
Evolutionary-Progressive Method
for Multiple Sequence Alignment

Paweł Kupis and Jacek Mańdziuk
Faculty of Mathematics and Information Science

Warsaw University of Technology
Plac Politechniki 1, 00-661 Warsaw

POLAND
Emails: {p.kupis, mandziuk}@mini.pw.edu.pl

Abstract— In this paper a new evolutionary-progressive
method for Multiple Sequence Alignment (MSA) is proposed. The
method efficiently combines flexibility of evolutionary approach
with speed and accuracy of progressive technique. Both stages of
introduced hybrid method are described in detail. The results of
comparison with several well-known methods show that proposed
evolutionary-progressive method is an interesting alternative for
purely genetic and purely progressive approaches.

I. INTRODUCTION

Multiple sequence alignment (MSA) is one of the most im-
portant tasks in nowadays computational biology. The problem
is NP-Hard [1] and consequently high computational complex-
ity and memory requirements make it hard to be approached
by the exact, dynamic programming methods (e.g. [2]). In
practice dynamic programming methods could be accepted as
an effective tool only for pairwise sequence alignment (PSA).
In the true MSA case (i.e. for n � 2, where n denotes the
number of sequences to be aligned) their computational load
is prohibitive and instead alternative approaches are usually
exploited at the cost, however, of loosing the guarantee of
finding the optimal solution.

The main alternative to dynamic programming methods
is progressive method [3], [4], which relies on a series of
pairwise alignments in order to build up a final alignment.
Closely related sequences are aligned first and subsequently
more distant ones. Progressive methods differ in the way the
pairwise sequence distance matrix is calculated which has
immediate impact on the order according to which sequences
are added to the partial solution maintained by the method. In
the most renown progressive approach - Clustal W [3] (and its
various refinements e.g. [5]) the alignment order is determined
by the phylogenetic tree, which defines evolutionary distance
between sequences. Despite the greedy nature (which can be
partly alleviated [6], [7], [8]) the progressive method, due to
its high speed and reasonable accuracy, still remains one of
the most popular tools for solving MSA problem.

Other possible approaches rely on heuristical, local block
alignment [9], [10], linear programming [11], Hidden Markov
Models [12], ant colony optimization [13], simulated an-
nealing [14], [15], genetic algorithms (GA) / evolutionary
programming (EP) [19], [20], [21], [22], [23], [24] or hybrid
methods [25], [26] and [16]-[18].

In this paper, following [16], we present a hybrid
evolutionary-progressive (E–P) method for simultaneous align-
ing of several amino acid sequences. Introductory notions
concerning MSA as well as foundations of GA/EP are omitted
in the paper.

II. EVOLUTIONARY-PROGRESSIVE METHOD

In the straightforward EP-based approach to MSA each
individual in a population represents an entire alignment.
Despite its simplicity, such representation suffers from a very
large search space and enforces large population size. In conse-
quence the execution time is dramatically increased. Another
consequence of such representation are complicated genetic
operators, which also has an impact on method’s efficiency.
An alternative idea is to apply EP to obtain initial, partial
alignment (in the restricted search space) and subsequently
use another method to achieve the final solution.

One of the promising examples of such hybrid approaches
was presented by Zhang and Wong in [16]. In the first step evo-
lutionary algorithm is used to find the first approximation of
the final alignment (called pre-alignment) and then the aligned
columns are fixed. In the next step the elements between the
pre-aligned columns are aligned by a greedy algorithm using
pairwise alignment. The method looks promising, but since
several relevant implementation details are missing in [16] it
is not possible to exactly follow the idea. In particular the
question on how to build the initial population in the pre-
alignment space (which is crucial for the quality of obtained
result) is not addressed. Another question that can be raised
concerns the usefulness of genetic operators defined in [16].
Our claim is that mutation operator of the form presented in
[16] is inefficient. Additionally we propose some refinements
in the definition of a crossover operator. Finally, in the second
phase of the algorithm it is suggested to use the progressive
method (ClustalW-like in our implementation) instead of sim-
ple greedy optimization.

In general, the two-phase construction of both methods
(Zhang and Wong’s and our) is atypical with respect to a
search space definition in GA/EP. Instead of most widely used
space of matrices describing the entire alignment the pre-
alignment’s space is used, which makes the major difference
between these two methods and the ones listed in Section I.

291

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE



In the next two subsections our modified hybrid method
is presented in more detail followed by experimental results
(Section III) and conclusions (Section IV).

A. The evolutionary stage

Primarily the notion of the pre-alignment has to be precisely
defined. A definition uses the notions of identical column
and columns block, which will be clarified first. Column of
alignment is called identical if its elements (symbols in each
row) are all the same. Identical columns form a block if they
are neighbors in an alignment.

Consider for example the three following sequences:

MAAFCP
MACFMCP
MACMFCP

All possible identical columns that can be defined for these se-
quences are presented below (numbers in columns are indices
of respective sequences):

1 1 1 1 2 3 4 5 5 5 5 6
1 1 5 5 2 2 4 3 3 6 6 7
1 4 1 4 2 2 5 3 6 3 6 7

Finally all possible formed blocks of identical columns can be
determined:

1 2 5 6
1 2 6 7
1 2 6 7

Pre–alignment is defined as a series of identical column
blocks which fulfils the following conditions:
• in each row, each number (index) can appear only once,
• in each row numbers are in ascending order.

Each single column is treated as a block of length one. The
above conditions guarantee that the final alignment can be
build on the basis of the pre-alignment (all columns defined
in pre-alignment can be concurrently fixed in the alignment).
The examples of correct pre-alignment of the above three
sequences are shown below.

1 2 5 6
1 2 3 7
1 2 6 7

1 2 4 5 6
1 2 4 6 7
1 2 5 6 7

In our approach, similarly to Zhang and Wong method, an
individual in evolutionary algorithm represents a pre-alignment
as defined above. The search space is restricted to all correct
pre-alignments of a given set of sequences. The first problem
to solve is generating the first population of individuals (i.e.
the initial set of pre-alignments). Clearly, identification of all
possible identical columns is inefficient, since the complexity
of this task equals the complexity of the whole MSA problem.
Moreover, a number of columns found would be too big to
generate efficient population.

For generating the first population and for the whole evo-
lutionary process the notion of harmful block is considered.
A formal definition of a harmful block and measure of its

harmfulness can be found in [16]1. Intuitively a harmful block
can be described as the one connecting two too distant parts
of sequences (see Fig. 1).

Fig. 1. Schematic example of a harmful block.

The example below shows that situation in case of the
following set of sequences:

MARAFCPMWAAAFCPTMAAFCP
MAARFTCPMAAFCPMAAFCP
MRAAFCPMWAAFCPMAAFTCP

If identical column for symbol T is fixed, one of the sub-
optimal alignments of the above sequences is:

MARAFCPMWAAAFCP-----T--MAAFCP------
---------------MAARFTCPMAAFCPMAAFCP
MRAAFCPMW-AAFCPMAA-FTCP------------

When the constraint previously applied to symbol T is
removed more accurate alignment can be constructed:

MARAF-CPMWAAAFCPTMAAF-CP
MAARFTCPM--AAFCP-MAAF-CP
MRAAF-CPMW-AAFCP-MAAFTCP

The example above shows a harmful block of length 1,
but generally there is no restriction on the length of such a
block. The method of identifying possible identical columns
should not prefer such harmful columns, because usually such
columns make efficient aligning difficult. On the other hand
the method ought to utilize all symbols in sequences in order
to build a representative subset of identical columns. Finally,
upper limit of the columns found and execution time should be
restricted to reasonable limits. Thus, the method must provide
mechanisms for having these parameters under control. After
several preliminary trials the following method, depicted in
Fig. 2, has been developed.

Fig. 2. The idea of search windows.

The method is characterized by two parameters - cmax is the
upper limit of the columns that compose the pre-alignments
(technically cmax is an approximate limit of columns number

1Please note, that in [16] a harmful block is used for finding the sub-
optimal mutation points during the EP, and not for generating the initial
population. Here we suggest to include its notion already in the process of
defining the initial population, and to skip the mutation operator. Rationales
and consequences of that decision are discussed later in this section.

292

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



that could be identified by the method) and w% defines the
size of the search window (which equals w% of the sequence
length).

At first, one of the sequences, denoted by S, is chosen (in
our implementation it is always the shortest one) and then the
following procedure is repeated some predefined number of
times: a symbol s ∈ S is selected and its relative position
(denoted by rp) with respect to the beginning and the length
of S is determined. Next, for each sequence other than S a
window of width w% of the length of the sequence is defined
and its midpoint is positioned at rp. Then, in each sequence
one symbol within window’s range is randomly selected2.
If all selected symbols are pairwise equal to s, then their
indices create a new identical column. Assuming the uniform
distribution of identical columns in S, the above procedure is
repeated d cmax

m e times for each symbol s ∈ S, where m is the
length of S.

Symbols in S are selected in ascending order of their
indices. The created identical columns are stored in order of
creation. Finally, the initial population of pre-alignments is
generated using the following procedure (cp is the population
size, A is an ordered set of identical columns found with the
above described method and P is a set of pre-alignments,
initially P is empty):

foreach(a in A) {

foreach(p in P) {

if(a could be added at the end of P) {

join a to P;

if possible {

join together a and

the last block in P;

}

goto next a;

}

}

create new p using a;

join p to P;

}

sort P by fitness function value;

choose no more than cp best individuals;

The above procedure gathers information about identical
columns in restricted number of individuals. It does not
guarantee optimal usage of the columns found, but if the order
of columns is preserved from the search operation, results are
acceptable against execution time. The default values used
in our method are cmax = 4 000, w% = 0.04 (4%) and
cp = ma×n

10 , where ma is the mean sequence length and n
is the number of sequences. cp is additionally restricted to the

2For extreme symbols (at the beginning and at the end of the sequence)
effective window’s width is less than w% of the sequence length because
distance from rp to sequence’s edge is less than w%×m

2
, where m is the

length of the sequence. Therefore complete sequences scan is performed for
w% = 2.0 not for w% = 1.0 (however, in that case many harmful columns
are included).

interval < 100, 400 >. In case the initial population size is
smaller than cp it will be enlarged to cp by the first selection
operation.

Once the initial population is generated the evolutionary
process begins. The method uses traditional selection operator
- fitness proportionate selection, also known as roulette-wheel
selection with one modification - simple elitism is used to en-
sure that the best individual at each generation is incorporated
in a subsequent generation. Originally, the mutation operator
was planned to be implemented in a way described in [16],
but preliminary tests revealed that it was very hard to set the
threshold for automatic elimination of harmful blocks. Since
the major function of mutation is to prevent formation of too
long alignments, it was decided to control this by appropriate
fitness function instead. Consequently mutation operator is not
used in the proposed method which, according to tests carried
out, is beneficial for method’s performance. The new proposed
fitness function is defined as follows (p is an individual):

fitness(p) = 100× col(p)
(lenmin(p))α

(1)

where col(p) returns the number of columns in p (col function
is the original fitness function proposed in [16]) and lenmin(p)
returns the minimal possible length of alignment constructed
on the basis of pre-alignment represented by individual p.
More precisely, let the i-th block of pre-alignment p be
denoted by bi:

bi1,1 bi2,1 · · · biwi,1

bi1,2 bi2,2 · · · biwi,2

...
...

. . .
...

bi1,n
bi2,n

. . . biwi,n

where wi is the width of block bi and n is the number of
the sequences. Let m denotes the number of blocks in pre-
alignment p and sr the length of the r-th sequence, then:

lenmin(p) = max
1≤j≤q

(b11,j − 1) + max
1≤j≤q

(sj − bmwm,j − 1)

+

m∑
k=2

max
1≤j≤q

(bk1,j − bk−1wk−1,j − 1) +

m∑
k=1

wk =

= max
1≤j≤q

(b11,j ) + max
1≤j≤q

(sj − bm1,j )

+

m∑
k=2

max
1≤j≤q

(bk1,j − bk−11,j )

Exponent α in (1) specifies the significance of length penalty
(α = 20 by default).

Please note, that neither in Zhang–Wong method [16] nor
in our approach the mutation operator does extend the search
space. In both algorithms the sub-space truly searched in
evolutionary stage is limited to the combinations of the blocks
included in individuals that compose the initial population. In
other words, due to the lack of mutation operator, no additional
information (data) can be created in the evolutionary phase
besides this already included in the initial population. This
fact asserts significance of the quality of the method used for
the initial population generation.

293

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



In the crossover operation a random cutting point for each
of the two chosen pre-alignments is independently selected
and subsequently individuals exchange information. A cutting
point never splits existing blocks. Additionally, crossover
operator merges blocks in the offsprings if possible (it is
not a costly operation, since only blocks neighboring to the
cutting points have to be checked). Another modification is
adding a condition that preserves the best individual in the
population, i.e. at least one of the children has to be better
than both of the parents in order to allow children replace
their parents. Also incorrect pre-alignment never replaces its
parents. Cutting point before the first or after the last block
causes empty pre-alignment, which also never replaces its
parents. Crossover probability was set to 0.4 by default.

Evolutionary process can be stopped due to one of the
following reasons:
• fitness of the best individual did not change in the last

40 generations,
• the limit of 1 000 generations was exceeded.

After termination of the evolutionary algorithm the best indi-
vidual is selected and the evolutionary method is recurrently
called for substrings located between its blocks. Recursion is
stopped if at least one of the following conditions is fulfilled:
• the maximum distance between neighboring blocks is less

than 20,
• the algorithm found no identical columns between neigh-

boring blocks.
In that case the progressive method (Section II-B) is called for
the remaining substrings.

Parameters for the evolutionary process were selected after
some preliminary tests. The chosen values assure stable and
reasonable behavior of the algorithm, but they should not be
regarded as the optimal ones.

B. The progressive stage

In the second stage a typical progressive algorithm is used.
In our implementation it is Clustal W [3] like method. A
phylogenetic tree is built with the use of neighbor-joining [27]
and mid-point rooting methods. For pairwise alignment Myers-
Miller method [28] is applied enhanced to use position-specific
gap penalties and other improvements described in [3], in
particular:
• sequence weighting,
• gap opening penalty (GOP) modification depending on

existing gaps,
• gap extension penalty (GEP) modification depending on

existing gaps,
• GEP modification depending on difference in the lengths

of the sequences.
Percentage identity measure for pairwise alignment is

used to build sequences’ distance matrix for neighbor-joining
method (pairwise alignments for distance matrix are con-
structed with Myers-Miller method without any enhance-
ments). After that phylogenetic tree (guide tree) is build
and progressive aligning is performed (previously calculated

pairwise alignments are cached and used in progressive part
as needed). Besides enhancements in Myers-Miller method
another one is used in this stage - substitution matrix used
for symbol comparison is automatically selected depending
on the distance (measured in the guide tree) between the two
sequences or groups of sequences to be compared.

Implementation of the progressive part of the whole MSA
method must also be very efficient because in some cases only
a few or even no identical columns can be found during the
evolutionary phase.

III. RESULTS

We have compared our implementation of evolutionary-
progressive method with ones of the most popular programs
used for MSA, i.e. T-Coffee 4.45 [6], MUSCLE 3.6 [7],
MAFFT 5.8 [8], DIALIGN 2.2.1 [9], Probcons 1.11 [25],
Clustal W 1.83 [29], and SAGA 0.95 [30]. Majority of the
above programs represent progressive approach, but evolution-
ary and local block alignment based methods are also included
in comparison.

Two different measures were used to compare quality of
the produced alignments. The first one is the sum-of-pairs
score (SPS) and the second one is the column score (CS).
Pairwise alignment score for SPS was calculated exactly in the
same way as in dynamic programming method and included
substitution matrix usage and affine gap penalty. Two SPS
were calculated for the following two parameter sets:

Set 1 – GOP: 10, GEP: 0.2, BLOSUM 62 matrix,
Set 2 – GOP: 10, GEP: 0.2, 250 PAM matrix.

and finally their mean value was obtained. Since SPS repre-
sents the cost of alignment, the lower the SPS, the higher
the quality of alignment. CS is calculated in a standard
way defined in [31]. On the contrary to SPS for the CS
measure the higher its value the better the alignment. Both
measures are defined to have nonnegative values. Quality of
alignment produced by any of the above mentioned programs
was measured in relation to quality of the reference alignment.
Thus, all quality measure values presented in this section are
related to measure values for the reference alignments and
expressed in percent.

BAliBASE 2.01 BAliBASE 3.0
publication date 2000 2005
number of test cases 141 218
number of sequences in test case 3 - 28 4 - 142
length of sequences 49 - 993 49 - 7923

TABLE I
COMPARISON OF BALIBASE VER. 2.01 AND 3.0.

Test cases were taken from the most widely used multiple
alignment benchmark - BAliBASE, which is the reference
database, providing high quality, manually refined reference
alignments. We used version 2.01 of that database and also the
latest release 3.0. Version 3.0 of BAliBASE [32] includes new,
more challenging test cases, representing the real problems

294

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



encountered when aligning large sets of complex sequences.
General comparison of both versions is presented in Table I.

All tests were executed on desktop PC (AMD
Athlon XP 2000+ 1.70 GHz [12.5 × 136 MHz] with
1.00 GB memory [333 MHz]). Clustal W 1.83, MUSCLE 3.6,
Probcons 1.11 and our method were run under the control
of Microsoft Windows Server 2003 Standard Edition SP1,
SAGA 0.95, T-Coffee 4.45, DIALIGN 2.2.1 and MAFFT 5.8
worked under Fedora Core 3 Linux (kernel 2.6.9). E–P method
was implemented in C#.NET 2.0. In all programs default
parameter settings were used. SAGA used MSA objective
function. A single test case was marked as successfully
completed if execution time was no longer than 1 hour and
memory consumption did not exceeded 1 GB.

TABLE II
RESULTS OBTAINED FOR BALIBASE VER. 2.01 TEST CASES.

th
e

av
er

ag
e

SP
S

ra
tio

th
e

av
er

ag
e

C
S

ra
tio

su
m

of
th

e
ex

ec
ut

io
n

tim
es

%
of

su
cc

es
sf

ul
ly

co
m

pl
et

ed
te

st
ca

se
s

th
e

av
er

ag
e

le
ng

th
of

al
ig

nm
en

t
ra

tio

ClustalW 1.83 101.2 89.7 90 100.0 96.6
MUSCLE 3.6 99.8 95.2 65 100.0 99.1
MAFFT 5.8 99.7 99.7 24 100.0 100.4

DIALIGN 2.2.1 94.4 77.0 289 100.0 113.0
Probcons 1.11 99.2 94.0 1796 100.0 104.2
T-Coffee 4.45 99.2 95.0 1732 100.0 101.3
SAGA 0.95 101.9 77.1 51503 90.8 94.6

E-P (w% = 0.01) 104.1 81.5 47 100.0 100.1
E-P (w% = 0.02) 104.7 86.0 43 100.0 101.2
E-P (w% = 0.04) 105.5 92.7 38 100.0 102.0

Fig. 3. The average SPS values obtained for BAliBASE 2.01.

First, test cases from the version 2.01 were considered. The
results are presented in Table II, where it is shown that only
SAGA did not successfully complete all tests (in almost 10%
of them at least one of test limits was exceeded).

It can be seen from Table II that all progressive methods
obtain similar results (see Fig. 3 for graphical interpretation
of this data). The best result in SPS category obtained by

Fig. 4. The average CS values obtained for BAliBASE 2.01.

Fig. 5. The sum of execution times of all successfully completed test cases
for BAliBASE 2.01.

DIALIGN program has consequences in weak result in CS
category (see Fig. 4), big alignments’ lengths and high execu-
tion time.

Our E–P method is a little faster than Clustal W and
MUSCLE but significantly faster than its evolutionary com-
petitor SAGA (see Fig. 5 for execution times comparison).
The best time result was attained by MAFFT, the worst ones
by Probcons and T-Coffee (among programs which completed
all test cases). The cost of alignments produced by E–P method
was a bit higher than those produced by the progressive
methods. As follows from comparison of quality measures
the E–P method accomplished competitive results in both
progressive and evolutionary categories.

Based on the above results it was decided to use test cases
from the newer version of the database only with the fastest
programs which additionally successfully completed all tests
from version 2.01. The results obtained for BAliBASE 3.0
are presented in Table III (all test cases were successfully
completed by all methods). The general conclusion from
Table III is that E–P method is comparable in both time and
quality to all the other tested methods. Actually, by adjusting
the window’s width w% in the evolutionary process one can

295

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



Fig. 6. Results obtained by E–P method for BAliBASE 3.0.

TABLE III
RESULTS OBTAINED FOR BALIBASE VER. 3.0 TEST CASES.

th
e

av
er

ag
e

SP
S

ra
tio

th
e

av
er

ag
e

C
S

ra
tio

su
m

of
th

e
ex

ec
ut

io
n

tim
es

th
e

av
er

ag
e

le
ng

th
of

al
ig

nm
en

t
ra

tio

ClustalW 1.83 103.6 64.9 2902 94.3
MUSCLE 3.6 101.1 84.1 3276 98.9
MAFFT 5.8 100.5 83.0 350 102.8

DIALIGN 2.2.1 91.8 58.9 15689 129.8
E-P (w% = 0.04) 104.6 74.2 1492 97.3
E-P (w% = 0.08) 104.0 95.0 902 98.9
E-P (w% = 0.12) 102.6 105.6 825 101.2
E-P (w% = 0.16) 101.8 119.8 795 103.1
E-P (w% = 0.20) 100.5 123.1 768 104.8
E-P (w% = 0.24) 99.6 126.5 757 107.7
E-P (w% = 0.28) 98.7 134.2 777 108.7
E-P (w% = 0.32) 97.4 139.3 792 110.6
E-P (w% = 0.50) 94.6 138.5 913 115.6
E-P (w% = 1.00) 88.2 125.9 1529 123.6
E-P (w% = 2.00) 83.9 98.5 2303 126.6

easily establish the balance between the quality measures
(SPS, CS) and the execution time or alignment’s length (see
Fig. 6). For example E–P excels Clustal W in the SPS category
for w% ≥ 0.12 (MUSCLE and MAFFT for w% ≥ 0.20).
Also for almost all tested window’s lengths the proposed
method outperformed its competitors in the CS measure and
the execution time (with the exception of sensational MAFFT’s
execution time). On the other hand, regardless the choice of
w% the length of alignment output by E–P method exceeds
the one yielded by the progressive programs.

An interesting observation from comparison of E–P results
for BAliBASE 2.01 and 3.0 is that in the former case the SPS
ratio increases with increase of w%, whereas in the latter case -
decreases. This observation deserves further investigation and
at the moment we are not able to convincingly explain this
phenomenon.

IV. CONCLUSIONS

The efficient MSA method can be build using evolutionary
techniques, but the representation of individuals and definition
of the search space have to be suitably chosen. Traditional,
straightforward way of problem representation, in which a
chromosome describes the whole alignment, is impractical.
Instead, it is proposed to use genetic algorithm to obtain
the initial, approximate alignment and subsequently apply
efficient heuristic method for its refinement. The evolutionary-
progressive method described in this paper is a compromise
between flexibility of evolutionary approach and advantages
of progressive method, which are speed and quality. The new
concept of search space definition makes evolutionary part
of the algorithm easier to implement and faster. Progressive
part is used for subtasks with reduced problem dimension.
Combination of these two ideas creates the method which is
an interesting alternative for progressive methods and which
is competitive to purely evolutionary approaches.

REFERENCES

[1] Wang, L., Jiang, T.: On the complexity of multiple sequence alignment.
Journal of Computational Biology 1(4) (1994) 337–348

[2] Carrillo, H., Lipman, D.J.: The multiple sequence alignment problem
in biology. SIAM Journal on Applied Mathematics 48(5) (1988) 1073–
1082

[3] Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res. 22 (1994) 4673–4680

[4] Zhu, M-J., Hu, G-W., Zheng, Q-L., Peng, H.: Multiple sequence align-
ment using minimum spanning tree, Proc. 4th International Conference
on Machine Learning, Guangzhou (2005) 3352–3356

[5] Chaichoompu, K., Kittitornkun, S., Tongsima, S.: MT-ClustalW: Multi-
threading Multiple Sequence Alignment, Proc. International Parallel and
Distributed Processing Symposium (IPDPS) (2006)

[6] Notredame, C., Higgins, D., Heringa, J.: T-coffee: A novel method for
multiple sequence alignment. Journal of Molecular Biology 302 (2000)
205–217

[7] Robert C. Edgar: MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Research 32(5) (2004)
1792–1797

[8] Kazutaka Katoh, Kei-ichi Kuma, Hiroyuki Toh and Takashi Miyata:
MAFFT version 5: improvement in accuracy of multiple sequence
alignment. Nucleic Acids Research 33(2) (2005) 511518

[9] Morgenstern B.: DIALIGN: multiple DNA and protein sequence align-
ment at BiBiServ. Nucleic Acids Research 32i (2004) W33W36

[10] Jiang., T., Zhao., P.: A Heuristic Algorithm for Blocked Multiple
Sequence Alignment, Proc. IEEE International Symposium on Bio-
Informatic and Biomedical Engineering (2000) 176–183

[11] Hunt, F.Y., Kearsley, A.J., O’Gallagher, A.: A Linear Programming
Based Algorithm for Multiple Sequence Alignments, Proc. 2003 IEEE
Bioinformatics Conference (2003) 532–533

[12] Krogh, A.: An introduction to Hidden Markov Models for biological
sequences. In: Salzberg, S.L., Searls, D.B., Kasif, S.: Computational
Methods in Molecular Biology. Elsevier (1998) 45–63

[13] Chen, Y., Pan, Y., Chen J., Liu, W., Chen L.: Partitioned optimization
algorithm for multiple sequence alignment, Proc. 20th International
Conference on Advanced Information Networking and Applications
(AINA’06) (2006)

[14] Kim, J., Pramanik, S., Chung, M.G.: Multiple sequence alignment
using simulated annealing. Computer Applications in the Biosciences
(CABIOS) 10(4) (1994) 419–426

[15] Zola, J., Trystram, D., Tchernykh, A., Brizuela, C.: Parallel Multiple Se-
quence Alignment with Local Phylogeny Search by Simulated Anneal-
ing, Proc. International Parallel and Distributed Processing Symposium
(IPDPS) (2006)

296

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



[16] Zhang, C., Wong, A.K.C.: A genetic algorithm for multiple molecular
sequence alignment. Computer Application in the Biosciences 13(6)
(1997) 565–581

[17] Zhang, C., Wong, A.K.C.: Toward Efficient Multiple Molecular Se-
quence Alignment: A System of Genetic Algorithm and Dynamic
Programming, IEEE Transactions on Systems, Man, and Cybernetics
27(6) (1997) 918–932

[18] Zhang, C., Wong, A.K.C.: A technique of genetic algorithm and
sequence synthesis for multiple molecular sequence alignment. IEEE
International Conference on Systems, Man, and Cybernetics 3 (1998)
2442–2447

[19] Chellapilla, K., Fogel, G.B.: Multiple sequence alignment using evo-
lutionary programming. IEEE Congress on Evolutionary Computation
(1999) 445–452

[20] Thomsen, R., Fogel, G.B., Krink, T.: A Clustal Alignment Improver
Using Evolutionary Algorithms. Congress on Evolutionary Computation
(CEC-2002) 1 (2002) 121–126

[21] Thomsen, R., Fogel, G.B., Krink, T.: Improvement of Clustal-Derived
Sequence Alignments with Evolutionary Algorithms, Proc. The 2003
Congress on Evolutionary Algorithms, vol. 1 (2003) 312–319

[22] Liu, L., Huo, H., Wang, B.: Aligning multiple sequences by genetic
algorithm, Proc. International Conference on Communications, Circuits
and Systems (ICCCAS’04), vol. 2 (2004) 994–998

[23] Zhang, G-Z., Huang D-S.: Aligning Multiple Protein Sequence by
An Improved Genetic Algorithm, Proc. 2004 IEEE International Joint
Conference on Neural Networks, vol. 2 (2004) 1179–1183

[24] Abdesslem, L., Soham, M., Mohamed, B.: Multiple Sequence Align-
ment by Quantum Genetic Algorithm, Proc. International Parallel and
Distributed Processing Symposium (IPDPS) (2006)

[25] Do, C.B., Mahabhashyam, M.S.P., Brudno, M., and Batzoglou, S.:
PROBCONS: Probabilistic Consistency-based Multiple Sequence Align-
ment. Genome Research 15 (2005) 330–340

[26] Zhou, H., Zhou Y.: SPEM: Improving multiple-sequence alignment with
sequence profiles and predicted secondary structures. Bioinformatics
21(18) (2005) 3615–3621

[27] Saitou, N., Nei ,M.: The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4) (1987) 406–25

[28] Myers, E.W., Miller, W.: Optimal alignments in linear space. Bioinfor-
matics 4(1) (1988) 11–17

[29] Chenna, R., et al.: Multiple sequence alignment with the Clustal series
of programs. Nucleic Acids Research 31(13) (2003) 3497-3500

[30] Notredame, C., Higgins, D.G.: SAGA: sequence alignment by genetic
algorithm. Nucleic Acids Res. 24(8) (1996) 1515–1524

[31] Thompson, J.D., Plewniak, F., Poch, O.: A comprehensive comparison
of multiple sequence alignment programs. Nucleic. Acids. Res. 27(13)
(1999) 2682–2690

[32] Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: Latest
Developments of the Multiple Sequence Alignment Benchmark. PRO-
TEINS: Structure, Function, and Bioinformatics 61 (2005) 127-136

297

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)


