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Abstract — In this paper we present a method for finding the 
main pathways represented in a set of genes (say obtained from 
a microarray experiment).  The method is based on a fuzzy 
mapping between genes represented as sets of Gene Ontology 
terms and KEGG pathways using a new type of fuzzy rule 
system called ontological fuzzy rule system (OFRS).  As 
opposed to a crisp mapping, the fuzzy mapping produces a non-
zero value even if the gene name is not explicitly listed in a 
given KEGG pathway.  An OFRS is a fuzzy rule system in 
which the rule memberships are obtained using similarity 
measures between objects computed based on the Gene 
Ontology (GO) annotations.  To test our approach, we 
randomly selected without replacement 10 sets of Arabidopsis 
thaliana genes from KEGG (each set had 15 genes from 3 
different pathways) and tried to predict the pathways they were 
selected from. Our method was able to find, 90% of the right 
pathways with a 65% false alarm rate at a p-value of 0.01.  The 
high false alarm rate is due in part to the experimental setting.  
In a pilot dataset of 526 Arabidopsis thaliana genes we 
identified 8 clusters which proved to be linked to important 
pathways such as ATP synthesis and transcription factor.

I. INTRODUCTION 
UZZY computing differs from conventional (hard) 
computing in that, unlike hard computing, it is tolerant to 

uncertainty and partial truth.  The model for fuzzy 
computing is the human mind. For example, we all know 
what “small” is but we probably disagree on the exact 
number of inches it represents. 

Use of fuzzy techniques such as fuzzy clustering [1], 
fuzzy neural networks [2], fuzzy rule systems [3], fuzzy 
relations [4] and fuzzy rule systems [5] has been previously 
reported in bioinformatics.  Fuzzy rule systems were also 
employed in other domains such as control theory and 
decision making [6]. 

The association between fuzzy techniques and ontologies 
has also been previously reported.  Andreasen [7] introduced 
the concept of an ontological query in the context of fuzzy 
databases.  Fuzzy ontologies were used by Tho [8] and Lee 
[9] in text mining and text summarization applications. 
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In this paper we use the fuzziness intrinsic to a crisp 
ontology (as in [7]) rather than building a fuzzy ontology per 
se (as in [8]). 

Among bioinformatics ontologies (such as EcoCyc, 
Tambis, Gene Ontology (GO), MBO, KEGG) Gene 
Ontology seems to be used the most in applications.  Among 
the multitude of applications where a GO based similarity 
between gene products has been reported, we mention [10]-
[13].  In this work we will also use the GO for computing 
the similarity between gene products.  In addition, our fuzzy 
logic approach to using Gene Ontology should be considered 
in the context of the knowledge driven approaches to GO 
such as the ones presented in [15] and [16]. 

Many applications, such as [16]-[18], provide a mapping 
of a set of genes to a set of pathways.  By clustering the 
genes based on their pathway fuzzy memberships, we are 
able to compute not only the pathways associated with a 
group of genes, but also which gene subgroup is associated 
to which pathway. 

II. METHODS

A. Ontological Similarity as a Fuzzy Membership 
Let us assume that each gene product G is described by a 

set of GO terms as G={T1,…,Tn}.  The key concept in the 
fuzzy mapping of GO to KEGG is the gene product 
similarity.  This similarity is computed using an ontology 
and ontology related algorithms.  As observed by Andreasen 
[7], one can interpret the similarity between two ontology 
terms as a fuzzy membership of one term in the concept 
denoted by the other term.  Consequently, the similarity 
between two genes may be used as a fuzzy membership.  
The fuzzy membership can be further employed to fire fuzzy 
rules.  However, the above interpretation must be made with 
care. 

First, while the similarity measure in an ontology is 
usually symmetrical, that is s(a,b)=s(b,a), the fuzzy 
memberships might not be.  The reason resides [7] in the 
difference between generalization (“serine-threonine kinases 
are kinases”) and specialization (“kinases are serine-
threonine kinases”): while the first holds totally (high 
membership value) the latter holds only partially (“medium” 
membership value).   

Second, the high ontological relatedness between siblings 
of a term (say, tyrosine kinase and serine/threonine kinase) 
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might not translate in a high level of similarity between their 
functions.  For example, only tyrosine kinases are growth 
factors and not serine/threonine kinases.  We mention here 
that approaches to computing ontological similarity based on 
information content [20] are inadequate for our purpose 
since they are totally ignore the above issues.  While we 
leave this topic for further research, in this paper we chose to 
calculate the term similarity (hence the fuzzy memberships) 
using the approach presented by Andreasen [7] that deals 
with the above problems. 

In this approach, the similarity between two GO terms, T1
and T2, is computed as: 

∏
∈

=
i

i Pj
ijP

ws
}{12 max ,        (1) 

where {Pi} is the set of all possible paths connecting T1 and 
T2 in GO, and wij is the weight assigned to the arc j from 
path Pi. (see figure 1). 
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Figure 1. Example of path-based computation of the similarity 
(membership) between two GO terms.  Note that the thin arcs represent the 
weight assignment process while the thick arcs represent the ontological 
relation “is-a”(GO is a directed acyclic graph).  Here, the similarity between 
T1 and T2 is 0.9*0.4=0.36. 

We mention that s12 is not in fact a similarity relation 
because it lacks the symmetry.  A more complex formula 
that defines a similarity relation based on the same approach 
can be found in [7].  However, we believe that the lack of 
symmetry is, aside of simplicity, more suitable for our 
purpose in this work.   

We consider only two types of weights here: 
specialization weights (downward from the ancestor node to 
the descendent node) with a value of 0.4 and generalization 
weights (upward from the descendent to the ancestor) with a 
value of 0.9.  This assignment reflects the fact that “all T1

are T3” but only “some T3 are T1”.  For example, in figure 1, 
the similarity between   and T1 and T2 is 0.9*0.4=0.36. 

B.  Ontological fuzzy rule system (OFRS) 
A typical Mamdani fuzzy rule system (FRS) with one 

input variable in the antecedent (left side) and one output in 
the conclusion (right side) has the form [6]: 

Rule 1: IF x is G1 THEN y is P1        
…           (2) 
Rule m: If x is Gm THEN y is Pm

where Gi and Pi, i=1…m, are fuzzy sets, x is the input 
variable and y is the output variable.  Fuzzy sets Gi are 
possible “values” for the variable x while Pi are possible 

"values" for y.  The fuzzy sets are usually represented using 
membership functions.  For example, in figure 2 we show 
three membership functions for the fuzzy variable “stature” 
called “short”, “average” and “tall”.  To fire a rule, one has 
to compute the membership value (called rule activation) of 
a given value of the input variable x, x0∈R.  For instance, in 
figure 2, for x0=1.8 we get the membership values of 0 in 
“short”, 0.2 in “average” and 0.8 in “tall”.   

Figure 2.  Memberships for fuzzy variable “STATURE”: “short”, 
“average”, “tall”. 

The rule activations wi are then used as weight factors in 
computing the output of the fuzzy rule system as: 

)(
,1

0 ii
mi

PwAggy
=

= , (3) 

where “Agg” is some aggregation operator (usually 
weighted average.  The entire inference process is shown 
schematically in figure 3. 
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Figure 3.  A typical Mamdani FRS with one input variable and two rules.  
The activation of Rule1, w1, is given by the membership of x0, G1(x0). 
Similarly, the activation of Rule2, w2, is given by G2(x0).  The system 
output, y0, is calculated by aggregating the activated portion of the output 
membership of each rule (grayed area) using formula (3). 

We note that if the above fuzzy rules (2) have the same 
output fuzzy set (say P1) then they can be equivalently 
written as: 

IF x is G1 OR …OR x is Gn THEN P1            (4) 
In this case the rule activation wrule can be computed using 

an OR operator [6] as: 
)(

,1 inirule wORw
=

= ,   (5) 

In this paper we use as OR the “maximum” operator.  
An ontological fuzzy rule, OFRS, is a Mamdani FRS (2) 

where the membership are computed using ontological 
similarities. It is possible that each variable has a different 
ontology associated.  In our case, the input variables are 
genes annotated with terms from the Gene Ontology (GO) 
while the output variable is a KEGG pathway.   The OFRS 
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for the GO to KEGG mapping can be represented as: 

IF gene is GENE1 OR … OR gene is GENEn       (6) 
THEN pathway is PATH1

where GENE1 to GENEn are identified by KEGG as being 
present in pathway PATH1.  We note that the above OFRS 
has as input variable one gene.  The output of the OFRS is 
the membership of that gene in a pathway PATH1.   
However, it is possible to build an OFRS with an input x that 
consists of a group of genes.   In this case, the Gi's from 
formula (2) consist in all the genes from a pathway.  The 
challenge of this approach is that we do not know apriori
which group of genes is associated with which pathway.  

Since (6) is an ontological FRS, the membership 
calculation in the rule antecedent are performed using the 
GO similarities between genes.  The process is 
metaphorically represented in figure 4 (relate to figure 3).  
The membership functions from figure 3 were replaced by 
ontological trees in figure 4.  Similarly, the output is 
computed (formula 3) by aggregating the KEGG pathways 
using KEGG similarity and the rule activations as weights. 

y0x0

Rule1

Rule2

Figure 4.  Metaphorical representation of a OFRS.  The membership 
functions are replaced by similarity measure in ontological trees. 

In this paper we do not use the KEGG pathway similarity 
in computing the OFRS output in formula (3).  We leave this 
topic for further research.  Instead we set as the output the 
pathway that has the highest activation.  We mention that by 
taking into account the similarity between the KEGG 
pathways, the result of our testing (90% correct pathway 
prediction) may be in fact better.  In some cases, we predict 
a pathway that is “very similar” to the real one but we still 
count it as a false prediction.   

The input of the OFRS is the set of GO annotations for a 
given gene and the output is the gene membership in a given 
pathway.  The degree of membership, y0, of a gene in a 
pathway is calculated by firing the above rule (6) using the 
similarity of the gene with the genes in the pathway, s(gene,
Gi), in a similar fashion to (5) as: 

),(),(
,110 ini

GgenesORPATHgeney
=

= .          (7) 

where n is the number of genes in KEGG pathway PATH1.
Obviously, the case when the gene is explicitly mentioned in 
a given pathway is not very interesting (the rule outputs a 

membership equal to 1).  However, if the gene is not 
explicitly mentioned, the membership y0 will reflect the 
degree of functional homology to the genes from a given 
pathway.  In (7) one could replace the OR operator with an 
OWA operator (21) by averaging the highest 3 scoring 
similarities in a pathway. 

Since we have a rule for each pathway, a given gene will 
be described by a feature vector with length m (the number 
of pathways).  For example, in KEGG there are m=181 
pathways for H. sapiens and m=115 for A. thaliana.  In fact, 
our fuzzy rule base consists in the KEGG pathway database 
for the given organism. 

C. GoFuzzKegg algorithm 
The input to our algorithm is a set of GO annotated genes 

{Gi}i=1,N.  We mention that the approach can be used even 
for un-annotated genes by first employing one of the 
automatic annotation methods [22]-[24].  The pathway 
prediction algorithm has the following steps: 

Step 1.  Compute the activation yij of each gene Gi,
i∈[1,N] in pathway j, j∈[1,m] using (7).  For our A. thaliana
example m=115.  For our test dataset, N=15 and for the pilot 
dataset N=526 (see next section).  As a result each gene i is 
described by a pathway activation (feature) vector 
Yi={yi,1,…,yi,115} of size 115. 

Step 2. Compute the gene similarity matrix, 
S={sij}i,j∈[1,N], as: 

|||| T
j

T
i

T
j

T
i

ij
YY

YY
s

•
= , (8) 

where YT denotes that the vector Y was thresholded with a 
threshold T (that is, if yi,k<T, then yi,k=0} that will be 
determined later.  The thresholding operation was performed 
in order to remove the noise (pathways with residual 
activation). 

Step 3. Use a cluster validity measure to assess the most 
likely number C of pathways (clusters) present in the 
dataset.  One could use the VAT algorithm [25] to visually 
assess the number of clusters in S.  Other cluster validity 
measures, such as Dunn index or partition coefficient [26], 
may be used in conjunction with using the fuzzy C-means 
[27] algorithm to cluster the genes represented by the feature 
vectors {Si}i=1,N into C clusters, where Si={si1, …,siN}.  We 
found that it is more reliable to cluster the matrix S using 
fuzzy C-means rather than the feature vectors {Yi} directly. 

Step 4.  Assume },...,{ ||1 kIk iiI =  is the set of indices 

from cluster k∈[1,C], where 
=

=
C

k
k NI

1
||  and |I| denotes the 

cardinality of I.
To determine the pathways most likely associated to 

cluster k we sum all the genes in the cluster k as: 

∈
=

kIi
ik YSum ,       (10) 

and then we compute the most likely pathway as: 
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that is, we find the pathway with max sum activation for the 
genes in cluster k.  To produce more than one candidate for 
cluster k, say Q, we can consider the pathway that has the 
second highest sum activation in the cluster, and so on.  
Other summarization strategies are possible here [28] but we 
found this simple method to work well. 

Step 5: For the testing case, evaluate prediction error.  
The detection rate (DR, sensitivity) is computed as: 

pathwayscorrectnototal
predictedcorrectpathwaysnoDR

___
___= , (12) 

The false prediction rate (FPR) is computed as: 

predictedpathwaysnototal
predictederroneuslypathwaysnoFPR

___
___= . (13) 

For example if the KEGG id’s of the correct pathway are 
{10, 940, 3050}, and our prediction is {10,940, 3030, 4070}, 
then DR=0.66 and FPR=0.5.  We reiterate the fact that we 
ignore that the pathways 3050 and 3030 are strongly related 
making our DR estimate more conservative. 

To compute the p-value of our DR prediction, we assign 
the membership of the N genes in C clusters randomly and 
compute again DR*.  We perform the random assignment 
1000 times, resulting in a set of 1000 random detection rates, 

1000,1
*}{ =jjDR .  Then, the p-value is calculated as: 

1000
},__{ ** DRDRDRofno

valuep jj >
=− , (14) 

that is, the number of the random detection rates higher than 
our DR (obtained by clustering Yi’s) divided by 1000.  The 
p-value is somewhat a measure of the reliability of our 
classifier: if the p-value is low (say, <0.05), a low detection 
rate might denote a hard gene set to predict and not a bad 
prediction method. 

III. DATASETS

As mentioned above, in this paper we used the KEGG 
pathway database for A. thaliana as our fuzzy rule database.   

The test dataset consisted in 10 sets of 15 genes each, 
randomly selected (without replacement) from KEGG 
pathways (3 pathways for each set) that have more than 50 
genes.  The reason for this condition was that we tried to 
minimize the impact on the whole pathway at the extraction 
of 5 genes from it.  We found 23 such pathways. 

We mention that our approach does not need training data.  
This fact is one of the advantages of using fuzzy rule 
systems.  Usually, the fuzzy rules are set up by domain 
experts.  In our case, the memberships of genes in pathways 
(the rule base) were determined by biologists and stored in 
the KEGG database. 

The pilot dataset that we used for further testing of our 
method consisted in 526 A. thaliana genes selected in a 
microarray experiment. 

IV. RESULTS

A. Finding the optimum pathway feature threshold T 
(formula 8) 
To find the optimum value of T we computed the mean 

detection rate, DR, for all 10 sets of genes from the test set at 
different thresholds.  To exclude the influence of the number 
of clusters on the detection rate we used a constant number 
of clusters N=3 (the number of pathways we selected in each 
set).  The results were summarized in table 1. 

TABLE I
DETECTION RATE, DR, FOR PATHWAYS IN THE TEST SET FOR DIFFERENT 

FEATURE THRESHOLDS, T. 
Threshold 
(T)

0.1 0.3 0.5 0.7 0.9 

Mean DR 0.43 0.47 0.6 0.56 0.47 

From table 1 we see that the maximum detection rate was 
obtained for T=0.5.  We will use this threshold for all our 
subsequent experiments. 

B. Pathway prediction using one candidate pathway for 
each cluster 
The results obtained on the 10 gene sets randomly 

selected from KEGG are shown in table 2.  The prediction 
was obtained using one candidate pathway (the one that had 
the maximum activation sum) per cluster and using a feature 
threshold T=0.5. 

TABLE II
PATHWAY PREDICTION RESULTS FOR THE TEST SET USING ONE CANDIDATE 

PATHWAY PER CLUSTER.
Set 
#

#pathways  
Predicted, 
C,(out of 3) 

DR FPR #genes 
in right 
pathway 
(out of 15) 

1 3 0.67 0.33 9 
2 5 0.67 0.60 4 
3 5 1.00 0.40 7 
4 3 0.67 0.33 10 
5 3 0.67 0.33 5 
6 3 1.00 0 13 
7 3 0.33 0.67 3 
8 4 0.33 0.75 2 
9 3 0.67 0.33 9 
10 4 0.67 0.50 5 
Avg  0.66 0.43 6.7 

          Note: The p-value was <0.01 for all 10 cases. 

As we can see from table II, over-clustering (like in the 
sets number 2, 3, 8 and 10) leads to an increase in false 
predictions.  Sometimes, clusters may be merged if they 
predict the same pathway.  However, we leave pruning 
strategies for further research. 
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Figure 5.  Similarity matrix between the 15 genes selected in case 6 from 
table 2.  Genes 4 and 12 (circled) will be classified (erroneously) by fuzzy 
C-means together with the genes from pathway 2, {6,7,8,9,10}, instead of 
pathways 1 and 3, respectively. 

We mention that by predicting the right pathways (like for 
set number 6) does not necessary mean that we assigned all 
the genes to the correct pathways in the process.  For 
example in set number 6, we assigned only 13 out of 15 
genes (87%) to the correct pathways.  In figure 5 we show 
the gene similarity matrix computed using (1) and the 
pathway features for the set number 6.  It can be seen that 
genes number 4 and 12 (circled) exhibit more similarity to 
the genes from pathway 2 (gene index 6 to 10- single line) 
than to their own pathways (gene index 1 to 5 –double line, 
and gene index 11 to 15-triple line, respectively). 

In average, we predicted about 45% of the genes in the 
right pathway. 

C.  Pathway prediction using multiple candidate 
pathways per cluster, Q 
We expect that increasing the number of candidate 

pathways per cluster, Q, will increase both the detection rate, 
DR, and the false prediction rate, FPR.  This is exactly what 
we see in table 3, where the mean DR and mean FPR were 
recorded for a number of candidates Q∈[1,4]. 

TABLE III
THE VARIATION OF THE PATHWAY DETECTION RATE, DR, AND PATHWAY 

FALSE PREDICTION RATE, FPR, WITH THE NUMBER OF CANDIDATE 
PATHWAYS PER CLUSTER, Q.

Q 1 2 3 4 
DR 0.66 0.8 0.84 0.9 
FPR 0.43 0.58 0.60 0.64 
p-val 0.001 0.01 0.01 0.02 

D. Results on the 526 A. Thaliana gene set 
Out of 526 genes we found only 438 to be annotated using 

a GO term.  Since we did not use any automated annotation 
software in this work, we removed the 88 un-annotated 
genes from the experiment.  To determine the most probable 
number of clusters we used the partition coefficient [26] that 
resulted in C=8 group of genes.  Three representative 
pathways (Q=3) were then computed for each cluster (see 
table 4). 

TABLE  IV 
THERE CANDIDATE PATHWAYS FOR EACH OF THE 8 CLUSTERS FOUND IN THE 

A. THALIANA DATASET.
Clst. Size Path 1 id Path 2 id Path 3 id 
1 7 190 193 195 

2 34 4130 53 3022 

3 127 4710 230 280 

4 56 940 600 903 

5 25 3030 3022 3010 

6 59 10 100 130 

7 61 632 600 4130 

8 69 280 290 770 

We see that most of the clusters are coherent, that is, the 
pathway candidates for a cluster are very similar.  For 
example, cluster 1 has 7 genes and the candidate pathways 
are: oxidative phosphorilation (190), ATP synthesis (193) 
and photosynthesys (195) (which are obviously related since 
193 is included in 190 and 195 and 190 are both related to 
the energy metabolism).  Similarly, cluster 5 has 25 genes 
and the candidates pathways are: DNA polymerase (3030), 
transcription factor (3022) and ribosome (3010) which are 
all involved in the DNA replication process.  Finally, cluster 
8 has 69 genes involved in “valine, leucine and isoleucine” 
degradation (280) and biosynthesis (290). 

The similarity matrix for the 438 genes is shown below.  
One can clearly see the 8 clusters.  Looking at figure 6 one 
could have further ideas of merging clusters.  For example, 
the genes in cluster 4 and cluster 7 seem to be similar.  Table 
4 further confirms the observation since they share the 
second candidate: sphingolipid methabolism (600). 
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Figure 6.  The pathway similarity matrix between the 438 A. thaliana genes.  
The matrix has been rearranged using the clusters obtained by applying 
fuzzy C-means on the initial similarity matrix.

V. CONCLUSIONS

In this paper we present a method for finding the 
pathways represented by a group of genes.  The method is 
based on the fuzzy mapping of the Gene Ontology to KEGG 
pathways implemented as an ontological fuzzy rule system. 

We tested our method on 10 test sets of 15 genes each 
extracted randomly from KEGG.  The algorithm was able to 
predict 90% of the pathways with a 65% false prediction 
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rate.  The high false alarm rate can be in part explained by 
the nature of the test that extracted without replacement 5 
genes from each pathway.  Having only few genes available 
for each pathway, the process of merely retrieving an extra 
gene results in 20% false alarm rate.  However, extracting 
more genes from a KEGG pathway would lead to changing 
the nature of the pathway.  To better test our algorithm we 
plan to use a microarray gene set fully investigated by 
biologists, where the genes-to-pathway mapping is known. 
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