
Abstract—DNA matching is a crucial step in sequence

alignment. Since sequence alignment is an approximate

matching process there is a need for good approximate

algorithms. The process of matching in sequence alignment is

generally finding longest common subsequences. However,

finding a longest common subsequence may not be the best

solution for either a database match or an assembly. An

optimal alignment of subsequences is based on several factors,

such as quality of bases, length of overlap, etc. Factors such as

quality indicate if the data is an actual read or an experimental

error. Fuzzy logic allows tolerance of inexactness or errors in

sub sequence matching. We propose fuzzy logic for

approximate matching of subsequences. Fuzzy characteristic

functions are derived for parameters that influence a match.

We develop a prototype for a fuzzy assembler. The assembler is

designed to work with low quality data which is generally

rejected by most of the existing techniques. We test the

assembler on sequences from two genome projects namely,

Drosophila melanogaster and Arabidopsis thaliana. The results

are compared with other assemblers. The fuzzy assembler

successfully assembled sequences and performed similar and in

some cases better than existing techniques.

Index Terms— Bioinformatics, Sequence Assembly, Fuzzy

Logic, Approximate Matching, Dynamic Programming

I. INTRODUCTION

DNA sequence assembly can be viewed as a process of

finishing a puzzle where the pieces of the puzzle are DNA

subsequences or strings. The main difference being that a

puzzle has pieces that fit in very well with each other. The

pieces of a DNA puzzle do not fit together precisely. It’s a

puzzle where the ends can be ragged, thus making it very

difficult sometimes nearly impossible to complete the

puzzle. Hence, we need methods or rules to optimally

determine which piece fits with another piece. The following

This work was supported in part by the NSF EPSCoR Fellowship (NSF

EPSCoR Nevada).
S. Nasser is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail: sara@cse.unr.edu.
G. Vert is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail: gvert@cse.unr.edu.
M. Nicolescu is with the Department of Computer Science and Engineering,
University of Nevada Reno, Reno, NV 89557. E-mail:
monica@cse.unr.edu.
A. Murray is with the Desert Research Institute, Reno, E-mail:
Alison@dri.edu

sections explain the steps involved in sequence assembly.

DNA is composed of four nucleotides A, C, G, T.

Genome sequencing is figuring out the order of DNA

nucleotides, or bases, in a genome that make up an

organism's DNA. These nucleotides and their order

determine the structure of protein.

Sequencing the genome is a very important step in

Genomics. Entire Genome sequences are very large in size

and can range from several thousand base pairs to million

base pairs. The whole genome can't be sequenced all at once

because available methods of DNA sequencing can only

handle short stretches of DNA at a time. Although genomes

vary in size from millions of nucleotides in bacteria to

billions of nucleotides in humans, the chemical reactions

researchers use to decode the DNA base pairs are accurate for

only about 600 to 700 nucleotides at a time [2].

Current techniques can read up to 800 base pairs (BP). So

biologists chop up a sequence into smaller subsequences.

The steps involved in this process are further explained in

section I.

Sequencing of an organisms’ DNA was a labor intensive

task, but with recent advances in computational power this

can be achieved. Several organisms’ genomes have been

sequenced. On a larger scale, the mouse, rat and chimpanzee

genomes are all being sequenced and mapped to the human

genome to better understand human biology, and multiple

Drosophila species are being sequenced and mapped onto

one another [4]. Other genome projects include mouse, rice,

the plant Arabidopsis thaliana, the puffer fish, bacteria like

E. coli, etc [6].

Even though computational power has made it possible to

sequence genomes in limited time, several other problems

exist. The sequence read from a machine is not always 100%

correct. It may contain experimental errors. Human handling

also causes errors in the input data. Some of the errors are

due to low quality of the input. This adds additional

problems to obtaining correct results. Another well known

problem with these sequences is that they contain repetitive

sections. In other words, certain sections of nucleotides,

called repeats, are repeated in the whole sequences. We will

elaborate on repeats in later sections.

A. Genome Sequence Assembly

The problem of sequencing is not of an exact matching

Multiple Sequence Alignment using Fuzzy
Logic

Sara Nasser1, Gregory L. Vert1, Monica Nicolescu1 and Alison Murray2, 1Department of
Computer Science and Engineering, University of Nevada Reno, Reno USA, 2 Desert

Research Institute, Reno

304

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

but obtaining approximate matches through consensus.

Hence techniques try to obtain a consensus sequence

through approximate matches by following an overlap and

consensus scheme [5]. The process of reading chopped DNA

and creating a consensus sequence is shown in Fig 1.

Fig. 1. Whole Genome Sequencing process is displayed in terms of reads

from the DNA sequences.

1) Whole Genome Sequencing

The "whole-genome shotgun" method, involves breaking

the genome up into small pieces, sequencing the pieces, and

reassembling the pieces into the full genome sequence. This

is the point where we are trying to put the puzzle together.

Process of sequencing DNA using Shot-gun sequencing

method was introduced in 1995 [3]. More details about

whole genome shot-gun sequencing can be found in [1, 3].

2) Sequence Alignment

The process of DNA sequencing begins by breaking the

DNA into millions of random fragments, which are then

given to a sequencing machine. Since the process of

selecting the fragments is random using the sequence one

may not cover all the regions. Therefore multiple copies of

original sequence are used to ensure that the entire sequence

is covered. This is generally referred as a coverage of ‘nX’,

where n is the number of copies. Coverage of 8X is widely

accepted to be able to generate the entire sequence. Next, a

computer program called an assembler pieces together the

many overlapping reads and reconstructs the original

sequence [2].

The process of DNA sequencing can thus be divided into

several steps, as shown in Fig 2.

a) Reading Sequences

b) Assembling

c) Finishing

a) Reading Sequences

Reading sequences is the process where a sequence reader

reads raw sequences of DNA. The sequencer can only

handle short sequences at a time. Hence the entire sequence

cannot be fed into the sequencer. The output of the

sequencer is sequences that are read into files called

chromatograms. A Fourier transform on the chromatogram

files can be done to figure out the bases from the

chromatogram files. The results of this process are

subsequences that are readable by human or any simple

program. The output is now in the form of characters A, C,

T, G, which represent nucleotides.

Fig. 2. The major steps involved in the process of assembling sequences.

b) Assembly

After sequences are read and converted to the data files,

they need to be put together. We have pieces of sequences

that need to be put in the right place. A huge amount work

involved in sequencing lies in putting together these

sequences in right place. This process involves creating

consensus sequences as shown in Fig 1. The Contiguous or

overlapping sequence of DNA is also known as a Contig.

Sequences are searched for matching regions and if a

significant portion of these sequences overlap they can be

combined into a Contig. More commonly, this problem is of

obtaining a longest common subsequence (LCS). A LCS is a

common subsequence that belongs to two or more

sequences.

The process of obtaining sequences is error prone, various

problems occur such as errors in reading and flips. The

process of assembly has to be robust to deal with these

issues. The problems that occur during sequencing will be

discussed later.

c) Finishing

Finishing is a process that is generally done at the end of

the assembly process. This is a manual process where

scientists go through the assembled sequences and fill in any

missing gaps. This process some times requires repeating the

previous steps to obtain the gaps or missing pairs in the

sequence on a smaller scale. The process of finishing and

the effort and time required depends on the assembly; if the

assembly was good then finishing becomes easier.

B. Problems with Assembly

In this paper we discuss problems with the sequence

assembly. A lot of work has been done in sequencing

genomes, but there are still challenges remaining. One of the

305

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

reasons as we described above was due to the fact that

precise alignment of subsequences is a hard problem. As

genome sequences are huge in size even with the

computational power available it is not possible to obtain

best solution in a given time. The process of assembly

becomes difficult because we have to look at several

hundreds of subsequences before we can determine if they

can be assembled together. The time complexity for a

dataset of two subsequences of length k is (2
k
). Since this

problem is NP-Hard, and we need to search through several

hundreds or thousands of pairs, a brute-force force approach

cannot be considered as a viable option.

The following section discusses the techniques and lists

some of the tools available for sequence assembly. Section

III provides details about dynamic programming, in Section

IV the fuzzy approach and extensions to dynamic

programming are proposed, Section V contains the results,

followed by conclusion in Section VI.

II. TECHNIQUES

The techniques or processes involved in sequence

assembly can be divided into two steps, i) arranging the

sequences in order to obtain consensus sequences, ii) recover

the data lost during the experimental process.

The area of sequence assembly has been a very prominent

area in computational biology or bioinformatics. Extensive

work has been done to determine optimal methods for

sequence assembly. Techniques such as Neural Networks,

Hidden Markov Models, and Bayesian Networks have been

used. Most of these techniques are computationally

expensive and require high performance computing with

huge training. Genetic Algorithms have also been used to

perform sequence assembly [11]. Even though Genetic

algorithms take a long time to run and converge they are

computationally less expensive than Neural Networks.

Several algorithms and issues with them are discussed in [2].

There are several tools for sequence assembly including

Phrap, TIGR assembler, Celera assembler.

Currently most of the sequence applications do not

tolerate any kind of inexactness or errors in sub sequence

matching. String matching in nucleotide sequences is

challenged by variation because there are few concepts in

matching such as LIKE, NOT LIKE, or SIMILAR. Even

though there have been methods where scores are calculated

based on factors for similarity, these methods still try to find

a crisp match.

Symbolic sequential data can be considered as either (1)

exact matching or (2) approximate matching (most similar

match). Quite often in real world data mining applications,

especially in molecular biology, exact patterns do not exist

and therefore, an approximate matching algorithm is

required. An algorithm that performs a match to a certain

degree is desired.

Another problem is with the existing tools for alignment.

Majority of these tools are designed to work with good

quality data. Data that is of low quality is not used in the

consensus sequence. But if most of the data is low quality

these tools fail to align the sequences and result in fewer

Contigs. The quality of the data is measured as the

probability of the correctness of a nucleotide read from the

sequencer. The raw data is in form of chromatograms; these

curves have different peaks which represent each of the 4

nucleotide bases, ‘A’, ‘C’, ‘T’ and ‘G’. Some times it is easy

to determine a base from these peaks. Sometimes a base is

not represented strongly. Generally, the quality of the bases

is weaker at the ends and stronger in the middle of a

subsequence. This is due to the behavior of the sequencing

machine. Thus, there is a probability associated with each

base read which indicates the strength of the read. This

probability is called the quality of the base. The quality of

the base is read during assembly of sequences. If the quality

is low, the base is not considered in the alignment process.

For example Phred is software that can be used to

generate base pair files [10]. Phred reads DNA sequence

chromatogram files and analyzes the peaks, and determines

the base from each peak; assigning quality scores ("Phred

scores") to each base. Phred assigns quality within the range

of 4-60 to the bases. A quality of 15 is generally considered

as the lower bound. A quality of 20, which means 99%

accuracy of the base, is universally accepted.

III. DYNAMIC PROGRAMMING

Dynamic programming, like the divide-and-conquer

method, solves problems by combining the solutions to

subproblems [15]. It can also be defined as a method for

reducing the runtime of algorithms which exhibit the

properties of overlapping sub-problems and optimal

substructure [7]. Dynamic programming has been

extensively used to determine the LCS. The reason for its

popularity is that its time complexity is (n
3
). To assemble a

genome we need to compare multiple sequences, thus the

complexity for the assembly process can go up to (n
4
),

unless modifications of dynamic programming are used. One

such popular modification of dynamic programming is the

Smith-Waterman algorithm with an (n
2
) time complexity.

Other techniques for finding the longest common

subsequence include, suffix tree, KMS algorithm, greedy

approaches. The KMS Algorithm identifies best matches of

the longest substrings of the matches of many strings [8]. A

greedy algorithm can be used for aligning sequences that

differ by sequencing errors [12]. A greedy approach can be

much faster than traditional dynamic programming but

cannot be generalized.

Fig. 3 shows the table constructed while using dynamic

programming. The method of finding a LCS is to start from

the end of the table and traverse along the direction indicated

by the cell. The numbers in the cells indicate the length of

the subsequence until that cell. The highest number in the

table indicates the longest subsequence that can be found

between the two sequences. Since the longest subsequence

306

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

will most likely occur in the cells along the diagonal. Note

that by simply traversing the table we can obtain the longest

common subsequence. This may not be a contiguous

subsequence. This method is simple and is very useful in

finding longest common subsequence which may have

mismatches in the sequence. This suits well to assembly

problems since not all subsequences found will be perfect.

This can be easily modified to find contiguous

subsequences. In case of genome subsequences we would

like to get the longest subsequence with few insertions or

deletions (indels).

Fig. 3. Table constructed using Dynamic Programming to find the Longest

Common Subsequence.

One of common techniques used by assembly processes

such as, Phrap is to search within a bandwidth along the

diagonal. If the path is beyond the bandwidth the indels

increase, and it is not a good match. The diagonal arrows

within each cell indicate a match, the more diagonal arrows,

we stay within the bandwidth, as mismatches increase we

either go up or left.

The optimal subsequence could be one with perfect

matches, or in some cases the users could tolerate indels

more than in other cases. These criteria can depend on the

use, the source of the data, quality of the data, etc. Almost

all existing techniques provide thresholds where users can

choose where to cut off. Sometimes the user is not clear on

the ideal cut off point for a particular data set, and may need

to determine it empirically. For example, if the cutoff value

for the maximum gap allowed is 30 bases and there are fairly

large numbers of sequences with a gap of 31 and 32, we will

not be including these sequences, even though they are

close. Due to the fact that these techniques allow for crisp

matches only. On the other hand we can represent a match of

30 and lower with a fuzzy value of 1, which is for crisp

matches. Matches those are very close like 31 can have a

fuzzy value of 0.98. If the user selects to allow all matches

greater than the value 0.8 then these subsequences would be

included. The user in this case does not have to look into the

data and change parameters and run the program several

times. Since there are several parameters the user may not

even know which parameter needs to be altered? The main

objective is to obtain the best consensus overall.

This paper proposes a fuzzy matching technique where we

can have crisp and non-crisp matches. The user could also

obtain a fuzzy value that states how well the matching

sequences fit the threshold.

The application of Fuzzy Logic has not been explored

much in the area of approximate matching or similarity

measures for genome assembly. Fuzzy Logic has been

applied to classification problems in computational biology.

Even though applications of fuzzy logic have not been done

extensively, recently it started gaining popularity. A

modified fuzzy k-means clustering was used to identify

overlapping clusters of yeast genes based on published gene-

expression data following the response of yeast cells to

environmental changes [9].

IV. FUZZY LCS

The main objective of our method is assembling data by

approximate matching using fuzzy logic. To achieve this we

provide several matches of two subsequences. Then to pick

the best match based on the criterion specified by the user.

We use dynamic programming to demonstrate the use of

fuzzy rules as it is the most commonly used method.

Fuzzy Logic has been used in approximate string

matching using distance measures, etc. However, very little

work has been done in the application area of building

genomes from subsequences of nucleotides. Moreover this

process becomes computationally expensive because

multiple comparisons have to be performed for each possible

string pair. The accuracy of any fuzzy matching system is

partially determined by the error model used. An accurate

system reflects the mechanism responsible for the variations

in the match. Therefore a flexible error metrics is desired

that is generic for any fuzzy matching. Current sequencing

methods tend to reject sequences that do not match with a

high degree of similarity. This can lead to large amounts of

data being rejected by algorithms that otherwise may be

important in deriving a genomic sequence and the metabolic

characteristics of such a sequence.

A. Modifications to Dynamic Programming

One of the problems as mentioned earlier with existing

techniques is that they have crisp bounds. The user has to

specify the parameters for the program. The parameters need

to be changed by the user to suit the data, and then the

program is run one or more times, until an optimal solution

is found, since the user has to determine which parameters

work best with the given sample.

Sometimes selecting the longest subsequence is the

optimal solution. Some applications prefer longer sequences;

in some other cases a long sequence with higher quality is

preferred. If this criterion is not satisfied the sequences are

generally not selected. We propose a method where we

select more than one subsequence and then based on several

parameters select the optimal solution. If the sequence

307

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

satisfies the aggregate overall requirement it is selected. This

selection is based on fuzzy values. In other words, we are

measuring the fuzzy similarity of the given subsequences.

There are several factors that determine if two subsequences

can have an optimal overlap. These factors are used to

measure their similarity. For example, two subsequences can

form a Contig if their overlap region is larger than a

threshold. They could be highly similar if they have less

number of indels. The similarity is lesser if the indels were

more.

Firstly, we would like to select several overlapping

regions. We do not want to select every possible overlap.

Since finding a fairly longer subsequence is better we select

this based on length. Based on the longest possible

subsequence that can be obtained we select every

subsequence that is within a range ‘x’ of the LCS. The fuzzy

value for each possibility is calculated and if it is satisfied

the subsequence is selected.

In Fig 3, the dynamic programming table is illustrated.

The arrows indicate the longest common sequence path. The

darker shaded cells indicate all the cells that will be

traversed to search for the optimal subsequence. Since we

perform a non-banded search it’s not ideal to search every

cell. A cell is marked if it was already traversed, so we don’t

check it again. We add a new table that will keep track of

cells that are traversed and everything under a threshold is

selected. We select subsequences which have:

length >= threshold

Instead of selecting the longest common subsequence

from the dynamic programming table, we select all the

subsequences that satisfy a minimum length required. Then

we determine if either of these subsequences will create an

optimal match using similarity measures. Each of the

matching regions has a similarity measure associated with

them.

Cells that have at least 6 matching base pairs are selected

for traversal. If we skip cells with less than 6 matching base

pairs and it’s a high similarity subsequence, then they will be

picked up in later iterations and only the ends will be lost.

Therefore this rule does not eliminate any possible good

subsequences.

In case of multiple sequence alignment we need to

compare sequences to determine which ones can form a

consensus or Contig as shown in Fig 1. This process requires

several comparisons and it is not easy to determine which

sequences would yield the better Contigs. Hence we propose

to calculate fuzzy values for each Contig, where higher

value indicates a better Contig. The parameters for this

would be same as the parameters to select a subsequence.

The selection process is done in constant time; therefore the

complexity of the algorithm is same as the complexity of

Dynamic programming, which is (mn) for any two

subsequences of length m and n. The following section lists

the characteristic functions.

B. Fuzzy Similarity Measures

Fuzzy similarity measures are an important step in

creating a Contig from two subsequences or finding an

overlap between two sequences. We use the term match to

refer subsequence.

(i) Length of Overlap (lo): The first parameter that we

look at is the length of the match. This is also the size of

overlap when a Contig is being created. This length includes

indels and replacements. The higher overlap is better.

lo = fn (Overlap)

(ii) Confidence (qs): The confidence for each Contig is

defined as, a measurement of the quality of the contributing

base pairs. The quality of a base pair indicates if the read

was strong and strong read indicates a correct read or less

changes of noise or experimental error. Every base involved

in the Contig has a quality score. The confidence of a Contig

is the aggregate quality score of it contributing bases. For

simplicity, the sum of average quality scores is the

confidence of the Contig. qs is the qs for the overall overlap

region, which we calculate as follows

n

qw
n

i

ii

qs

== 1μ
(1)

wi is used to standardize the quality scores. The bases

with high quality are given a weight of 1. Only the bases that

are of lower quality are given weights between 0 and 1. uQS

() is the standard bound for threshold that was explained

earlier, this is generally specified by the user, minqs and

maxqs are the minimum and maximum values for quality.

==

qsqs

qsqs

qs

qs

i if

if

w

minmax

min

0,0

,1

μ

μ

μ
(2)

At present a simple function is used for weights. We

would like to update this with standard functions such as a

Gaussian, Sigmoid, etc.

(iii) Gap Penalty (gp): This is the maximum gap that is

allowed in a match. Gap is measured in terms of the number

of bases.

Gaps= (fn(insert)+ fn (delete)+ fn (replacement)) (3)

gp =(fn (overlap) – Gaps)/ fn (overlap) (4)

(iv) MinMatch (wl): This is the minimum number of

matching bases that are required between the two sequences.

Genomic DNA contains only 4 characters and they can be

lot of overlaps with these 4 characters. Therefore we would

like to have a cutoff value for matching sequences. We also

refer to this as the word length.

308

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

wl = fn (matchingBP) (5)

(v) MinScore: This is the minimum score of a match. A

score is calculated from the number of matching bases,

number of indels and replacements. MinScore is used as a

threshold. Score can be calculated in different ways. For

example:

A- CTCGCGAT- GCG

AGCTCG- GATTGAG

For the above subsequences there are 11 BP matches, 2

inserts, one delete, and one replacement. If all are given

value one the score is

score= fn(MatchingBP)– fn(Inserts)- fn(Deletes)-

fn(Replacements) (6)

score= 11-2-1-1 = 7

Some methods weight the matching base pairs higher than

the indels, so the score might be different.

Once the fuzzy value for each of these parameters is

calculated, we plug them in an overall fuzzy function. This

function is the aggregate fuzzy match value. We currently

use only 4 of the above parameters in the aggregate function.

At this point minimum score is used for checking if a score

is below a certain threshold. In the current implementation

we fix the value of weights. Later we would like to calculate

the weights.

lologpgpwlwlqsqs wwwwcfa μμμμ +++=)((7)

afv = fa(c)/m (8)

The subsequences that produce the highest fuzzy value are

selected as optimal sequences. Depending on their position

as a suffix or prefix a new Contig or consensus sequence is

formed. The new Contig has new consensus quality scores.

In some cases they are subsequences that overlap only at the

middle. For example,

tcaatgttactagtgaatatttctatgatgaactgaagaa

-------------agtgaatatttct----------------------

We cannot create a new Contig with these subsequences.

For these sequences we update the confidence of the

consensus or the Contig. This makes it possible for them to

be used in further matches since their confidence is

increased. For example, if sequence Y has low quality bases

and matches with other sequences of higher quality then the

confidence of Y increases.

C. Repeats

Repeats or repetitive patterns in a sequence are quite

common in genomic data. Repeats make the process of

assembly complicated. The sequences not only need to be

put together into a Contig but the sequences that are similar

and in a Contig may belong to different regions of the

genome. We also need to evaluate the sequences are

matched if they may be from different repeats.

Fig. 4. Repeats in a Contigs can create mis assembly. As can be seen Contig

A has repeats put together. Contig B would be the correctly assembled

Contig.

Repeats are illustrated in Fig 4. Contig A is created by

two repeats combining together and hence causing a mis

assembly. Contig B is the actual Contig that is desired,

where repeat I and repeat II are highly similar but still are

different parts of the genome. There are ways to resolve

issues of repeats. For example if a Contig has significantly

large number of reads then it could be an incorrect assembly.

This could be determined by the coverage of the genome.

The problem with repeats is that may lead to an incorrect

assembly therefore we need to determine if the assembly

contains repeats. Some assemblers count the depth of the

match, if it is high then there are higher chances that it was a

repeat. Since the sequences are sequenced X times, there

should not be more than X occurrences of a segment. We

use depth to refer to the number of subsequences that are

contributing to the Contig. Counting the depth may not work

since we are selecting the subsequences randomly, certain

regions may be selected more times than the others. This

process may work if some of these highly similar regions are

removed. But the problem still occurs with repeats that are

not detected because their depth was less and these regions

were not represented very well.

Even though these repeats are highly similar they are very

unlikely same. Small differences can be detected in these

repeats to separate them. In the absence of sequencing

errors, a single nucleotide difference between two copies of

a repeat is enough to distinguish them [2]. Hence once these

regions are detected we can try to find dissimilar ones

among them.

In our approach we created Contigs by pair wise

comparison of sequences or sequence and a Contig, and we

also get multiple results, hence for the problem shown above

we get both Contig A and Contig B. Now we have to

determine which one of these Contigs is correct. Each

Contigs is associated with a fuzzy similarity value. The

fuzzy similarity value is an aggregate of several fuzzy values

such as, the length of the Contig, the confidence of the

Contigs, the number of mismatches, maximum length of

words, etc. If the fuzzy similarity measure is taken for both

309

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Contig A and Contig B, there are more chances that Contig

B will be chosen. The first reason is that the length of Contig

B has a higher value. Assuming that the repeats have slight

dissimilarities the match fuzzy value would be lower for

Contig A than Contig B. Finally, the confidence score of

Contig A would be lower if we have even a single nucleotide

that was different than the other. Hence all these factors

would result in selecting the Contig with the higher fuzzy

value that is selecting Contig B.

V. EXPERIMENTS, RESULTS AND DISCUSSIONS

The Fuzzy Genome Sequence Assembler was

implemented with modified version dynamic programming

described earlier. The parameters selected for the assembly

are, length of overlap, confidence, minscore, gap penalty,

and minmatch as described in section IV. The assembler was

tested on generated data sets and data from GenBank.

GenBank is a publicly available database of nucleotide

sequences. Artificially generated data sets were used to

verify the algorithm and thus the assembly process. The

experiments were run on a G5 with a 1.83GHz Intel Core 2

Duo processor and 4GB of RAM.

The first genome sequence tested was the Wolbachia

endosymbiont of the Drosophila melanogaster strain wMel

16S ribosomal RNA gene, partial sequence, which can be

obtained from GenBank. Wolbachia is a microscopic

organism that has been used to test several alignment tools.

The gene is "rpoBC", locus_tag="WD0024" and the GeneID

is “2738525” [13]. This particular sequence codes for a

protein. The sequence contains 8514 base pairs. The total

bases read were 4X of the original sequence. We selected

300 random fragments or subsequences from this set. Each

subsequence was in the range of 300-600bps. Fragment

sizes less than 500bp are commonly used for assembly [11,

18]. Therefore we chose an average fragment/subsequence

length 450bp. The results of assembly are shown in Table 1.

In Table 1, MGS refers to an implementation of Smith-

Waterman algorithm for multiple sequence alignment using

Dynamic programming [16]. HGA-GS is a heuristically

tuned GA, which used a 4X coverage and 500 subsequences

with an average length of 400 bp [11], TIGR is a well-

known assembler [19]. TIGR assembler assembled the data

into a final consensus sequence. FGS is the fuzzy sequence

assembly method that is described in the paper.

The second genome sequence we tested was the

Arabidopsis thaliana, gene_id:F11I2.4. Detail of this

sequence can be obtained from GenBank [14]. This

sequence contains 36, 034 base pairs. We used 3X coverage

of the original sequence. 300 sequences of length between

300-600 bps were randomly generated. The result of

assembly on this data is shown in Table 2.

The results obtained from assembling both the genome

projects showed a fairly high percentage of the genomes

covered. This indicates that given random subsequences the

algorithm was able to create a fairly large percentage of the

original sequence. For the Wolbachia project 99.6% of

genome was recovered which is similar to the TIGR

assembler. For Arabidopsis thaliana 92% of the genome is

recovered. Even though the results are better than the other

techniques, we suspect the smaller percentage could be due

to the smaller amount of initial coverage; only 3X was used

in this case. We could not use larger coverage or test on

larger genome projects due to limitations of available

hardware.

VI. CONCLUSION

This paper proposes use of fuzzy logic for approximate

sequence assembly. Preliminary fuzzy characteristic

functions are proposed which suggest one possible approach

towards utilizing fuzzy logic in assembly. We tested the

FGS assembler on published genome projects and compared

the results with other assemblers. The results obtained

clearly demonstrate that the FGS assembler can generate

optimal assembly. The results show that FGS covered larger

or same length of genome sequence as the other assemblers.

FGS has the same run time as LCS with Dynamic

programming. This technique addresses the problems caused

by repeats and low quality data.

The functions proposed can be easily adapted in other

assembly methods or techniques. Fuzzy logic can also be

used in a similar fashion for database querying, since the

approach proposed can be easily generalized for database

search problems.

The assembly can be further improved by applying

techniques such as scaffolding. Another improvement would

be data reduction before assembly; this would make it

possible to run larger data sets and also make the process

TABLE II

ASSEMBLY COMPARISONS ON ARABIDOPSIS THALIANA

Assembler
Number of

Contigs

Average

Length

Percentage

Genome

Covered

MGS 144 940 56.8%

TIGR 102 502 88.8%

FGS 190 842 92.135%

MGS = Multiple Genome Sequencing using Dynamic

programming, TIGR=TIGR Assembler 2.0, FGS= Fuzzy Genome

Sequencing, Number of Contigs= total number of Contigs obtained

after assembly, third column is the average length of the Contigs,

fourth column is the percentage of original genome covered by the

assembly.

TABLE I

ASSEMBLY COMPARISONS ON RPOBC OF WOLBACHIA GENOME

Assembler
Number of

Contigs

Average

Length

Percentage

Genome

Covered

MGS 106 853 65%

TIGR 150 501 99.6%

HGA_GS 181 301 82%

FGS 165 608 99.6%

MGS = Multiple Genome Sequencing using Dynamic

programming, TIGR=TIGR Assembler 2.0, HGA_GS =Heuristically

tuned GA for assembly, result taken from [11], FGS= Fuzzy Genome

Sequencing, Number of Contigs= total number of Contigs obtained

after assembly, third column is the average length of the Contigs,

fourth column is the percentage of original genome covered by the

assembly.

310

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

faster. This can be achieved by encoding the data, using hash

tables, indexing, etc. Current assemblers use different

techniques to achieve data reduction.

VII. FUTUREWORK

The work proposed in this paper is preliminary; there is

room for enhancements and extensions. We would like to

refine each of the parameter’s fuzzy characteristic functions.

Fuzzy matching calculates the degree to which the input data

match the conditions of the fuzzy rule; this can be used to

determine the degree of similarity [16]. One of the future

goals is to describe each match in terms of degrees of

similarity. Some of our future goals include:

a) Enhancing fuzzy matching techniques and using them

with other methods that are used for sequence assembly such

as suffix trees.

b) Using the fuzzy approximate methodology for database

searches of genomes.

c) Secondary structure prediction to enhance the assembly

process, using fuzzy similarity matrix.

d) Creating an assembly tool for meta-genomic data that is

based on fuzzy logic.

ACKNOWLEDGMENT

The authors wish to thank Martin Gollery. Martin Gollery

is supported by NIH Grant Number P20 RR-016464 from

the INBRE Program of the National Center for Research

Resources. This work was supported in part by a grant from

NSF EPSCOR Nevada.

REFERENCES

[1] Gene Myers, Whole-Genome DNA Sequencing, IEEE Computational

Engineering and Science 3, 1 (1999), 33-43.

[2] Mihai Pop, Steven L. Salzberg, Martin Shumway, Genome Sequence

Assembly: Algorithms and Issues, 2002.

[3] F. Sanger et al., “Nucleotide Sequence of Bacteriophage Lambda

DNA,” J. Molecular Biology, vol. 162, no. 4, 1982, pp. 729-773.

[4] Mihai Pop, Adam Phillippy, Arthur L. Delcher and Steven L.

Salzberg, “Comparative Genome Assembly”, HENRY STEWART

PUBLICATIONS 1467-5463. BRIEFINGS IN BIOINFORMATICS.

VOL 5. NO 3. 237–248. SEPTEMBER 2004.

[5] Peltola, H., Soderlund, H. and Ukkonen, E. (1984), ‘SEQAID: A
DNA sequence assembling program based on a mathematical model’,

Nucleic Acids Res., Vol. 12(1), pp. 307–321.

[6] Genome Wikipedia, http://en.wikipedia.org/wiki/Genome , Accessed,
October 2006.

[7] Dynamic Programming- Wikipedia,

http://en.wikipedia.org/wiki/Dynamic_programming, Date accessed

Oct 2, 2006.

[8] K Kaplan. An Approximate String Matching Algorithm with

Extension to Higher Dimensions. UMI Microfilm. 1995.

[9] Gasch, A. P. & Eisen, M. B. Exploring the conditional coregulation of

yeast gene expression through fuzzy k-means clustering. Genome Biol

3, RESEARCH0059 (2002).

[10] Phred Quality Base calling,

http://www.phrap.com/phred/#qualityscores, date accessed Oct 3

2006.

[11] Satoko Kikuchi and Goutam Chakraborty,” Heuristically Tuned GA to
Solve Genome Fragment Assembly Problem”, IEEE Congress on

Evolutionary Computation, Vancouver, Canada, 2006. pp. 5640-5647

[12] Zheng Zhang, Scott Schwartz, Lukas Wagner, Webb Miller, “A

Greedy Algorithm for Aligning DNA Sequences”, Journal of

Computational Biology, vol 7, pp. 203-214, 2000.

[13] rpoBC DNA-directed RNA polymerase, Wolbachia endoysymbiont

of Drosophila melanogaster,

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrie

ve&dopt=full_report&list_uids=2738525, Date accessed Oct 2006.

[14] Arabidopsis thaliana genomic DNA, chromosome 3, BAC

clone:F11I2,

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=

7209730, Date accessed Oct 2006.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and

Clifford Stein, Introduction to Algorithms, Second Edition, 2001, pp

313-319.

[16] Smith T, Waterman M: Identification of common molecular

subsequences. Journal of Molecular Biology 1981, 147:195-197.

[17] J. Yen, R. Langari, “Fuzzy Logic Intelligence, Control, And

Information”, 1999, Prentice Hall.

[18] K. Mita, et al., “The Genome Sequence of Silkworm, Bombyx mori,”

DNA Research 11(1), pp.27-35, 2004

[19] TIGR Assembler 2.0, http://www.tigr.org/software/assembler/, Date

accessed Oct 2006.

311

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

