-based approach to identify an 
alignment of binding cores, which subsequently renders a motif 
for predicting peptides that bind to MHC class II molecules. 
Our approach facilitates self discovering a motif, that is, when 
no information of motifs is available. The GAA approach 
outperformed earlier approaches to motif detection.  

GAA-derived motif outperformed existing motif finding 
algorithms such as Gibbs sampler and RANKPEP. EAs have 
the advantages over EM-based algorithms in generating 
biologically meaningful results by performing a global search 
[64]. Though a global search by an EA does not guarantee an 
optimal solution, the likelihood of finding an optimal solution 
is higher than a local or greedy search. Moreover, the EAs have 
the advantage of learning the characteristics of both binders 
and non- binders from the training data while EM or Gibbs 
algorithms use only the binder dataset in the training dataset. 
This was reflected in the AUC values calculated for the training 
dataset. It is important to note that the performance of the EM 
based Gibbs sampler on the test dataset was comparable with 
the proposed EA. Though Gibbs sampler is faster, EA gave 
better performance reaching the global optimum. However, 
there are number of parameters that need to be tuned in order to 
obtain the optimal performance with the Gibbs sampler. In the 
case of GAA, a few parameters must be empirically determined 
and tuned for optimal performance. Basic rules for selecting 
parameters for GAA were given. Our future investigations are 
aimed at defining a set of suitable ranges for these input 
parameters. 

Computational predictions of peptides that bind to MHC 
class II molecules of the immune system are vital for designing 
vaccines and discovering drugs for diseases including cancer, 
infectious diseases, and autoimmunity. Though 
computationally predicted binders do subsequently need to be 
validated by wet lab experiments, high costs involved in the 
initial screening process and clinical testing can be significantly 
reduced by incorporating computational predictions as a 
preliminary step. 
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