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Abstract— Medical diagnosis essentially represents a pattern
classification problem: based on a certain input an expert arrives
at a diagnosis which often takes on a binary form, i.e. the
patient suffering from a certain disease or not. A lot of research
has focussed on computer assisted diagnosis where objective
measurements are passed to a classifier algorithm which then
proposes diagnostic output based on a previous learning process.
However, these classifiers put equal emphasis on a learning
patterns irrespective of the class they belong to. In this paper
we apply a fuzzy rule-based classification system to medical
diagnosis. Importantly, we extend the classifier to incorporate
a concept of cost which can be used to emphasize those cases
that signify illness as it is usually more costly to incorrectly
diagnose such a patient as being healthy. Experimental results
on various medical datasets confirm the usefulness and efficacy
of our approach.
Keywords: medical diagnosis, pattern classification, cost-sensitive
classification, fuzzy classification

I. INTRODUCTION

Medical diagnosis is often regarded as a pattern classifica-
tion problem: based on a certain input the task is to assign it
to one of a set of classes, where the number of classes is often
two, e.g. malignant vs. benign, disease vs. no disease. The task
of a pattern classification system is to assign as many input
samples as possible to the correct class whereas the behaviour
of the classifier is often optimised through the learning of some
ground truth data. Conventional classifiers treat each sample of
this learning set equally, yet in medical diagnosis this is often
not desirable as different classes are associated with different
costs. While the misdiagnosis of a malignant case as being
benign can be very costly (e.g. when the time for effective
treatment has passed) the mistaking a benign case as malignant
(though of course it should be avoided) will involve relatively
lower costs such as some further tests.

In this paper we present a cost-sensitive approach to medical
diagnosis based on fuzzy rule-based classification. While fuzzy
rule-based systems have been mainly employed for control
problems [1] more recently they have also been applied to pat-
tern classification problems [2], [3]. We modify a fuzzy rule-
based classifier to incorporate the concept of weight which can
be considered as the cost of an input pattern being misclassi-
fied. The pattern classification problem is thus reformulated as
a cost minimisation problem. Based on experimental results on
three standard medical datasets (Wisconsin breast cancer, heart
disease, and diabetes data sets from the UCI machine learning

repository) we demonstrate the efficacy of our approach. We
also show that the application of a learning algorithm can
further improve the classification performance of our classifier.

The rest of the paper is organised as follows: Section II
covers in detail fuzzy rule-based classification systems. Our
cost-sensitive fuzzy classifier is explained in Section III while
Section IV provides a learning algorithm that can be applied
to boost the classification rate. Experimental results on various
datasets are given in Section V. Section VI concludes the
paper.

II. FUZZY RULE BASED CLASSIFICATION

Let us assume that our pattern classification problem is
an n-dimensional problem with M classes (in medical di-
agnosis M is typically 2) and m given training patterns
xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . ,m. Without loss of
generality, we assume each attribute of the given training
patterns to be normalised into the unit interval [0, 1]; that is,
the pattern space is an n-dimensional unit hypercube [0, 1]n.
In this study we use fuzzy if-then rules of the following type
as a base of our fuzzy rule-based classification systems:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N,
(1)

where Rj is the label of the j-th fuzzy if-then rule,
Aj1, . . . , Ajn are antecedent fuzzy sets on the unit interval
[0, 1], Cj is the consequent class (i.e. one of the M given
classes), and CFj is the grade of certainty of the fuzzy if-then
rule Rj . As antecedent fuzzy sets we use triangular fuzzy sets
as in Figure 1 where we show a partition of the unit interval
into a number of fuzzy sets.

Our fuzzy classification system consists of N fuzzy if-then
rules each of which has a form as in Equation (1). There
are two steps in the generation of the rules: specification of
antecedent part, and determination of consequent class Cj

and grade of certainty CFj . The antecedent part of a rule is
specified manually. Then the consequent part (i.e. consequent
class and the grade of certainty) is determined from the given
training patterns [4]. In [5] it is shown that the use of the
grade of certainty in fuzzy if-then rules allows us to generate
comprehensible fuzzy rule-based classification systems with
high classification performance.
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Fig. 1. Membership function.

A. Fuzzy rule generation

Let us assume that m training patterns xp = (xp1, . . . , xpn),
p = 1, . . . ,m, are given for an n-dimensional C-class pattern
classification problem. The consequent class Cj and the grade
of certainty CFj of the if-then rule are determined in the
following manner:

Step 1: Calculate βClass h(j) for Class h as

βClass h(j) =
∑

xp∈Class h

µj(xp), (2)

where

µj(xp) = µj1(xp1) · . . . · µjn(xpn), (3)

and µjn(·) is the membership function of the fuzzy
set Ajn. In this paper, we use triangular fuzzy sets as
in Figure 1.

Step 2: Find Class ĥ that has the maximum value of
βClass h(j):

βClass ĥ(j) = max
1≤k≤C

{βClass k(j)}. (4)

If two or more classes take the maximum value, the conse-
quent class Cj of the rule Rj cannot be determined uniquely.
In this case, we specify Cj as Cj = φ. If a single class ĥ
takes the maximum value, let Cj be Class ĥ.

The grade of certainty CFj is determined as

CFj =
βClass ĥ(j) − β̄∑

h βClass h(j)
(5)

with

β̄ =

∑
h�=ĥ βClass h(j)

c − 1
. (6)

B. Fuzzy reasoning

Using the rule generation procedure outlined above we can
generate N fuzzy if-then rules as in Equation (1). After both
the consequent class Cj and the grade of certainty CFj are
determined for all N rules, a new pattern x = (x1, . . . , xn)
can be classified by the following procedure:

Step 1: Calculate αClass h(x) for Class h, j = 1, . . . , C, as

αClass h(x) = max{µj(x) · CFj |Cj = h}, (7)

Step 2: Find Class h′ that has the maximum value of
αClass h(x):

αClass h′(x) = max
1≤k≤C

{αClass k(x)}. (8)

If two or more classes take the maximum value, then the
classification of x is rejected (i.e. x is left as an unclassifiable
pattern), otherwise we assign x to Class h′.

III. COST-SENSITIVE FUZZY CLASSIFICATION

The standard fuzzy rule-based classifier as detailed above
treats each class and hence each sample equally. In medical
diagnosis however this is often not desirable. Misdiagnosing
a malignant case as benign should be penalised more than
diagnosing healthy patients as having a certain disease. While
in the first case the result might be that of late treatment in the
best and missing of the treatable time in the worst scenario, the
latter case will usually involve some further tests which should
then identify the misdiagnosis. Clearly, the costs involved in
the first case will exceed those of the latter.

We therefore wish to develop a classifier that incorporates
this and reformulate the pattern classification problem as a cost
minimisation problem. The concept of a weight is introduced
for each training pattern in order to handle this situation
where the weight of an input pattern can be viewed as the
cost of misclassifying it. Fuzzy if-then rules are generated by
considering the cost as well as the compatibility of training
patterns.

In order to incorporate the concept of weight/cost, we
modify Equation 2 of the fuzzy rule generation to

βClass h(j) =
∑

xp∈Class h

µj(xp) · ωp (9)

where ωp is the cost associated with training pattern p. A
suitable overall cost function can be defined as

Cost(S) =
m∑

p=1

ωp · zp(S), (10)

where m is the number of training patterns, ωp is the
weight/cost of the training pattern xp, and zp(S) is a binary
variable set according to the classification result of the training
pattern xp by S: zp(S) = 0 if xp is correctly classified by S,
and zp(S) = 1 otherwise (i.e. xp is misclassified or rejected).
We use this cost function as a performance measure as well
as classification rate.

IV. LEARNING ALGORITHM

A learning method that adjusts the grades of certainty
CFj can be employed to achieve improved classification
performance [6]. It is based on an error-correction learning
approach where the adjustment occurs when classification of
training patterns is not successful. When a training pattern is
correctly classified we do not adjust the grade of certainty.
The main idea of the learning method is to adjust the degree
of certainty CFj of two fuzzy if-then rules: We decrease the
degree of certainty of a fuzzy if-then rule that misclassifies
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Dataset # of attributes total # of cases # malignant # benign
breast cancer [7] 9 683 239 444
heart disease [8] 13 270 120 150
diabetes [9] 8 768 268 500

TABLE I

STATISTICS OF DATASETS.

Classifier tot. cost SE [%] SP [%] TP FN FP TN

1:2

conventional 18 97.49 98.65 233 6 6 438
cost-based 15 98.33 98.42 235 4 7 437
cost+learning η = 0.2, K = 50 2 100.00 99.55 239 0 2 442
cost+learning η = 0.5, K = 20 2 100.00 99.55 239 0 2 443

1:5

conventional 36 97.49 98.65 233 6 6 438
cost-based 21 99.16 97.52 237 2 11 433
cost+learning η = 0.2, K = 50 2 100.00 99.55 239 0 2 442
cost+learning η = 0.5, K = 20 2 100.00 99.55 239 0 2 443

TABLE II

10-CV RESULTS ON BREAST CANCER TRAINING DATA.

Classifier tot. cost SE [%] SP [%] TP FN FP TN

1:2

conventional 39 94.14 97.52 225 14 11 433
cost-based 37 95.40 96.66 228 11 15 429
cost+learning η = 0.2, K = 50 37 95.40 96.66 228 11 15 429
cost+learning η = 0.5, K = 20 37 95.40 96.66 228 11 15 429

1:5

conventional 81 94.14 97.52 225 14 11 433
cost-based 56 96.65 96.40 231 8 16 428
cost+learning η = 0.2, K = 50 56 96.65 96.40 231 8 16 428
cost+learning η = 0.5, K = 20 56 96.65 96.40 231 8 16 428

TABLE III

10-CV RESULTS ON BREAST CANCER TEST DATA.

a training pattern and in turn increase that of a fuzzy if-then
rule that is supposed to correctly classify the training pattern.

Let us assume that we have generated fuzzy if-then rules
by the rule-generation procedure detailed in Section II-A. We
also assume that a fuzzy if-then rule Rj misclassifies a training
pattern xp. That is, Rj is used to classify xp from Class c∗ by
using Equation (8) but the consequent class Cj does not agree
with the true class of the training pattern x. Let R∗ be the
fuzzy if-then rule that is selected by Equation (7). That is, R∗
has the maximum value of αClass c∗(xp) among those fuzzy
if-then rules with Class c∗ but does not have the maximum
value among all generated fuzzy if-then rules. The proposed
learning method adjusts the grades of certainty of Rj and R∗
as follows:

CFnew
j = CF old

j − η · ωp · CF old
j , (11)

CFnew
∗ = CF old

∗ − η · ωp · (1 − CF old
∗ ), (12)

where ωp is the weight of the training pattern xp, and η is a
positive constant value. We assume that 0 ≤ η ≤ 1.

One epoch of the proposed learning method involves ex-
amining all given training patterns. Thus there will be 2m
adjustments of fuzzy if-then rules if all m training patterns are
misclassified. The learning process is summarised as follows:

Step 1: Generate fuzzy if-then rules from m given training
patterns by the procedure in Section II-A.

Step 2: Set K as K = 1.
Step 3: Set p as p = 1.
Step 4: Classify xp by using the generated fuzzy if-then rules

in Step 1.
Step 5: If xp is misclassified, adjust the grades of certainty

using Equations (11) and (12). Otherwise no rules are
adjusted.

Step 6: If p < m, let p := p + 1 and go to Step 4. Otherwise
go to Step 7.

Step 7: If K reaches a pre-specified value, stop the learning
procedure. Otherwise let K := K+1 and go to Step 3.

Note that K in the above learning procedure corresponds to
the number of epochs.

V. EXPERIMENTAL RESULTS

In order to evaluate our proposed cost-sensitive fuzzy clas-
sifier we tested it on several standard medical classification
datasets, in particular a breast cancer dataset [7], a dataset of
heart patients [8], and the data of a study into diabetes [9].
Sizes and distribution of classes of all three datasets are given
in Table I from where we can see that all three constitute two-
class problems, with benign and malignant as the two target
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classes.
For all three datasets we used a standard fuzzy rule-based

classifier as described in Section II to obtain a baseline
benchmark to compare our algorithms to. We then applied our
proposed cost-based classifier with two different cost setting:
a ratio of 1:2 between benign and malignant cases and a ratio
of 1:5 (though both are probably still conservative estimates).
We also used the learning algorithms detailed in Section IV
to improve upon the classification performance of our cost-
based classification system. We investigate two different sets
of parameters for the learning algorithm: a slower learning
method with η = 0.2 and K = 50 and a faster approach
with η = 0.5 and K = 20. In all experiments we divide each
attribute uniformly into three triangular fuzzy sets as shown in
Figure 1. In order to arrive at statistically meaningful results,
in all cases we perform 10-fold cross-validation where the
patterns are split into ten disjoint subsets and each subset is
in turn used as an unseen test set while the other nine sets
are used for training the classifier. We report the results in
terms of sensitivity defined as SE = TP

TP+FN and specificity
defined as SP = TN

TN+FP where TP , TN , FP , and FN
correspond to true positives, true negatives, false positives,
and false negatives respectively. All results are given as the
average 10-CV scores for both training and unseen test data.

Let’s now inspect each dataset in more detail. The Wiscon-
sin breast cancer dataset [7] is a collection of 9 cytological
attributes such as clump thickness, uniformity of cell size
and shape, etc. for 444 benign and 239 malignant cases.
Classification results for the conventional fuzzy classifier, our
cost-based variation, and the cost-based classifier after learning
are shown in Tables II and III for training and test data
respectively.

On the training data, the conventional classifier achieves a
sensitivity and specificity of 97.49% and 98.65% respectively
which corresponds to 6 false negatives and 6 false positives.
Our cost-based approach improves upon this by correctly iden-
tifying two more malignant cases (while increasing the number
of false positives by 1). A further dramatic improvement is
observed after we apply the learning algorithm achieving a
sensitivity of 100% with a specificity of 99.55%. On the test
data the difference between the algorithms is still significant
though not as pronounced as for the training data. Here, 3 more
malignant cases are identified for a cost setting of 1:2 while
6 more cancer patients are detected with a cost setting of 1:5.
The effect of the misclassification costs on the performance
is hence readily observable here; also in all cases the cost-
based variations produce lower overall costs compared to the
conventional approach.

The heart diagnosis dataset contains 13 attributes which
were derived from an initial set of 75 [8]. Apart from patient
information such as age and sex, the attributes contain, among
others, information on blood pressure, cholesterol, and blood
sugar. Of the 270 patients 120 were diagnosed with a heart
disease. Experimental results on all classifiers are given in
Tables IV and V.

Again, significant improvement are being made through

the application of the cost-based classifiers on the training
data. Perfect classification results (i.e. 100% sensitivity and
specificity) are achieved with the cost-based classifier after
learning with a 1:2 cost setting. Performance on test data
is significantly worse compared to the training data. This
suggests that for this dataset is is fairly difficult to extract
the correct rules and to generalise from a given training set.
Also, the cost-based classifier performs fairly similar to the
conventional algorithm on test data.

The third dataset we investigated is a diabetes database
collected by the National Institute of Diabetes and Digestive
Kidney Diseases [9]. Among the 8 attributes are indicators
such as the patient’s age, blood pressure, body mass index
and others. Of the 768 patients 268 were tested positive
for diabetes and the remaining 500 negative. We report the
experimental results in Tables VI and VII.

Looking at these results we can first observe that the
conventional classifier performs fairly poorly on this dataset,
even on the training set. Even though a specificity of 96.40%
is achieved the sensitivity here is 40.67%. We can also see
that our cost-based classifier significantly improves upon that,
achieving a sensitivity of up to 99.63% when combined with
learning. On the other hand the specificity for these sets drops,
which is not surprising given the aim of the classifier. In all
cases the total costs for the complete dataset are well below
those obtained from the conventional algorithm, in particular
for the 1:5 cost ratio, both for training and test sets.

VI. CONCLUSIONS

In medical diagnostic classification systems, classification
performance is not always the only indicator for assessing
classifiers. Rather, misclassification costs should be taken into
account as well, as usually misclassifying a malignant case
will prove much more costly than misclassifying a benign
one. In this paper we have applied a cost-sensitive fuzzy rule-
based classifier, which emphasises the importance of those
classes which have high misclassification costs, to various
medical diagnostic classification datasets. We have also ap-
plied a learning algorithm to further boost the classification
results. Experimental results have shown that our cost-based
approaches perform better than conventional classifiers under
the assumed conditions.
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