
Hybrid Architecture for Accelerating DNA
Codeword Library Searching

Qinru Qiu Daniel Burns∗ Qing Wu Prakash Mukre
Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902

∗Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome, NY 13441
qqiu@binghamton.edu, Daniel.Burns@rl.af.mil, qwu@binghamton.edu, pmukre1@binghamton.edu

Abstract — A large and reliable DNA codeword library is the key
to the success of DNA based computing. Searching for the set of
reliable DNA codewords is an NP-hard problem, which can take
days on the state-of-art high performance cluster computers.
This work presents a hybrid architecture that consists of a
general purpose microprocessor and a hardware accelerator for
accelerating the discovery of DNA reverse complement, edit
distance codes. Two applications of this architecture were
implemented and evaluated, including a code generator that uses
a genetic algorithm (GA) to produce nearly locally optimal codes
in a few minutes, and a code extender that uses exhaustive search
to produce locally optimum codes in about 1.5 hours for the case
of length 16 codes. The experimental results demonstrate that the
GA can find ~99% of the words in locally optimum libraries, and
that the hybrid architecture provides more than 1000X speed-up
compared to a software only implementation.

I. INTRODUCTION

The DNA molecule is now used in many areas far beyond
its traditional function. The first DNA-based computation was
proposed by Adleman [1]. It demonstrates the effectiveness of
using DNA to solve hard combinatorial problems. DNA
molecules have also been used as information storage media
and three dimensional structural materials for nanotechnology.

One of the major concerns of DNA computing is reliability.
In DNA computing, the information is encoded as DNA
strands. Each DNA strand is composed of short codewords.
DNA computing is based on the hybridization process, which
allows short single-stranded DNA sequences (i.e.
oligonucleotides) to self-assemble to form long DNA
molecules. The reliability of the computing is determined by
whether the oligonuleotides can hybridize in a predetermined
way. The key to success in DNA computing is the availability
of a large collection of DNA codeword pairs that do not
crosshybridize.

Various quality metrics have been proposed to guide the
construction process [1]-[5]. The computation of these metrics
dominates the run time of the code building process. While
metrics based on the Gibbs energy and nearest neighbor
thermodynamics and consideration of secondary structure
formation give accurate measurement of hybridization, they are
computationally costly, motivating the use of simplified
metrics. One such metric is the Levenshtein distance, or the so-
called deletion-correcting or edit distance, which has been used
to construct DNA codes [6].

 Regardless of the quality metric used, composing DNA
codes is NP-hard because the number of potential codewords
that must be searched increases exponentially with the length
of the DNA codewords. Exhaustive checking is generally
impractical for words of length greater than about 12 base
pairs. Various algorithms have been proposed for building
DNA codes, including the GA [7], Markov processes [8], and
Stochastic methods [9]. Recent work [10] has shown that a
hybrid GA blended with Conway’s lexicode algorithm [11][12]
achieves better performance than either alone in terms of
generating useful codes quickly.

 Search methods for DNA codes are extremely time-
consuming, and this has limited research on DNA codeword
design, especially for codes of length greater than about 12-14
bases. Theory is lacking to provide tight upper bounds on the
size of codeword sets, and the best known bounds are based on
experiments. For example, the largest known reverse
complement edit distance DNA codeword library (length 16,
edit distance 10) consist of 132 pairs, composing such codes
can take several days on a cluster of 10 G5 processors.

 This paper focuses generally on speed-up techniques for
the composition of reverse complement, edit distance, DNA
codes of length 16, using a modified genetic algorithm that
uses a locally exhaustive, mutation-only heuristic tuned for
speed. Ongoing work to be reported elsewhere is addressing
extensions to metrics involving nearest neighbor
thermodynamics, a more general GA, codewords of length 32.

 More specifically, we report a novel accelerator for DNA
codeword composition that incorporates a hardware GA,
hardware edit distance calculation, and hardware exhaustive
search. Hardware exhaustive search extends an initial
codeword library by doing a final scan across the entire
universe of possible codewords, yielding a known locally
optimum code. The proposed architecture consists of a host
PC, a hardware accelerator implemented in reconfigurable
logic on a field programmable gate array (FPGA) and a
software program running in a host PC that controls and
communicates with the hardware accelerator. The
characteristics of the proposed architecture are as follows:

1. High performance. It utilizes programmable logic devices to
enable pipelined and massively parallel processing of the
data. Compared with software-only approaches, the new
architecture can provide more than 1000X speed-up. For
example, instead of 52 days, it only takes 1.5 hours to scan

323

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE

the entire codeword space and to find all additional words
that must be added to produce a locally optimum code.

2. High flexibility. The hardware accelerator can be configured
by software program, and presently it can be run on a
workstation PC equipped with an FPGA board, or on a
notebook computer equipped with a PCMCIA FPGA card.

3. User friendly. The hardware accelerator is transparent to the
user. Its control and access is accomplished by memory
reads and writes based on a set of given protocols.

The remainder of this paper is organized as follows:
Section II provides the necessary biological background and
terminology. Section III introduces the problem definition and
the genetic algorithm for DNA codeword search. Section IV
gives the detailed information about how to accelerate the GA
search fitness calculation. Sections V and VI provide details
about the hybrid architecture and present a performance
comparison between the software version of the GA and the
best known (Markov) algorithm found in the literature, and
early results on locally optimum codes. Finally, conclusions
are given in Section VII.

II. BACKGROUND

The DNA molecule is a nucleic acid. It consists of two
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases)
connecting with the backbone. The oligonucleotide sequence is
oriented. One end of the sequence is denoted as 3’ and the
other as 5’. Only strands of opposite orientation can form stable
duplex.

There are four types of bases: Adenine, Thymine, Cytosine,
and Guanine. They are denoted briefly as A, T, C, and G
respectively. Each base can pair up with only one particular
base through hydrogen bonds: A+T, T+A, C+G and G+C.
Sometimes we say that A and T are complementary to each
other while C and G are complementary to each other. A
Watson-Crick complement of a DNA sequence is another
DNA sequence which replaces all the A with T or vise versa
and replaces all the T with A or vise versa, and also switches
the 5’ and 3’ ends. A DNA sequence binds most stably with its
Watson-Crick complement. The stability of the binding is
determined by the free energy of the hydrogen bonds.

The calculation of the free energy involves many
considerations. In this paper, we only consider the first order
effect, and use the number of Watson-Crick pairs between two
DNA sequences to represent their bonding strength. Such
approximation is widely adopted by the research works in
DNA codeword design [6][12]. Furthermore, the DNA
sequences of length 10 or greater are usually considered to be
flexible [6]. Therefore, the binding strength of two DNA
strands is measured by the length of the longest complementary
subsequence (not necessarily contiguous) of one strand and the
reverse of the other. For example, Figure 1 shows two DNA
strands that bind with 5 Watson-Crick pairs. The longest
complementary sequence between two flexible DNA strands, A
and B, is the same as the longest common sequence (LCS)
between A and B [6].

Figure 1 Binding between DNA strands.

III. PROBLEM FORMULATION AND OPTIMIZATION
ALGORITHM

We consider each DNA codeword as a sequence of length n
in which each symbol is an element of an alphabet of 4
elements. The longest common sequence between DNA
strands A and B is denoted as LCS(A, B). In this work, we
focus on searching for a set of DNA codeword pairs S, where S
consists of a set of DNA strands of length n and their reverse
complement strands e.g. {(s1, 1s), (s2, 2s), …}, where (s1, 1s)
denotes a strand and its Watson-Crick complement. The
problem can be formulated as the following constrained
optimization problem:

 ||max S (1)

s.t. SsssLCS ∈∀≤ 111 ,),(σ , (2)

 SssssLCS ∈∀≤ 2121 , ,),(σ (3)

 SssssLCS ∈∀≤ 2121 , ,),(σ , (4)

where σ is a predefined threshold. Equation (1) indicates that
our objective is to maximize the size of the DNA codeword
library. The first constraint specifies that a DNA codeword in
the library cannot bind with itself. The second and the third
constraints specify that a DNA codeword in the library cannot
bind with another library word or its Watson-Crick
complement. Both of these two constraints must be satisfied
because a DNA strand always occurs with its Watson-Crick
complement.

A genetic algorithm (GA) is a stochastic search technique
based on the mechanism of natural selection and
recombination. Solutions, which are also called individuals, are
evolved from generation to generation, with selection, mating,
and mutation operators that provide an effective combination
of exploration of the global search space. The Island multi-
deme GA is a widely used parallel GA model in which the
population is divided into several sub-populations and
distributed on different processors. Each sub-population
evolves independently for a few generations, before one or
more of the best individuals of the sub-populations migrate
across processors.

Although it is effective for many other optimization
problems, we observed that selection and mating slowed the
evolution of beneficial fitnesses in the population. Therefore, in
this work, we propose a modified GA without mating. The
approach is similar to Tulpan’s [9], except that we start with an
empty library, and a separate GA population of next word
candidate individuals with random base content. Each
individual in the population is a DNA codeword encoded as a
binary string with length 2n, where n is the length of the
codeword in bases. The four bases (A, T, C, G) are encoded as

A A C G − T G

T T − C G A C

5’ 3’

5’3’

A A C G − T G

T T − C G A C

5’ 3’

5’3’

324

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

(00, 01, 11, 10). Each DNA strand of length 16 can be
represented as a 32 bit integer.

Given a codeword library S, the fitness of each individual d
reflects how well the corresponding codeword fits into the
current codeword library. Two values define fitness,
reject_num and max_match. The reject_num is the number of
codewords in the library which satisfies the condition that

σ>),(dsLCS or σ>),(dsLCS . The max_match can be
calculated as

SsdsLCSdsLCSddLCS ∈∀−−−),),(,),(,),(max(σσσ .
The codeword with lower fitness fits better in the library.

From equations (2)-(4) we know that a valid library word
must have reject_num equal to 0. It is observed that adding a
codeword with reject_num = 0 and max_match > 0 into the
library will restrict the future growth of the library. Such
codewords bind very weakly with other library words, but they
are too far apart in the search space and interfere with closest
packing. To maximize the library size, we want to select only
those codewords that are “just good enough”. To ensure this,
we add another constraint to the optimization problem:

 SssssLCSssLCS ∈∀= 212121 , ,)),(),,(max(σ (5)

Therefore, only codewords with reject_num = 0 (which also
implies max_match = 0) will be added into the library.

A traditional GA mutation function might randomly pick an
individual in the population, randomly pick a pair of bits in the
individual representing one of its 16 bases, and randomly
change the base to one of the 3 other bases in the set of 4
possible bases. In the proposed algorithm, however, we
randomly select an individual, but then to exhaustively check
all of the 48 possible base changes. This is an attempt to speed
beneficial evolution of the population by minimizing the
overhead that would be associated with randomly picking this
individual again and again in order to test those mutations. We
also specify that if none of the 48 mutations were beneficial,
one of them is selected at random. This enables the individual
to remain in the population and possibly experience subsequent
(multiple) mutations. Figure 2 gives the pseudo code for the
modified mutation function.

When an individual in the population achieves a fitness of
0, it is added to the set of good codewords, and the selected
individual in the population is replaced by a new random
individual. The GA is allowed to run until one of three
termination criteria is satisfied: the number of codewords in the
set is as large as desired; the algorithm has run for a specified
maximum number of generations; or the algorithm has run for
a specified maximum amount of time. We store the codeword
values and the elapsed time at which they are each found, in
memory during a run, and we store that data to a disk file at the
end of a run. We also calculate and store the average time at
which the ith words are found across multiple runs to assess
average performance.

Figure 2 Modified mutation algorithm.

IV. HARDWARE ACCELERATION OF LCS
CALCULATION

The most time consuming part of the proposed GA
algorithm is to calculate the fitness value for each individual.
Performance profiling of our software GA version showed that
>98% of the computing time was spent calculating the LCS
distance between DNA strands. The LCS distance is calculated
using dynamic programming. Figure 3 gives the pseudo code
of the algorithm. The intermediate results are stored in an n×n
matrix, where n is the length of the DNA codeword in bases.
The calculation starts at the top left corner of the matrix and the
final result is the value calculated in the cell located at the
bottom right corner. For DNA codewords with length 16, at
least 256 operations are needed before we can obtain the final
result. Therefore, the throughput of the software based LCS
calculation is less than 1/n2.

Figure 3 LCS distance calculation.

The algorithm can be implemented using a 2D systolic
array. The systolic array is an n×n matrix. Figure 4 (a) gives

Mutation()
//M is the set of mutated individuals;
//L is the set of library codewords;
Randomly select an individual s from initial population;
M = Φ;
FOR i = 1 TO n
 B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that

is different from the ith nucleotide of s
 Generate three mutated individuals {s1, s2, s3} by replacing the

ith nucleotide with one of the elements of B;
 M = M ∪ {s1, s2, s3};
END
Evaluate the fitness for each m ∈ M;
IF (∃m, fitness(m) = 0) THEN L = L ∪ {m};
ELSE //evolve the population by replacing the original

individual with a new individual with better fitness
 Select the individual x which has the lowest (best) fitness and

x∈M;
 IF fitness(x) < fitness(s) THEN replace s with x;
 ELSE replace s with a random individual from M;
END

RETURN

LCS(a, b)
 Initialize lcs[0][i] and lcs[i][0], 0≤i≤n-1

FOR i = 0 TO n-1 BEGIN
 FOR j = 0 TO n-1 BEGIN
 IF (a[i] = b[j]) THEN k = 1;
 ELSE k = 0;

 lcs[j][i] = max(lcs[j-1][i], lcs[j][i-1], lcs[j-1][i-
1]+k);
 END
 END

325

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

the structure of each cell in the matrix. Each cell consists of
three registers: A, B and ans. For the cell at location (i, j), the
registers A and B are used to store the ith nucleotide of one
DNA codeword (north word) and the jth nucleotide of the other
DNA codeword (west word) respectively. The register ans is
used to store the intermediate result of the dynamic
programming calculation. Each cell has five inputs. Two of the
inputs connect to the register A and register B of the upper and
left neighbor cells. The other three inputs connect to the ans
registers of the upper, left and diagonal neighbor cells. In the
present hardware version it takes two clock cycles for a cell to
update its answer. In the first clock period, input registers A
and B are updated, and in the second clock period, the cell
output answer is calculated and the register ans is updated. In
order to prevent ripple through operation, the cells in the even
columns and even rows or odd columns and odd rows are
synchronous to each other and operate as described above, but
in the rest of the cells (which are also synchronous) the two
operations are reversed, i.e. the ans output is calculated in the
first clock period and the A and B inputs are updated in the
second clock period.

The overall architecture of the 2D systolic array is shown in
Figure 4 (b). The marked cells calculate their answers in the
same clock cycle while the unmarked cells calculate their
answers in the next clock cycle. In this way, the results
propagate through the array diagonally. The final result is
given by the ans register of the cell at the right bottom corner
of the 2D array. It is easy to see that after a latency period that
is required to fill the pipeline, the throughput of the systolic
array is ½, i.e. 1 output result per 2 clock periods. When n
increases, the throughput remains the same while the hardware
cost increases, as long as the reconfigurable hardware chip has
sufficient resources to implement a full n×n array of cells.
Another detail is that the systolic array must be fed by an array
of registers that delay the entry of the bases on the right of the
North word and at the bottom of the West word. In effect, this
synchronizes the presentation of those parts of the operand
words with the diagonal waves of intermediate calculations in
the cells that proceed from the upper left corner down and to
the right through the array.

Figure 4 2D systolic array for LCS calculation.

We note that version of this array for words of length 32 vs.
16 would use 4X the resources, but clock at the same rate.

V. HYBRID ARECHITECTURE

Figure 5 System architecture.

The proposed hybrid architecture consists of a host CPU, a
hardware accelerator and a software program running on the
host CPU. The host CPU and the hardware accelerator are
connected via the system bus. Figure 5 shows the architecture
of the system. In order to increase the portability of the design,
we divide it into two modules: the bus interface and the
hardware accelerator core. The bus interface module connects
to the bus as a slave. It has a set of command registers and an
information exchange memory, which can be accessed by both
CPU and the hardware accelerator. For different bus
architecture, a new bus interface must be developed.

A. Hardware acceleration for GA based codeword search

A two-level method is adopted to control the hardware
accelerator. At the top level, the operations of the hardware
accelerator are categorized into 7 states: {idle, init, check_pop,
mutation, check_mutate, update_pop, update_lib}. In the init
state, the hardware accelerator generates a random initial
population, and sets up either an empty initial library, or reads
an initial partial library from a disk file. In the mutate state, the
hardware accelerator produces a population of 47 mutated
individuals based on a chosen individual. The hardware
accelerator calculates the fitness for all the individuals in the
initial population, and in the mutated population, in the
“check_pop” and “check_mutate” states, respectively. In the
“update_lib” state, the hardware accelerator writes the newly
discovered acceptable codewords into the library. In the
“update_pop” state, the hardware accelerator writes the best (or
a randomly chosen) mutated individual back to the working
population.

Each state corresponds to an operation in the GA algorithm.
Figure 6 (a) shows the control and data flow graph (CDFG) of
the algorithm based on this state division. The “update_lib”
and “update_pop” operations are one cycle operations because
they only perform a memory write. All the other operations are
multi-cycle operations, which again can be divided into several
sub-states. When the top level state machine enters the
corresponding state of a multi-cycle operation, the second level
state machine is triggered.

We call an operation a blocking operation if its successors
in the CDFG cannot start until this operation is done. Similarly,
an operation is called non-blocking operation if its successors
can start right after this operation started. The “init” and
“mutation” operations are both non-blocking operations. While
the hardware accelerator is generating the initial population and

(a) Cell architecture

A

B ans

North
word

west
word

Upper
ans

Left
ans

Lower
cell

Right
cell

corner
cell

corner
ans

A

B ans

North
word

west
word

Upper
ans

Left
ans

Lower
cell

Right
cell

corner
cell

corner
ans

(b) Checker board
architecture of 2D systolic

North word

W
es

t w
or

d

North word

W
es

t w
or

d

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

326

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

the mutated population, it is at the same time checking the
fitness of the generated individual. The “check_pop” and
“check_mutate” operations are blocking operations. Their
successors, i.e. “mutate” and “update_pop”, cannot start until
they have been finished. Figure 6 (b) shows the scheduling of
the operations.

Figure 6 Top level state machine controller.

A buffer is needed to pass the results of one operation to its
successor. In particular, a first-in-first-out (FIFO) storage
should be used as the output buffer of a non-blocking
operation. However, the implementation of the FIFO is
relatively easy in this design because the non-blocking
operations are always faster than their successors. Therefore, it
is not necessary to check the FIFO underflow condition. We
use dual port memory as the output buffer for the design. Three
memory blocks are used: Initial Population Memory (Mpop),
Mutated Population Memory (Mmutate) and CodeWord Library
Memory (Mlib). The input and output buffer of different
operations are given in Table 1.

Table 1. The input/output buffer of operations.

operations Input Output

init - Mpop

check_pop Mpop Mlib

mutate Mpop Mmute

check_mutate Mmute Mlib

update_lib Mpop Mlib

update_pop Mmute Mpop

B. Hardware software interface

The hardware accelerator and the host CPU program run
asynchronously. Four-way handshaking protocol is used to
synchronize the communication between hardware and
software, as shown in Figure 7. For example, when the
hardware accelerator finds a new codeword, it raises the
“PE_got_new_word” flag to the host program. After detecting
this flag, the host program reads the new codeword then raises

the “host_got_new_word” flag. After detecting this flag, the
hardware accelerator then clears the “PE_got_new_word” flag
and acknowledges the host program by raising the
“PE_got_message” flag.

Figure 7 Hand-shaking between host and PE.

After detecting this flag, the host program then clears the
“host_got_new_word” flag and acknowledges the hardware
accelerator by raising the “host_got_message” flag, and
continues. After detecting this flag, the hardware accelerator
then clears the “PE_got_message” flag and continues. After
the handshaking, the host program and the hardware
accelerator work asynchronously until the host or hardware
accelerator raises another message flag.

C. Parallel GA

Figure 8 Hardware architecture for parallel GA.

The hardware accelerator discussed above uses about
12,263 LUTs (look-up-tables), which is only about 42% of the
programmable resources in a Xilinx Virtex II 3000 FPGA and
about 16% of the programmable resources in a Xilinx
XC2VP70 FPGA. Therefore, we evaluated a further speed-up

Host
Program

PE_got_new_
word?

working

PE_Got_new
_word

Read new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PEHost
Program

PE_got_new_
word?

workingworking

PE_Got_new
_word

Read new wordRead new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PE

(b) Scheduling of operations

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update
LibraryPE_got_new

_word2
PE_got_new

_wordn

GA1
(sub-pop)

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GA2
(sub-pop)

GAn
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update
LibraryPE_got_new

_word2
PE_got_new

_wordn

(a) Control and data flow graph
done

init check
pop

update
lib

mutate check
mutate

update
popstart done

idle

found found

done

initinit check
pop

check
pop

update
lib

update
lib

mutatemutate check
mutate
check
mutate

update
pop

update
popstart done

idleidle

found found

327

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

enhancement that involved implementing multiple parallel
hardware accelerators on a single FPGA, as shown in Figure 8.

The system consists of n hardware accelerator modules,
which are denoted as GA1~GAn, an arbitrator and a bus
interface. The value of n is determined by the size of the
FPGA. For example, n is 2 for the Virtex II 3000 FPGA and 5
for the XC2VP70. Each module implements the above
mentioned genetic algorithm to search for the DNA codeword.
They are independent to each other. The populations in
different GA modules are initialized using different random
seeds.

 All the GA modules are connected to the bus interface
through an arbiter. When a GA module finds a new codeword,
it raises the “PE_got_new_word” flag and requests to be
connected to the bus interface to communicate with the host.
The arbiter broadcasts the new codeword to all other GA
modules and raises the “update_library” flag. The GA module
that receives the “update_library” request must terminate its
current operation and go to “update_lib” state. If multiple GA
modules raise the “PE_got_new_word” flag simultaneously,
the arbiter must select one of them and invalidate the others.
The decision is based on a fixed priority. The arbiter also
connects the selected GA module that has found a new
codeword with the bus interface to communicate with the host.
If another GA module finds a new word, it must wait till the
end of the current host-PE communication procedure to be
connected to the bus interface. Figure 9 shows the state
machine controller of the arbiter. The arbiter will be in the idle
state after reset. When one of the GA modules raises the
“PE_got_new_word” flag, the arbiter will go to the
“update_all_libraries” state during which the arbiter raises the
“update_library” flag. In the next clock period, it goes into the
“PE_communicating” state during which the arbiter connects
the GA module to the bus interface.

 If the communication finishes before another GA module
finds a new word, then the arbitrator goes back to the idle state.
Otherwise, it first goes to the waiting state. After the
communication is done, it goes to the “update_all_libraries”
state and repeats the previous steps.

Figure 9 State machine controller of the arbitrator.

D. Hardware acceleration for exhaustive search

The effectiveness of the stochastic search starts decreasing
when the search space increases and the solution space
decreases. Therefore, as codewords are added to the library, the
time required for the GA to find a new codeword increases
exponentially. Furthermore, using stochastic search, we will
never know whether still another new codeword can be added
to the library. The only way to answer this question is by using
exhaustive search, i.e. checking every possible codeword in the
universe of all possible codewords. The complexity of
exhaustive search increases linearly with the number of
codewords already in the library. However, the complexity of
exhaustive search also increases exponentially with the length
of the codewords. As the name suggests, for a given initial
library, the exhaustive search portion of the hybrid algorithm
must scan the entire codeword space and find all remaining
additional valid codewords that satisfy constraint equations (2)-
(5). For DNA codewords of length 16, and for an initial library
with 100 codewords, exhaustive search would take 52 days on
a 2.0GHz Intel Xeon processor running a software fitness
checker at 10 microseconds per check.

With small modification, we can implement the exhaustive
DNA codeword search using hardware. The hardware
accelerator for exhaustive codeword search consists of only
one memory, which is used to store the codeword library, a 32
bit counter cycled from 0 to its maximum value to represent the
potential new word, and two systolic array fitness checkers.
For each codeword x, the calculation of),(sxLCS and

),(sxLCS , where Ss∈ , are performed simultaneously by the
two fitness checkers. At 100Mhz clock frequency, the
hardware accelerator takes about 1.5 hours to scan the entire
~4.3 billion codeword space for codewords of length 16, which
is over 800 times faster than the workstation PC software only
case. At the completion of exhaustive search we can say that a
codeword set is locally optimum, in the sense that given the
series of random numbers used to drive the stochastic GA in
the early phase of building, no additional codewords can be
added to increase the size of the library. To date, little data has
been published in the literature on locally optimum edit
distance codes of lengths greater than about 12 bases, and this
hardware accelerator enables us to efficiently explore this
aspect of the problem domain for the first time.

VI. EXPERIMENTAL RESULTS

A hardware accelerator that uses a stochastic GA to build
DNA codeword libraries of codeword length 16 has been
designed, implemented, and tested. The first version uses one
fitness evaluator and is implemented on a single FPGA chip.

 The design has actually been ported onto three different
reconfigurable computing platforms, including a Xilinx XUP
Virtex-II Pro evaluation board [13], a laptop computer with the
Annapolis Wildcard FPGA board [14], and a desktop computer
with the Annapolis Wildstar–II FPGA board. Different bus
architectures are used to connect the hardware accelerator to
the host CPU in each of the different platforms. The PLB bus is
used in the Xilinx Virtex-II Pro evaluation board, while the
PCMCIA card bus and PCI-X bus are used in the system with

PE_Comm
unicating

Idle

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication
done

Communication
done

PE_Comm
unicating

PE_Comm
unicating

Idle

Update_all
_libraries

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication
done

Communication
done

328

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

WildStar and WildCard, respectively. The other difference
among these platforms is the amount of resources available on
the FPGA chips resident on the boards.

 Table 2 shows the size of the reconfigurable logic and the
on-chip memory for the three different computing platforms.
The design is synthesized using Synplify from Synplicity. It
uses 12,263 LUTs (look-up-tables), which is about 42% of the
programmable resources in a Xilinx Virtex II 3000 FPGA. The
hardware accelerator for exhaustive search of DNA codeword
length 16 uses 21,733 LUTs, which is about 75% of Virtex II
3000 FPGA.

Table 2 Available reconfigurable logic and on-chip memory
resources of different platforms.

Figure 10 shows a comparison of the average performance
of the GA based codeword search algorithm running in
software on a single workstation processor (upper curve) and
the hardware accelerated hybrid architecture (lower line). The
performance is measured in terms of the time it takes to build a
large library. Less time is better, so the lower curve is better
than the upper curve. In this plot the x axis is codewords found,
where each codeword consists of a strand and its reverse
complement. The GA is a stochastic algorithm, so each point in
the curves is the average over multiple runs of the times taken
to find the # of codewords on the x axis. For these experiments
we set n and σ to be 16 and 10 respectively. The upper curve
for the software version was run on one workstation with 1 P4
processor. The lower curve for the hardware GA was run with
a 100MHz FPGA clock frequency.

Average Time vs # CodeWords Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04

0 20 40 60 80 100 120

codeword pairs found

Ti
m

e
(s

ec
.)

Software GA, 1 P4 processor, 30 runs
Hybrid Architecture, 100MHz FPGA, 20 runs

Figure 10 Comparison of average performance.

Compared to the software only implementation, the
hardware accelerator running at 100MHz provides

approximately a 1000X speed-up. The speed-up of the
hardware versions is due to the parallel and pipelined
architecture of the hardware. If we were able to increase either
the number of fitness calculating arrays a we would expect
almost linear speed-up (a/0.98). Also, based on previous work
[15] that used a distributed Island Model GA run on a cluster of
workstations, we would expect linear speed-up as the number
of distributed GA populations p is increased.

Figure 11 shows a comparison of the best performance
among software GA, and two versions of the hardware GA.

Time vs # CodeWord Pairs Found

1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04

0 20 40 60 80 100 120

codeword pairs found

Ti
m

e
(s

ec
.)

SW GA (10 P4 Processors)
HW GA, 30MHz
HW GA + ES, 100MHz

Figure 11 Comparison of best performance.

The top red curve for the distributed software multi-deme
GA was run on a cluster using 10 P4 processors. The inter-
processor communication is implemented using MPI (message
passing interface). The middle blue curve for the hardware GA
was run on the Annapolis Wildcard-II in a P3 notebook PC
with a 30MHz FPGA clock frequency. The lower magenta
curve for the hardware GA with exhaustive search was run on a
Wildcard board in a P4 workstation with a 100MHz FPGA
clock frequency. The later run was set up to run the GA until
240 words were found, and then switch to exhaustive search,
after which 8 more words were found.

We also used the exhaustive search version of the hardware
accelerator to investigate the average size of locally optimum
codeword libraries that can be built, and the efficacy of the GA
for building them. Figure 12 shows the distribution of the size
of local optimal DNA codeword libraries that were generated
by running hardware GA for 300 seconds followed by
hardware exhaustive search. The results show that the size of
the local optimal DNA codeword library follows a normal
distribution with mean of about 122 codewords (word/word’
pairs). The experiment consists of 60 tests, which took about
90 hours. The equivalent test on a 30 workstation cluster
would have taken about 3000 hours (4 months).

Computing
platform

FPGA Logic
Cells

BRAMs
(kb)

PPCs

XUP eval.
board

XC2VP30 30,816 2,448 2

WildCard-II Xilinx Virtex II
3000

28,672 1,728 0

WildStar Pro XC2VP70 74,448 5,904 2

329

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

Histogram of Library Lengths Found
32 runs of HW GA 300 sec. + ES 1.5 hr

0

5

10

15

20

25

115 120 125 130

Library Length

fr
eq

ue
nc

y

GA + ES, pre-seeded

Figure 12 Size of local optimal DNA codeword libraries built with
300sec. GA plus exhaustive search.

 Figure 13 shows data from a second experiment involving
32 runs of GA for 600 sec. followed by exhaustive search, in
terms of the size of the library built during the GA phase (red)
and the number of words added by exhaustive search (green).

Locally optimum library lengths for 32 runs of

GA for 600 sec. followed by Exhaustive Search (ES)

0

20

40

60

80

100

120

140

1 6 11 16 21 26 31
run #

w

or
ds

 in
 fi

na
l l

ib
ra

ry

added by ES

Before_ES

 Figure 13 Sizes of Libraries built with 600 sec. GA followed by

exhaustive search.

Figure 14 shows a histogram of the # of words added by
exhaustive search for these runs. On average, the GA alone
finds 120.4 words vs. 121.7 with GA + exhaustive search, or
about 98.9% of the words that can be found.

Histogram of # Words added by Exhaustive Search

0

2

4

6

8

10

12

0 1 2 3 4 5

words added by Exhaustive Search

ru

ns

added by ES

Figure 14 Histogram of # words added by Exhaustive Search for

the runs of Figure 13.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we propose a novel architecture for
accelerating a GA based DNA codeword searching algorithm.
Our preliminary results show that, using a new hybrid
hardware/software implementation, we can speedup the DNA
codeword search procedure by more than 1000X. We have
also described a hardware exhaustive search extension that can
produce known locally optimum codes. In the future, we plan
to extend the current architecture to implement a multi-deme
GA on a single FPGA, a more general GA, more accurate
techniques to measure the binding strength of DNA pairs, and a
checker for codes word of at least length 32.

REFERENCES

[1] L. M. Adleman, “Molecular Computation of Solutions to Combinatorial
Problems,” Science, vol. 266, pp. 1021-1024, November 1994.

[2] A. Brenneman and A. Condon, “Strand Design for Biomolecular
Computation”, Theoretical Computer Science, vol. 287, pp.39-58, 2002.

[3] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, Multiobjective
Evolutionary Optimization of DNA Sequences for Reliable DNA
Computing”, IEEE Transactions on Evolutionary Computation, vol.
9(20), pp.143-158, 2005.

[4] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi, Design of
Nucleic Acid Sequences for DNA Computing based on a
Thermodynamic Approach, Nucleic Acids Research, 33(3), pp.903-911,
2005.

[5] J. Santalucia, “ A Unified View of polymer, dumbbell, and
oligonucleotide DNA nearest neighbor thermodynamics”, Proc. Natl.
Acad. Sci., Biochemistry, pp. 1460-1465, February 1998.

[6] A. D’yachkov, P.L. Erdös, A. Macula, V. Rykov, D. Torney, C-S. Tung,
P. Vilenkin and S. White, “Exordium for DNA Codes,” Journal of
Combinatorial Optimization, vol. 7, no. 4, pp. 369-379, 2003.

[7] R. Deaton, M. Garzon, R.C. Murphy, J.A. Rose, D.R. Franceschetti, and
S.E. Jr. Stevens, "Genetic search of reliable encodings for DNA-based
computation," Proceedings of the First Annual Conference on Genetic
Programming, pp. 9-15, July 1996.

[8] Bishop, M. , Macula, A. , Pogozelski, W. , and Rykov, V. , “DNA
Codeword Library Design”, Proc. Foundations of Nanoscience – Self
Assembled Architectures and Devices, (FNANO), April 2005.

[9] Tulpan, D.C. , Hoos, H. , Condon, A. ,“Stochastic Local Search
Algorithms for DNA Word Design”, Eighth International Meeting on
DNA Based Computers(DNA8), June 2002.

[10] S. Houghten, D. Ashlock and J. Lennarz, “Bounds on Optimal Edit
Metric Codes”, Brock University Technical Report # CS-05-07, July
2005.

[11] O. Milenkovic and N. Kashyap, “On the Design of Codes for DNA
Computing,” Lecture Notes in Computer Science, pp. 100-119, Springer
Verlag, Berlin-Heidelberg, 2006.

[12] R. Brualdi, and V. Pless, “Greedy Codes,” Journal of Combinatorial
Theory Series A, vol. 64, pp. 10-30, 1993.

[13] http://www.xilinx.com/

[14] http://www.annapmicro.com/

[15] D. Burns, K. May, T. Renz, and V. Ross, “Spiraling in on Speed-Ups of
Genetic Algorithm Solvers for Coupled Non-Linear ODE System
Parameterization and DNA Code Word Library Synthesis,” MAPLD
International Conference, 2005.

330

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

