
 

Abstract— Protein sequence motifs are gathering more and 
more attention in the sequence analysis area.  These recurring 
regions have the potential to determine protein’s conformation, 
function and activities.  In our previous work, we tried to obtain 
protein sequence motifs which are universally conserved across 
protein family boundaries. Therefore, unlike most popular motif 
discovering algorithms, our input dataset is extremely large.  In 
order to deal with large input datasets, we provided two granular 
computing models (FIK and FGK model) to efficiently generate 
protein motifs information.  In this article, we develop a new 
method which combines the concept of granular computing and 
the power of ranking SVM to further extract protein sequence 
motif information.  There are two reasons to eliminate redundant 
data: First, the information we try to generate is about sequence 
motifs, but the original input data are derived from whole 
protein sequences by a sliding window technique; second, during 
fuzzy c-means clustering, it has the ability to assign one segment 
to more than one information granule.  However, not all data 
segments have a direct relation to the granule they assigned.  The 
quality of motif information increases dramatically in all three 
evaluation measures by applying this new feature elimination 
model.  Compared with traditional methods which shrink cluster 
size to obtain a more compact one, our approach shows improved 
results.    

Index Terms—FIK Model, FGK Model, Ranking SVM, 
Feature Elimination, Protein Sequence Motif.  

I. INTRODUCTION

t is generally believe that proteins are the most varied     
macromolecules in life process and play an extremely 

important role in all biological activities.  To understand the 
close relationship between protein sequences and structures is 
one of the most-valuable tasks in bioinformatics research.  In 
genetics, a sequence motif is a pattern of amino acid sequence 
that is widespread and contains biological significance.  These 
recurring patterns have the potential to predict other protein’s 
structural or functional area.    
    Some popular sequence motifs databases [8-10] and some 
tools [11-16] designed for motifs discovering are developed 
from multiple alignments.  However, due to the limitation of 
input data size, these sequence motifs only search conserved 

elements of sequence alignment from the same protein family 
and carry little information about conserved sequence regions, 
which transcend protein families [1].  
    Traditional K-means clustering algorithm which selects 
initial centroids by random is employed by Han and Baker [2] 
to find recurring protein sequence patterns.  Wei et al [1] 
proposed an improved K-means clustering algorithm to obtain 
initial centroids location by greedy concept.  Since selecting 
the initial centroids by random is one major drawback of K-
means clustering algorithm, the quality of cluster published by 
Wei et al has been improved in their experiment.  The 
extremely large input dataset is the main reason that both 
above papers select K-means instead of some other advanced 
clustering technology.  Since K-means is famous for its 
efficiency, other clustering methods with higher time and 
space costs may not be suitable for this task.  In our previous 
work [22,23], we proposed granular computing models that 
utilized Fuzzy C-means clustering algorithm to divide the 
whole data space into ten smaller subsets and then apply 
improved K-means algorithm to each subset to discover 
relevant information.  The total execution time is only 20% of 
[1] and obtains even higher quality of sequence motif 
information.   
    The input dataset in our previous works [22,23] and related 
works [1,2] are generated from whole protein sequences by 
sliding window technique, however, the information we tried 
to obtain is sequence motif knowledge which is only several 
small parts of each sequence.  Therefore, not all segments in 
the dataset can provide significant information.  Besides, 
fuzzy C-means (FCM) is capable of assigning one data point 
to more than one information granule, but not all granules that 
FCM assigned need the information from the data point.  In 
this paper, in order to obtain more precise motif information, 
we utilize our previous effort and combine it with ranking 
SVM to eliminate the redundant or less meaningful segments 
in our original dataset.  In [18], a granular feature elimination 
model applied on Microarray data called GSVM-RFE is 
proposed.  Although Microarray has the potential to deal with 
tens of thousands genes simultaneously, compared with our 
data size, we have much larger dataset: four clusters are 
divided in [18], however, 48 clusters are mined in this paper.  
In addition, we use greedy K-means cluster algorithm to fix 
the initial centroid location to optimize the effect of feature 
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elimination.  Therefore, we called our model super GSVM-FE 
to indicate that our model has the potential to apply on huge 
data space and obtain consistent results.    

II. GRANULAR COMPUTING MODELS

A. FGK Model 
    Granular computing represents information in the form of 
aggregates, also called “information granules” [20, 21].  For a 
large and complicated problem, it uses the divide-and-conquer 
concept to split the original task into several smaller subtasks 
to save time and space complexity.  Also, in the process of 
splitting the original task, it comprehends the problem without 
including meaningless information.  As opposed to traditional 
data-oriented numeric computing, granular computing is 
knowledge-oriented [21].  

    A granular computing based model called “Fuzzy-
Greedy-Kmeans model” (FGK model) is proposed in our 
previous work [23].  This model works by using FCM to build 
a set of information granules and then applying our new 
greedy K-means clustering algorithm to obtain the final 
information.  The new greedy method collects five traditional 
K-means results and then selects the initial centroids based on 
those results.  Due to the fact that the centroids in higher 
quality clusters have the potential to generate better clusters in 
the sixth round, we divided our initial centroid selection 
procedure into five steps: initially gathering centroid seeds 
belonging to clusters with structural similarity greater than 
80% and then proceeding with 75%, 70%, 65% and 60%.  The 
major advantages of the FGK model are reduced time- and 
space- complexity, filtered outliers, and higher quality 
granular information results.   

B. Super Granular SVM Feature Elimination Model 
Basically, this new model is the next generation of FGK 

model.  It also use fuzzy concept to divide the original dataset 
into several smaller information granules.  For each granule, 
after five iterations of traditional K-means clustering, the 
greedy k-means is applied.  The next step is different from the 
FGK model: we adapt the ranking SVM [17] to rank all 
members in each cluster generated by greedy K-means 
clustering algorithm, and then we filter out lower ranked 
members.   The number of segments being eliminated is 
decided by user defined filtration percentage.  The results of 
different percentages are discussed in section four.  After the 
feature elimination step, we collect all surviving data points in 
each information granule and then run greedy K-means with 
the same initial centroids we previously generated.  Finally, 
we collect all results in all granules to create the final protein 
sequence motif information.     

  In order to compare the results, we present another similar 
feature elimination approach by modifying only one 
component of the model: we utilize a cluster shrinking instead 
of ranking SVM.  The number of segments being eliminated is 
decided by a user defined distance threshold.  If the distance 
between a member and the center of the cluster is greater than 

the threshold, the data point is filtered.  The major advantage 
of this approach is that not all clusters get rid of the same 
amount members.  If the cluster is compact at the beginning, 
fewer members should be eliminated.  On the other hand, if 
the cluster is in a loose form, more data points should be 
eliminated.  The results of different thresholds are also 
discussed and compared in section four. 

Figure 1. Super GSVM-FE Model 

III. EXPERIMENT SETUP

A. Dataset 
The dataset used in this work includes 2710 protein 

sequences obtained from Protein Sequence Culling Server 
(PISCES) [5].  No sequence in this database share more than 
25% sequence identities.  Sliding windows with 9 successive 
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residues are generated from protein sequence.  Each window 
represents one sequence segment of nine continuous positions.  
More than 560,000 segments are generated by this method and 
clustered into 800 clusters.  The frequency profile from the 
HSSP [3] is constructed based on the alignment of each 
protein sequence from the protein data bank (PDB) where all 
the sequences are considered homologous in the sequence 
database.  We also obtained secondary structure from DSSP 
[4], which is a database of secondary structure assignments for 
all protein entries in the Protein Data Bank. 

Due to time limitation, we applied our new approach on 
information granule number eight in [23] which contains 
43254 data segments and 48 clusters.  After five iterations of 
traditional K-means clustering are executed, 45 initial 
centroids are decided for greedy K-means.  All initial centers 
have at least 250 distance measure from existing centroids.  
Another three initial seeds are generated randomly with 
minimum distance threshold check. 

B. Representation of Sequence Segment 
The sliding windows with nine successive residues are 

generated from protein sequences. Each window corresponds 
to a sequence segment, which is represented by a 9 × 20 
matrix plus additional nine corresponding secondary structure 
information obtained from DSSP.  Twenty rows represent 20 
amino acids and 9 columns represent each position of the 
sliding window.  For the frequency profiles (HSSP) 
representation for sequence segments, each position of the 
matrix represents the frequency for a specified amino acid 
residue in a sequence position for the multiple sequence 
alignment.  DSSP originally assigns the secondary structure to 
eight different classes. In this paper, we convert those eight 
classes into three classes based on the following method: H, G 
and I to H (Helices); B and E to E (Sheets); all others to C 
(Coils). 

C. Distance Measure 
  According to [1, 2], the city block metric is more suitable 

for this field of study since it will consider every position of 
the frequency profile equally.  The following formula is used 
to calculate the distance between two sequence segments [2]: 

Distance= 
= =

−
L

i

N

j
ck jiFjiF

1 1
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Where L is the window size and N is 20 which represent 20 
different amino acids.  F k (i,j) is the value of the matrix at row
i and column j used to represent the sequence segment.  
F c (i,j) is the value of the matrix at row i and column j used to 
represent the centroid of a give sequence cluster. 

D. Structure Similarity Measure 
Cluster’s average structure is calculated using the following 

formula:   
ws

ppp
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i
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Where ws is the window size and P Hi,  shows the frequency 

of occurrence of helix among the segments for the cluster in 
position i. P Ei, and P Ci,  are defined in a similar way.  If the 

structural homology for a cluster exceeds 70%, the cluster can 
be considered structurally identical [7]. If the structural 
homology for the cluster exceeds 60% and bellows 70%, the 
cluster can be considered weakly structurally homologous [1]. 

E. Davis-Bouldin Index (DBI) Measure 
Besides using secondary structure information as a 

biological evaluation criterion, we include an evaluation 
method used in computer science on this dataset in our 
previous work [22].   The DBI measure [6] is a function of the 
inter-cluster and intra-cluster distances.  A good cluster result 
should reflect a relatively large inter-cluster distance and a 
relatively small intra-cluster distance.  The DBI measure 
combines these two distance information into one function, 
which is defined as follows: 

DBI= ( ) ( )
( )
+

= ≠
qper

qrapra
k

p qp CCd
CdCd

MAX
k ,
1

int

intint

1

, where 

( )pra Cd int =
p

n

i
pci

n

gg
p

=

−
1    and   ( )qper CCd ,int =

qcpc gg −

k is the total number of clusters, d raint and d erint denote the 

intra- cluster and inter-cluster distances respectively.  pn  is 

the number of members in the cluster pC .  The intra-cluster 

distance defined as the average of all pair wise distance 
between the members in cluster P and cluster P’s centroid, 

pcg .  The inter-cluster distance of two clusters is computed 
by the distance between two clusters’ centroids.  The lower 
DBI value indicates the higher quality of the cluster result.     

F. New HSSP-BLOSUM62 Measure 
    BLOSUM62 [19] is a scoring matrix based on known 
alignments of diverse sequences.  By using this matrix, we 
may tell the consistency of the amino acids appearing in the 
same position of the motif information generated by our 
method. Because different amino acids appearing in the same 
position should be close to each other, the corresponding value 
in the BLOSUM62 matrix will give a positive value.  For 
example, if the rule indicates amino acid A1 and A2 are two 
elements frequently appear in some specific position; A1 and 
A2 should have similar biochemical property.  Hence, the 
measure is defined as the following: 
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If k = 0:          HSSP-BLOSUM62 measure = 0 
Else If k = 1:  HSSP-BLOSUM62 measure = BLOSUM62 ii

Else:           HSSP-BLOSUM62 measure =  
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 k is the number of amino acids with frequency higher than a 
certain threshold in the same position ( in this paper, 8% is the 
threshold).  HSSP i  indicates the percent that amino acid i

appears.  BLOSUM62 ij  denotes the value of BLOSUM62 on 
amino acid i and j.  The higher HSSP-BLOSUM62 value 
indicates more significant motif information.  When k equals 
zero, it indicates that there is no amino acid appearing in the 
specific position, so the value for this measure is assigned 
zero.  While k equals one, it indicates that there is only one 
amino acid appearing in the position.  Unlike the first time we 
proposed this measurement in [23] where we assign zero score 
to this situation; we believe it should assign some positive 
value to appreciate the clear information. Therefore, we assign 
the corresponding amino acid’s diagonal value in 
BLOSUM62.  To the best of our knowledge, it is the first 
evaluation method based on biochemical point of view that 
considers both HSSP and BLOSUM62 information.   

G. Ranking SVM Setup 
  In ranking SVM [17], the target value is used to denote pair 
wise preference constraints.  We set the target value for each 
member in the cluster by counting the number of matching 
secondary structures between a member’s structure and the 
representative structure of the cluster.  Since we use window 
size nine in our experiment, the highest target value is 9 and 
the lowest is 0. 

IV. EXPERIMENTAL RESULTS

A. Quality of Sequence Motifs Comparison 
    In table 1, the number of clusters which contain higher 
than 60% and 70% structural similarity generated by 
different methods is given.  Both the DBI measure and the 
average HSSP-BLOSUM62 value on high structural 
similarity (>60%) clusters are also available in the same 
table.  The leftmost column indicates the percentage of 
whole dataset been filtered out.  Figure 2 to 5 are interpreted 
from first table.  
    The results of Table 1 and figures from 2 to 4 reveal that 
the quality of clusters improved in all three measures steady 
by filtering out part of the original data.  Comparing the 
Shrink approach and Ranking SVM method from the 
secondary structural similarity point of view, it is not hard to 
tell that ranking SVM generates much better results.  The 
support vector machine approach produces more clusters 
with higher than 60% structural similarity almost all the 
time.  If we compare the number of cluster that share over 
70% structural similarity, ranking SVM unquestionably 

surpasses the shrink approach.  It indicates that our proposed 
model has the higher potential to bring forth high quality 
motif information. 
    When it comes to the DBI measure which is a pure 
computer science aspect evaluation, shrink method always 
receives a lower (indicates better) value.  This is mainly 
because the shrink method is based on simply narrow cluster 
size from outside, in other words, it focus on shorter intra-
cluster distance.  Therefore, it can always generate a better 
DBI value.  Although the SVM approach has a larger DBI 
value, the difference between the compared methods is 
small.  More importantly, the ranking SVM shows the same 
tendency of decreasing the DBI measurement with shrink 
approach.  In our HSSP-BLOSUM62 measure aspect, 
ranking support vector machine gives higher value 
throughout most of the time.  It implies that our model 
generates more biochemical meaningful motif information 
by ruling out some less meaningful data points.          

Shrink Approach Ranking SVM Approach 
>60% >70% DBI H-B >60% >70% DBI H-B 

0% 12 0 6.387 .749 12 0 6.387 .749 
10% 15 0 6.135 .634 14 1 6.352 .773 
15% 15 0 6.060 .731 15 2 6.213 .908 
20% 14 0 5.988 .818 18 2 6.058 .802 
25% 15 1 5.793 .760 18 5 6.069 .884 
30% 17 1 5.794 .655 25 6 5.892 .916 
35% 18 1 5.719 .597 26 6 5.919 .720 
40% 19 1 5.639 .694 26 7 5.856 .821 
45% 19 1 5.604 .595 28 9 5.678 .736 

Table 1 Comparison of all measures 
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Figure 2 Comparison of percentage of sequence segments belonging to cluster 
with structure similarity higher than 60% 
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Figure 3 Comparison of percentage of sequence segments belonging to cluster 
with structure similarity higher than 70% 
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  Figure 4 Comparison of the DBI measure (lower indicates better). 
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  Figure 5 Comparison of the HSSP-BLOSUM62 measure 

B. Sequence Motifs 
Based on the results shown above, we select some motif 

information generated from filtering 30% of the whole data 
size and compare it with the original information. The reason 
we choose 30% as representative is that it matches the criteria 
of filtering part of data point and creates higher structural 
similarity results.  Also, the lower DBI measure (almost equal 
to shrink method) and the highest HSSP-BLOSUM62 measure 
are considered. Tables 4 through 7 illustrate four different 
sequence motifs before and after feature elimination.  The 
following format is used for representation of each motif table. 

1. The first row represents number of members 
belonging to this motif and the secondary structural 
similarity.     

2. The first column stands for the position of amino acid 
profiles in each motif with window size nine. 

3. The second column expresses the type of amino acid 
frequently appeared in the given position.  If the 
amino acids appearing with the frequency higher than 
10%, they are indicated by upper case;  If the amino 
acids appearing with the frequency between 8% and 
10%, they are indicated by lower case.    

4. The third column corresponds to the hydrophobicity 
value, which is the summation of the frequencies of 
occurrence of Leu, Pro, Met, Trp, Ala, Val, Phe, and 
Ile. 

5. The fourth column gives the HSSP-BLOSUM62 
value. 

6. The last column indicates the representative 
secondary structure to the position. 

    Before Feature Elimination                      After Feature Elimination

Number of segments: 830
Structure homology: 67.36% 
Avg. HSSP-BLOSUM62: 1.167

»
»
»

Number of segments: 624 
Structure homology:74.02% 
Avg. HSSP-BLOSUM62: 1.562 

# Noticeable 
Amino 
Acid 

H B S # Noticeabl 
Amino 
Acid 
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E

Table 4 Sheet-Coil-Sheet motif  

Number of segments: 966
Structure homology: 61.02% 
Avg. HSSP-BLOSUM62: 0.775

»
»
»

Number of segments:730
Structure homology: 65.51% 
Avg. HSSP-BLOSUM62: 0.890

# Noticeable 
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Acid 
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C

Table 5 Sheet-Coil motif  

Number of segments: 703
Structure homology: 51.75% 
Avg. HSSP-BLOSUM62: 1.051

»
»
»

Number of segments:510
Structure homology: 60.11% 
Avg. HSSP-BLOSUM62: 1.262

# Noticeable 
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Table 6 Helix-Coil motif   

Number of segments: 1453
Structure homology: 57.77% 
Avg. HSSP-BLOSUM62: 1.712

»
»
»

Number of segments:1120
Structure homology: 71.44% 
Avg. HSSP-BLOSUM62: 0.858

# Noticeable 
Amino 
Acid 
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Acid 
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H

Table 7 Helices motif 
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V. CONCLUSION

A novel granular feature elimination model called Super 
GSVM-FE which combines Fuzzy C-means, Greedy K-means 
clustering algorithm and Ranking SVM has been proposed to 
extract protein sequence motif information.  In this model, we 
utilize fuzzy clustering to split the whole dataset into several 
information granules and analyze each granule by Greedy K-
means clustering algorithm.  After that, we rate all members in 
all clusters by ranking SVM, and then filter out less 
meaningful segments to obtain higher quality motif 
knowledge.  Analysis of sequence motifs also shows that by 
filtering some portion of original dataset may reveal some 
subtle motif information hidden behind some ordinary data 
points.  Additionally, the latest version of HSSP-BLOSUM62 
for motif information biochemical aspect measurement is also 
proposed.  We believe some other research with large input 
data size may adapt our model to generate high quality 
purified results.      
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