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Abstract- Computational methods for replication origin 
prediction in individual herpesvirus genomes have been 
previously devised based on the locations of high concentrations of 
palindromes.  In order to make use of similarities in genome 
composition and organization of related herpesviruses, an 
artificial neural network approach is explored. We implement 
feed-forward artificial neural networks trained by 17 input 
variables comprising the positions of known replication origins 
relative to the genome lengths and the dinucleotide scores.  The 
overall prediction accuracy of the neural network approach for 
our data set is better than that of the palindrome based approach.  
Furthermore, suitable combinations of the prediction results 
given by the two approaches substantially increase the prediction 
accuracy achieved by either method applied individually.  

I.     INTRODUCTION 
The herpesvirus family includes some of the well-known 

viruses such as herpes simplex, varicella-zoster (chicken pox), 
and cytomegalovirus.  Some of these viruses are believed to 
pose major risks in patients with suppressed immune response 
after major surgeries like organ transplants, while others have 
been associated with life-threatening diseases such as AIDS 
and various cancers ([1], [2], [3] and [4]).  As the central step in 
the reproduction of herpesviruses, viral DNA replication has 
been the target for a number of anti-herpesvirus drugs (e.g., 
acyclovir).  To further develop strategies to control the growth 
and spread of viruses, it is important to understand the viral 
replication mechanism ([5], [6] and [7]).  

Replication origins are places on DNA molecules where 
replication processes are initiated.  As they are regarded as 
major sites for regulating genome replication, labor-intensive 
laboratory procedures have been used to search for replication 
origins ([8], [9] and [10]).  Computational algorithms which 
predict likely replication origin locations can expedite the 
process by focusing the search to certain regions of the viral 
genome (see [11] and references therein). 

Based on the observation that replication origins in 
herpesviruses often lie around regions of their DNA genome 
sequence with unusually high concentration of palindromes 
([12], [13] and [14]), Leung et al. [11] suggest using 
statistically significant clusters of palindromes to 
computationally predict likely locations for replication origins 
prior to experimentation.  DNA palindromes are words from 
the nucleotide base alphabet {A, C, G, T} that are symmetrical 
in the sense that they read exactly the same as their 
complementary sequences in the reverse direction.  For 

example, the string GCAATATTGC is a DNA palindrome 
because its complementary sequence CGTTATAACG, when 
read in reverse, is exactly the same as itself.  The high 
concentration of palindromes near replication origins is 
generally attributed to the fact that initiation of DNA 
replication typically requires an assembly of enzymes such as 
helicases to bind to the DNA, locally unwind the helical 
structure and pull apart the two complementary strands.  The 
symmetry created by palindromes is advantageous for 
providing suitable binding sites for these DNA-binding 
proteins which are often dimeric in structure.  

The statistically based palindrome prediction method is 
further improved in [15] and has achieved 80% sensitivity in 
detecting the known and documented replication origins on a 
set of 19 herpesvirus genomes.  However, this method has a 
drawback as it does not make use of any information known 
about the replication origins locations in closely related 
members of the herpesvirus family.  Since a number of 
herpesviruses are known to have similar overall genome 
organization, their replication origins are likely to be in similar 
positions.  Knowledge about the locations of replication origins 
in one herpesvirus can be very relevant for predicting origins in 
other herpesvirus.  

To address this issue, we introduce a prediction method 
based on artificial neural networks (ANN) which can learn 
from characteristics of the known replication origins of those 
genomes in the training data set and then predicts of where the 
replication origins of a new genome are likely to be.  Our 
results indicate that the palindrome and ANN approaches 
complement each another very well.  We find that the ANN 
method is able to predict those replication origins missed by the 
palindrome method, and that those locations predicted by both 
methods are highly likely to be true replication origins.  

In this study, the ANN is trained with 17 input variables 
containing information about the known replication origin 
locations and the relative abundance of the 16 dinucleotides 
along the genomes sequences.  Any two consecutive nucleotide 
bases in a DNA sequence are counted as a dinucleotide. For 
example, the sequence ACCCTG contains the dinucleotides 
AC, CC, CC, CT, and TG in that order. Among the 16 distinct 
dinucleotides which can be formed from the four letter 
nucleotide base alphabet, CC is observed twice, AC, CT, and 
TG are each observed once, and the other 12 dinucleotides are 
not observed at all. We shall describe later in this paper the 
scoring scheme used to calculate the relative abundance for the 
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16 dinucleotides along the genome sequences in our data sets.  
We choose the dinucleotide scores as input variables for the 

following reason.  With few exceptions, herpesviruses are 
classified into the γβα  and  , subfamilies [16] according to 
their biological properties such as the range of hosts and types 
of infected cells.  Generally, members within a subfamily have 
similar genome organization, their sequences are more 
conserved, and their replication origins are often found at 
similar locations.  However, it would be desirable to have the 
replication origin predicted even before knowing the subfamily 
of the virus because the classification process may involve 
rather lengthy biological investigations.  The ideal is to make 
use of certain sequence characteristics which can indicate 
subfamily information reasonably well and at the same time can 
easily be converted to numerical input variables for the ANN.  
Leung et al., in [17], have reported that the herpesviruses in the 
same subfamily tend to have more similar dinucleotide 
representation than those in different subfamilies.  It is 
therefore conceivable that the 16 dinucleotide scores would 
capture useful sequence characteristics for each subfamily. 

Section II is a brief review of a few concepts relevant to ANN.  
Details about the set of herpesvirus genome data used in this 
study is then described in Section III.  How ANN is applied to 
the prediction of replication origins in these herpesviruses is 
explained in Section IV.  In Section V the prediction accuracy 
of the ANN is evaluated and compared against the results 
presented in [15].  Finally, we give a few concluding remarks in 
Section VI. 

II.   ARTIFICIAL NEURAL NETWORKS 
ANN is a mathematical model based on the human brain.  Its 

behavior depends on the strengths of the connections, also 
called the weights of the network, among simple processing 
units or neurons.  The modification of the weights of the 
network in order to get the desired results is known as training.  
Usually, the behavior desired for an ANN is obtained by 
providing to it examples of inputs and the corresponding 
observed outputs.  These examples are also called instances or 
records.  ANN can solve problems that are posed as 
classification, recognition, prediction or identification 
problems.  Examples in bioinformatics include: prediction of 
promoter sites ([18] and [19]) on DNA sequences, protein 
secondary structure prediction ([20] and [21]), automatic 
classification of protein sequences ([22] and [23]), and 
prediction of glycosylation sites in amino acid sequences [24]. 

Inputs and outputs of ANN are represented as a series of real 
numbers.  The conversion from the “natural” representation to a 
numerical representation can take a variety of forms; the 
specific process used for the research at hand is described in 
Section III.  Usually the training data set for an ANN is 
represented as ),( yX where the rows of the matrix X store the 

vectors of the inputs ix ’s.  The element yi of the vector 
y represents the corresponding desired output for the input 

vector ix .  X is an N by n matrix, where N is the number of 
input-output instances in the data set and n is the dimension of 

the input vectors.  
In most cases it is neither possible nor desirable to present all 

the possible instances to the ANN during training.  Usually, a 
portion of the data set is reserved and used to demonstrate the 
accuracy of the ANN for unseen cases.  These instances are 
presented to the system during a procedure called testing which 
follows training.  The union of the training and test set is 
referred to, in this paper, as the overall data set.  For this study, 
both training and test sets can be constructed from the 19 
herpesvirus genomes with known replication origins presented 
later in Table I. 

The analysis in the next sections is performed with 
feed-forward networks.  The feed-forward topology selected 
for this study has n input units, h processing units and one 
output unit.  More specifically, the function performed by an 
ANN with such a topology can be represented as a function fANN 
such that  
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Here, i, j, and k are positive integers bounded above by N, n, 
and h respectively.  All of xi,j, wj,k  and bk are real numbers.  The 
number h of hidden units, the weights wj,k  and bk  are 
parameters that need to be determined.  To find a desirable h 
might involve a trial and error process testing the performance 
of the networks with different values of h before settling on one.  
The values of wj,k  and bk can be initialized with algorithms 
which might save time during the training process, e.g. the 
Nguyen-Widrow initialization algorithm [25].  The 
Nguyen-Widrow algorithm is based on the expectation that 
picking appropriate weights to cover different regions in the 
input space X  will substantially improve the learning speed.  
Finally, the activation function, denoted by fnet

,, also needs to be 
fixed. For the ANN presented in this paper, we use a sigmoidal 
activation function  
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which is one of the most common activation functions for ANN 
[26].  

The performance of a network during the training process can 
be measured by the Mean Square Error (MSE) defined as 
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From (1) – (3), both  MSE
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obtained for any j and k.   One of the most successful training 
algorithms, the back-propagation algorithm, operates by 
modifying the values of the ANN parameters in the opposite 
direction to the gradient, therefore reducing the MSE.  

Each time that every one of the weights is updated once is 
called an epoch.  If a training algorithm is run for too many 
epochs, the network will experience “over-training”, which is 
the phenomenon of reducing the MSE in the training set while 
increasing it in the test set.  This happens because the ANN 
begins to capture the noise in the training examples instead of 
the general behavior of the system represented by the examples 
in the overall data set.     
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Fig. 1. Standardized window numbers for the known replication origin 
locations (darkened regions) in the 19 herpesvirus genomes numbered 

according to their ID numbers in Table I. 

While the back-propagation algorithm is a steepest decent 
algorithm, there are other paradigms to train the networks, for 
example, the nonlinear least squares algorithms.  This kind of 
methods require a larger amount of memory compared to the 
gradient techniques like back-propagation, but in many cases 
yield a smaller MSE and/or take fewer epochs to produce the 
same MSE [27].  The Marquart-Levenberg algorithm [27] 
belongs to this class of methods and is considered a 
modification of the Gauss-Newton method.  Here the change in 
all the parameters is calculated simultaneously by solving the 
equation: 

)()(])()([ 1 ωωµωωω eJIJJ TT −+=∆     (4)  
where ω is the vector  of all the weights wj,k  and bk ; i.e. ω = 
[w1,1 w1,2 …w1,h w2,1 …w2,h…wn,h b1 b2…bh ]T .  The length of 
ω is hhn +⋅ )( .  )(ωJ  is a Jacobian matrix, size 

))(( hhnN +⋅× , each of its entries is the gradient of an error 
with respect to a parameter of the ANN: 
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The parameter µ  in (4) is a real number selected in such a 
way that the MSE is reduced after the change of the values of 
the parameters of the ANN.  The vector )(ωe is the list of the N 
errors produced by an ANN with parametersω . 

Neural Networks trained with the Marquart-Levenberg 
algorithm have been successfully used in bioinformatics 
problems such as the data analysis and parameter determination 
of Protein-Lipid System [28] and the prediction of MHC Class 
11-binding Peptides [29]. 

Another important concept associated with ANN is the 
preprocessing of the data.  Basically, preprocessing is the 

procedure of converting the raw data provided by the experts on 
the problem at hand into the overall data set before presenting it 
to the ANN during training and testing.  Preprocessing includes, 
among other transformations, the conversion from the “natural” 
to the numerical representation of the data and is not limited to 
input variables.  Often times, complex preprocessing must be 
applied to the input data [30].  For example, in [31], the 
sequence information in DNA segments is compressed into 13 
inputs before being presented to the ANN.  In the current study, 
we use principal component analysis (PCA) as part of the 
preprocessing to reduce the number of variables used during the 
training and testing of the ANNs.  PCA uses the idea that it is 
possible to eliminate, by an orthogonalization procedure, the 
features which provide the least variation in the data sets 
without degrading the performance of the classification process 
[32]. Since the orthogonalization procedure can be expressed as 
a matrix multiplication, the variables obtained after the PCA 
are just a linear combination of the original features presented 
to the PCA.  

In many cases the format of the overall data needed to 
adequately train and test the ANN is not easy to interpret by 
humans.  To facilitate the extraction of useful information from 
the trained ANN or from the outputs produced by it, a set of 
transformations might be applied to them.  These operations are 
usually called post-processing.  

The construction of the ANN for replication origin prediction 
in herpesviruses will be described in Section IV.  To create and 
train these ANN, we use the facilities provided by the Matlab 
Neural Network Toolbox.  Before discussing these 
implementation issues, we first present our data sets. 

III. THE DATA SETS 
We shall test the performance of the ANN approach to 

replication origin prediction by applying the method to the 
herpesvirus genomes listed in Table I.  This is the same set of 
sequences in [15] where these viral genomes are considered as 
overlapping windows, with each window being a segment 
about 0.5% of the genome length. The number of overlapping 
windows contained in each of the viruses is listed in the column 
“Number of Windows” in Table I. Locations of replication 
origins are predicted by computing a palindrome score for each 
window and selecting the top scoring windows.  Our ANN 
approach uses the same scoring idea.  However, instead of the 
palindrome score, we compute for each window the 
standardized window number and the 16 dinucleotide scores. 

The standardized window number is the window number 
divided by the total number of windows in the virus.  For 
example, if a virus has a total of 500 windows then the 
corresponding standardized window number for the 455th 
window is 455/500= 0.91.  Fig. 1 gives a schematic 
representation of the 19 genomes as vertical bars where the 
shaded regions are those windows close to known replication 
origins.  

The dinucleotide scores of each window reflect the relative 
abundance or rarity of the 16 dinucleotides in the window given 
the base composition of the genome.  More precisely, the score 
for a dinucleotide XY in window w of virus v is the logarithm 
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of the ratio wXY /vXvY where wXY is the relative frequency of the 
dinucleotide XY in window w of the virus v and vX, vY are 
respectively the relative frequencies of the bases X and Y in the 

viral genome.   
 

TABLE I. HERPESVIRUSES WITH COMPLETE GENOMES AND KNOWN REPLICATION ORIGINS. 

Id. Virus name Abbrev. Accession Known Replication Origins Genome Length Number of Windows 

1 Bovine herpesvirus 1 BoHV1 NC_00184 111080-111300 (oriS) 135301 300 

    126918-127138 (oriS)   

2 Bovine herpesvirus 4 BoHV4 NC_00266 97143-98850 (oriLyt) 108873 250 

3 Bovine herpesvirus 5 BoHV5 NC_00526 113206-113418 (oriLyt) 138390 300 

    129595-129807 (oriLyt)   

4 Cercopithecine herpesvirus 1 CeHV1 NC_00481 61592-61789 (oriL1) 156789 350 

    61795-61992 (oriL2)   

    132795-132796 (oriS1)   

    132998-132999 (oriS2)    

    149425-149426 (oriS2)   

    149628-149629 (oriS1)   

5 Cercopithecine herpesvirus 2 CeHV2 NC_00656 61445-61542 (oriL) 150715 350 

    129452-129623 (oriS)   

    144386-144557(oriS)   

6 Cercopithecine herpesvirus 9 CeHV7 NC_00268 109627-109646 124138 300 

    118613-118632   

7 Human herpesvirus 4 EBV NC_00134 7315-9312 (oriP) 172281 400 

    52589-53581(oriLyt)   

8 Equid herpesvirus 1 EHV1 NC_00149 126187-126338 150224 350 

9 Equid herpesvirus 4 EHV4 NC_00184 73900-73919 (oriL)  145597 350 

    119462-119481 (oriS)   

    138568-138587(oriS)   

10 Gallid herpesvirus 1 GaHV1 NC_00662 24738-25005(oriL) 148687 350 

11 Human herpesvirus 5 strain HCMV NC_00134 93201-94646 (oriLyt) 230287 550 

12 Human  herpesvirus 6 HHV6 NC_00166 67617-67993 (oriLyt) 159321 350 

13 Human herpesvirus 6B HHV6B NC_00089 68740-69581(oriLyt) 162114 400 

14 Human herpesvirus 7 HHV7 NC_00171 66685-67298 153080 350 

15 Human herpesvirus 1 HSV1 NC_00180 62475 (oriL) 152261 350 

    131999 (oriS)   

    146235 (oriS)   

16 Human herpesvirus 2 HSV2 NC_00179 62930 (oriL) 154746 350 

    132760 (oriS)   

    148981 (oriS)   

17 Murid herpesvirus 2 RCMV NC_00251 75666-78970 (oriLyt) 230138 550 

18 Suid herpesvirus 1 SHV1 NC_00615 63848-63908 (oriL)  143461 350 

    114393-115009 (oriS)   

    129593-130209 (oriS)   

19 Human herpesvirus 3 VZV NC_00134 110087-110350 124884 300 

    119547-119810   
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The product vXvY in the denominator is the expected relative 
frequency of the dinucleotide XY in the genome assuming the 
genome sequence is generated as independent and identically 
distributed random variables taking values A, C, G, and T with 
probabilities equal to vA, vC, vG, and vT respectively.    

If the dinucleotide XY occurs more abundantly in window w 
than expected from the random letter sequence model, the ratio 
wXY/vXvY will be greater than one and its logarithm will be 
positive.  Likewise, if XY occurs less abundantly than expected, 
the score will be negative. 

IV.   COMPUTATIONAL IMPLEMENTATION 
 In order to find the best number of hidden units, a series of 

neural networks are created with the Matlab Neural Network 
toolbox function ‘newff’, this function adds biases to all the 
hidden and output units.  A bias is a real number which is added 
to the sum of the multiplications of the weights of a hidden or 
output unit by the values provided by the units in the previous 
layer.  Since the inclusion of biases usually leads to a better 
performance for both the training and test set, it is very 
common to incorporate them in ANN.  This addition is 
performed before applying the activation function ‘fnet’ 
described in (2).  Matlab automatically includes the biases in 
any initialization and training algorithm applied to the ANN.  

To initialize the networks with the Nguyen-Widrow method, 
the function ‘init’ is used on the networks.  Then, the networks 
are trained with Levenberg-Marquardt back-propagation 
algorithm; preliminary tests have shown that this algorithm 
actually performed better than the back-propagation algorithms 
offered by the toolbox.  The Matlab Neural Network toolbox 
provides a function ‘train’ that implements this algorithm, if the 
option ‘trainlm’ is selected.  

The neural network with the best general performance with 
the data sets described above has 87 hidden units.  With PCA 
preprocessing, also provided by the Matlab Neural Network 
Toolbox, the 17 input features of the data set are reduced to 13 
“new” variables which account for over 98% of the total 
variance of the data.  The results obtained after 600 epochs are 
shown in Table II.  More information about all the algorithms 
mentioned in this section and other capabilities of the Matlab 
Neural Network Toolbox can be found in [33], which is freely 
accessible at www.mathworks.com. 

A difficulty with this data set is the overwhelming presence 
of negative cases, 7587 or them versus only 602 positive cases. 
If the training set is constructed with the same proportions, 
there would be 92.64% negatives and only 7.36% positives.  
Given these circumstances the network might learn that by 
classifying everything presented to it as negative, it will 
achieve a very good MSE.  This problem was solved by 
randomly selecting two thirds of the positive cases and only 
half of the negative cases for the training set.  The rest of the 
records form the test set.  The random selection is necessary to 
avoid training the network to recognize the replication origins 
of only certain viruses. 

 Notice that in this case, both training and test sets contain 
information, i.e. instances, from the same viruses.   

TABLE II. PERFORMANCE MEASURED IN PERCENTAGE OF CORRECT 
CLASSIFICATION FOR THE OVERALL DATA SET AS WELL AS THOSE FOR THE POSITIVE 

AND NEGATIVE CASES. 

Data Set Overall Positive Negative 

Training 99.6 96.5 99.9 
Test 88.8 67.6 90.0 

 
This is not a realistic representation of what a researcher with 

a new virus sequence would have available to train and test an 
ANN. In reality, the training set would exclusively be instances 
taken from the viruses with known origins, while the test set 
data would come from the new virus.  In other words, training 
and test sets should contain information coming from different 
viruses.  

To assess the performance of our ANN approach realistically, 
we implement 19 networks like the one described above.  Each 
network is trained with 18 of the herpesviruses in Table I and 
then applied to predict the location of replication origins in the 
one remaining virus left out from the training set.  To avoid 
overtraining, only 30 epochs are used during the training of 
these networks.  In order to select appropriate regions as likely 
replication origins, the predictions are subject to the following 
post-processing steps. 

First, a prediction is considered invalid if its position is too 
close to the two ends of the virus genome.  Any window within 
the first three map units or the last two map units of the genome 
will not be considered as a valid prediction, where one map unit 
is equivalent to 1% of the genome length.  These cut-off 
percentages are set according the observed locations of the 
known origins for all the viruses of Table I.  

Second, a prediction is invalid if it lies within two map units 
from an already found valid prediction. This means that if two 
or more predictions are located within 2 map units only the 
prediction associated with the highest ANN output among them 
is considered valid. 

Following these rules, we select the few valid windows with 
the highest output values from the ANN to be the predicted 
locations of replication origins in the test sequence. 

V.   RESULTS AND DISCUSSION 
Chew et al., in [15], have developed several palindrome 

scoring schemes for predicting replication origins in 
herpesvirus genomes.  Their approach is to slide a window of 
size about 0.5% of the genome length over the sequence.  As 
the window moves along, a score which reflects the 
concentration of palindromes in the window is calculated.  The 
top scoring windows then become predicted likely locations of 
replication origins.  Among several palindrome scoring 
schemes considered in that paper, the based-pair weighted 
score BWS1, which scores palindromes according to how 
unlikely they can be observed in a random nucleotide sequence 
generated by a first order Markov chain, gives the most 
accurate predictions. To compare the ANN approach with the 
palindrome method side by side, we present the top three ANN 
predicted replication origin locations for each of the 
herpesviruses listed in Table III along with the top three 
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predictions made by Chew et al. as reported in Table I of [15], 
using the BWS1 palindrome scoring scheme. 

 Among the herpesviruses in Table III, each of the first 19 has 
at least one known replication origin [15]. We shall use these 19 
genomes for assessing the prediction accuracy of the ANN 
approach.  Although the remaining 20 viruses in Table III do 
not have any documented replication origin, we also report the 
predictions by ANN and BWS1 as this information can assist 
biomedical researchers identify and confirm the replication 
origins of these viruses in their laboratories. 

As in [15], we consider a prediction successful if the 
predicted location is within two map units of a known 
replication origin.  The performance of a prediction scheme is 
often quantified by two commonly accepted measures: 
sensitivity and positive predictive value (PPV).  In our context, 
sensitivity is the percentage of known origins that are close to 
the regions suggested by the prediction; and positive predictive 
value is the percentage of predicted locations that are close to 
the known origins.  A predicted location is considered close to a 
known origin if it is within two map units. The sensitivity and 
PPV from the 19 neural networks are displayed in Fig. 2, along 
with the same measures for the BWS1 scheme.   
 

 

Fig. 2. Sensitivity and PPV (in percentage) using 1-10 top scoring windows 

 

Usually there are three replication origins in a herpesvirus 
genome but in some exceptional cases, there are six.  

TABLE III. FIRST 3 PREDICTIONS FOR BOTH BWS1 AND ANN METHODS 

BWS1Rankings ANN Rankings Virus 
 

1 2 3 1 2 3 

BoHV1 113401 124501 887301 105367 127219 110755 

BoHV4 54751 30215 72251 96637 22474 5993 

BoHV5 18901 113401 129601 130002 112629 68297 

CeHV1 133001 149451 61601 150140 132640 123892 

CeHV2 129501 144201 61601 127986 143722 123440 

CeHV7 18601 106201 121801 109445 118740 104048 

EBV  7601 53201 127601 51164 69951 150696 

EHV1 116201 147001 47601 142539 121228 73715 

EHV4 105351 143151 109901 128098 136847 44449 

GaHV1 68601 41651 99751 121748 137492 144488 

HCMV  94501 174901 196351 214897 189616 93982 

HHV6 8051 30101 110601 131370 68479 142200 

HHV6b 90801 132801 8801 69477 128973 157722 

HHV7 9451 152251 133351 145740 9436 128615 

HSV1 62301 129851 148401 130259 147372 9429 

HSV2 74551 28001 12951 148109 133437 127150 

RCMV 75901 110551 83601 134019 201028 213660 

SHV1 38151 11551 93101 16445 127016 117568 

VZV 119401 110101 100501 20665 120092 109311 

AlHV1 113701 123301 32701 119224 114132 127612 

AtHV3 99251 97001 54751 102165 98168 7244 

CalHV3 116201 133351 23101 116818 22734 56660 

CCMV  91201 207001 177001 176917 90557 199107 

CeHv15 8001 34801 138801 136317 7995 34779 

CeHV8 161151 147401 198001 161557 176944 88471 

EHV2 54001 6301 173251 12595 150690 139895 

GaHV2 160801 801 137601 137744 146928 52303 

GaHV3 158801 138401 11201 122703 131096 10791 

HCMV-M 175451 94051 153451 94477 89533 175772 

HHV8 23401 119701 136501 124626 118335 24266 

IcHV1 55501 89701 9301 62320 123140 126136 

MCMV 92951 142451 200201 92880 184112 197302 

MeHV1 5601 117951 11551 152513 119633 38128 

MMRV 132601 117601 3301 116029 26384 130421 

MuHV4 99251 26251 62001 100708 26739 70471 

OsHV1 21001 144001 187501 184946 196443 146456 

PSHV1 130401 151601 18801 151437 141049 87505 

SaHV2 103751 112501 81501 96190 67708 5746 

THV 134101 10801 144901 107813 189121 169804 
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We are therefore particularly interested in the prediction 
performance when using three to six top scoring windows.  

In Fig. 2, the ANN predictions show slightly better 
sensitivity and PPV than the BWS1.  More interestingly, when 
examining the listed predictions by the two methods in Table 
III, one can see that the prediction performance can be 
substantially improved if we combine the two sets of prediction 
results appropriately.  With three top-scoring windows, ANN 
and BWS1 can only attain a sensitivity of 64% and 57% 
respectively.   

However, when we combine the two sets of predicted 
locations, 30 out of the 39 known replication origins are located, 
giving a sensitivity of 77%, which surpasses the sensitivity of 
either one of the individual prediction schemes even using six 
top-scoring windows.  Furthermore, we can see from Table III 
that there are 15 “joint” predictions (shaded) which refer to the 
same locations predicted by both the ANN and BWS1.  (Again, 
we consider two predicted locations to be the same when they 
are within two map units from each other.)  

Among the 15 joint predictions, 13 are known origins, giving 
a PPV of 87%. This suggests that a jointly predicted origin from 
ANN and BWS1 will highly likely be a true replication origin. 
It would also be of interest to see if the BWS1 palindrome score 
can be a good input variable in the ANN approach.  On 
examining the BWS1 scores over a variety of windows in the 
herpesvirus genomes, we notice that this variable contains 
much inconsistency which can easily confuse the network 
during the training process.  For example, among those 
windows with zero BWS1 score, some are close to ORI and 
others are not.  So, corresponding to the same value of this input 
variable, some of the outputs 1 and others 0.  Since ANN 
training algorithms require that for the same input vector, the 
same output is always obtained, BWS1, by itself, is therefore 
not a suitable input variable in the ANN approach.  Moreover, 
our preliminary experiments show that the addition of the 
BWS1 to the 17-variable overall data set described above does 
not improve the performance of the neural networks for a test 
set composed of randomly selected windows.  The above 
observation leads to the question of what sequence 
characteristics can best serve as input variables to the ANN 
approach.  This relates to the feature extraction issue which is 
quite a common problem in ANN applications.  

VI.   CONCLUDING REMARKS 
This paper has demonstrated the contribution of ANN to the 

prediction of viral DNA replication origins.  While we have 
only applied this approach to the herpesviruses, it should also 
work well for other viral families as long as a set of confirmed 
origins have been identified for some members of the family.  
However, when dealing with a new sequence from a viral 
family with no known replication origins, the ANN approach 
will not work because no training data is available.  In such 
situations, we still have to rely on methods like the palindrome 
based schemes that use only features within the new sequence.  

Apart from the 17 input variables we have used in this study, 
other sequence characteristics, such as distribution of close 
direct and inverted repeats, variations in percentages of A and T 

bases, DNA asymmetry, flanking sequence similarity, etc., 
have been reported to be relevant ([14], [34], [35] and [36]) to 
replication origin prediction in a variety of viral, bacterial, 
archaeal, and eukaryotic genomes.  It is possible that some or 
all of these features can be incorporated to the ANN to further 
improve the prediction performance.  The problem of how to 
select an optimal collection of sequence features to be included 
for replication origin prediction still remains to be further 
investigated. 
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