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Abstract — A large and reliable DNA codeword library is the key 
to the success of DNA based computing. Searching for the set of 
reliable DNA codewords is an NP-hard problem, which can take 
days on the state-of-art high performance cluster computers. 
This work presents a hybrid architecture that consists of a 
general purpose microprocessor and a hardware accelerator for 
accelerating the discovery of DNA reverse complement, edit 
distance codes. Two applications of this architecture were 
implemented and evaluated, including a code generator that uses 
a genetic algorithm (GA) to produce nearly locally optimal codes 
in a few minutes, and a code extender that uses exhaustive search 
to produce locally optimum codes in about 1.5 hours for the case 
of length 16 codes. The experimental results demonstrate that the 
GA can find ~99% of the words in locally optimum libraries, and 
that the hybrid architecture provides more than 1000X speed-up 
compared to a software only implementation. 

I. INTRODUCTION  

The DNA molecule is now used in many areas far beyond 
its traditional function. The first DNA-based computation was 
proposed by Adleman [1]. It demonstrates the effectiveness of 
using DNA to solve hard combinatorial problems. DNA 
molecules have also been used as information storage media 
and three dimensional structural materials for nanotechnology.  

One of the major concerns of DNA computing is reliability. 
In DNA computing, the information is encoded as DNA 
strands. Each DNA strand is composed of short codewords.  
DNA computing is based on the hybridization process, which 
allows short single-stranded DNA sequences (i.e. 
oligonucleotides) to self-assemble to form long DNA 
molecules. The reliability of the computing is determined by 
whether the oligonuleotides can hybridize in a predetermined 
way. The key to success in DNA computing is the availability 
of a large collection of DNA codeword pairs that do not 
crosshybridize.   

Various quality metrics have been proposed to guide the 
construction process [1]-[5]. The computation of these metrics 
dominates the run time of the code building process.  While 
metrics based on the Gibbs energy and nearest neighbor 
thermodynamics and consideration of secondary structure 
formation give accurate measurement of hybridization, they are 
computationally costly, motivating the use of simplified 
metrics. One such metric is the Levenshtein distance, or the so-
called deletion-correcting or edit distance, which has been used 
to construct DNA codes [6]. 

 Regardless of the quality metric used, composing DNA 
codes is NP-hard because the number of potential codewords 
that must be searched increases exponentially with the length 
of the DNA codewords.  Exhaustive checking is generally 
impractical for words of length greater than about 12 base 
pairs.  Various algorithms have been proposed for building 
DNA codes, including the GA [7], Markov processes [8], and 
Stochastic methods [9]. Recent work [10] has shown that a 
hybrid GA blended with Conway’s lexicode algorithm [11][12] 
achieves better performance than either alone in terms of 
generating useful codes quickly.   

 Search methods for DNA codes are extremely time-
consuming, and this has limited research on DNA codeword 
design, especially for codes of length greater than about 12-14 
bases.  Theory is lacking to provide tight upper bounds on the 
size of codeword sets, and the best known bounds are based on 
experiments. For example, the largest known reverse 
complement edit distance DNA codeword library (length 16, 
edit distance 10) consist of 132 pairs, composing   such codes 
can take several days on a cluster of 10 G5 processors.  

 This paper focuses generally on speed-up techniques for 
the composition of reverse complement, edit distance, DNA 
codes of length 16, using a modified genetic algorithm that 
uses a locally exhaustive, mutation-only heuristic tuned for 
speed. Ongoing work to be reported elsewhere is addressing 
extensions to metrics involving nearest neighbor 
thermodynamics, a more general GA, codewords of length 32.     

 More specifically, we report a novel accelerator for DNA 
codeword composition that incorporates a hardware GA, 
hardware edit distance calculation, and hardware exhaustive 
search.  Hardware exhaustive search extends an initial 
codeword library by doing a final scan across the entire 
universe of possible codewords, yielding a known locally 
optimum code. The proposed architecture consists of a host 
PC, a hardware accelerator implemented in reconfigurable 
logic on a field programmable gate array (FPGA) and a 
software program running in a host PC that controls and 
communicates with the hardware accelerator. The 
characteristics of the proposed architecture are as follows: 

1. High performance. It utilizes programmable logic devices to 
enable pipelined and massively parallel processing of the 
data. Compared with software-only approaches, the new 
architecture can provide more than 1000X speed-up. For 
example, instead of 52 days, it only takes 1.5 hours to scan 
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the entire codeword space and to find all additional words 
that must be added to produce a locally optimum code.  

2. High flexibility. The hardware accelerator can be configured 
by software program, and presently it can be run on a 
workstation PC equipped with an FPGA board, or on a 
notebook computer equipped with a PCMCIA FPGA card.  

3. User friendly. The hardware accelerator is transparent to the 
user. Its control and access is accomplished by memory 
reads and writes based on a set of given protocols. 

The remainder of this paper is organized as follows: 
Section II provides the necessary biological background and 
terminology.  Section III introduces the problem definition and 
the genetic algorithm for DNA codeword search. Section IV 
gives the detailed information about how to accelerate the GA 
search fitness calculation. Sections V and VI provide details 
about the hybrid architecture and present a performance 
comparison between the software version of the GA and the 
best known (Markov) algorithm found in the literature, and 
early results on locally optimum codes.  Finally, conclusions 
are given in Section VII. 

II. BACKGROUND 

The DNA molecule is a nucleic acid. It consists of two 
oligonucleotide sequences. Each sequence consists of a sugar-
phosphate backbone and a set of nucleotides (also called bases) 
connecting with the backbone. The oligonucleotide sequence is 
oriented. One end of the sequence is denoted as 3’ and the 
other as 5’. Only strands of opposite orientation can form stable 
duplex.  

There are four types of bases: Adenine, Thymine, Cytosine, 
and Guanine. They are denoted briefly as A, T, C, and G 
respectively. Each base can pair up with only one particular 
base through hydrogen bonds: A+T, T+A, C+G and G+C. 
Sometimes we say that A and T are complementary to each 
other while C and G are complementary to each other. A 
Watson-Crick complement of a DNA sequence is another 
DNA sequence which replaces all the A with T or vise versa 
and replaces all the T with A or vise versa, and also switches 
the 5’ and 3’ ends. A DNA sequence binds most stably with its 
Watson-Crick complement. The stability of the binding is 
determined by the free energy of the hydrogen bonds.  

The calculation of the free energy involves many 
considerations. In this paper, we only consider the first order 
effect, and use the number of Watson-Crick pairs between two 
DNA sequences to represent their bonding strength. Such 
approximation is widely adopted by the research works in 
DNA codeword design [6][12]. Furthermore, the DNA 
sequences of length 10 or greater are usually considered to be 
flexible [6]. Therefore, the binding strength of two DNA 
strands is measured by the length of the longest complementary 
subsequence (not necessarily contiguous) of one strand and the 
reverse of the other. For example, Figure 1 shows two DNA 
strands that bind with 5 Watson-Crick pairs. The longest 
complementary sequence between two flexible DNA strands, A 
and B, is the same as the longest common sequence (LCS) 
between A and B  [6].  

 

 

 

Figure 1 Binding between DNA strands. 

III. PROBLEM FORMULATION AND OPTIMIZATION 
ALGORITHM 

We consider each DNA codeword as a sequence of length n 
in which each symbol is an element of an alphabet of 4 
elements. The longest common sequence between DNA 
strands A and B is denoted as LCS(A, B).  In this work, we 
focus on searching for a set of DNA codeword pairs S, where S 
consists of a set of DNA strands of length n and their reverse 
complement strands e.g. {(s1, 1s ), (s2, 2s ), …}, where (s1, 1s ) 
denotes a strand and its Watson-Crick complement.  The 
problem can be formulated as the following constrained 
optimization problem: 

               ||max S                                                               (1) 

s.t. SsssLCS ∈∀≤ 111     ,),( σ ,                                        (2) 

       SssssLCS ∈∀≤ 2121 , ,),( σ                                     (3) 

       SssssLCS ∈∀≤ 2121 , ,),( σ ,                                   (4) 

where σ is a predefined threshold. Equation (1) indicates that 
our objective is to maximize the size of the DNA codeword 
library. The first constraint specifies that a DNA codeword in 
the library cannot bind with itself. The second and the third 
constraints specify that a DNA codeword in the library cannot 
bind with another library word or its Watson-Crick 
complement. Both of these two constraints must be satisfied 
because a DNA strand always occurs with its Watson-Crick 
complement. 

A genetic algorithm (GA) is a stochastic search technique 
based on the mechanism of natural selection and 
recombination. Solutions, which are also called individuals, are 
evolved from generation to generation, with selection, mating, 
and mutation operators that provide an effective combination 
of exploration of the global search space. The Island multi-
deme GA is a widely used parallel GA model in which the 
population is divided into several sub-populations and 
distributed on different processors. Each sub-population 
evolves independently for a few generations, before one or 
more of the best individuals of the sub-populations migrate 
across processors. 

Although it is effective for many other optimization 
problems, we observed that selection and mating slowed the 
evolution of beneficial fitnesses in the population. Therefore, in 
this work, we propose a modified GA without mating. The 
approach is similar to Tulpan’s [9], except that we start with an 
empty library, and a separate GA population of next word 
candidate individuals with random base content. Each 
individual in the population is a DNA codeword encoded as a 
binary string with length 2n, where n is the length of the 
codeword in bases. The four bases (A, T, C, G) are encoded as 

A A C G − T G

T T  − C G A C

5’ 3’

5’3’

A A C G − T G

T T  − C G A C

5’ 3’

5’3’

324

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



(00, 01, 11, 10).   Each DNA strand of length 16 can be 
represented as a 32 bit integer. 

Given a codeword library S, the fitness of each individual d 
reflects how well the corresponding codeword fits into the 
current codeword library. Two values define fitness, 
reject_num and max_match. The reject_num is the number of 
codewords in the library which satisfies the condition that 

σ>),( dsLCS  or σ>),( dsLCS . The max_match can be 
calculated as  

SsdsLCSdsLCSddLCS ∈∀−−− ),),(,),(,),(max( σσσ . 
The codeword with lower fitness fits better in the library. 

From equations (2)-(4) we know that a valid library word 
must have reject_num equal to 0. It is observed that adding a 
codeword with reject_num = 0 and max_match > 0 into the 
library will restrict the future growth of the library. Such 
codewords bind very weakly with other library words, but they 
are too far apart in the search space and interfere with closest 
packing. To maximize the library size, we want to select only 
those codewords that are “just good enough”.   To ensure this, 
we add another constraint to the optimization problem: 

      SssssLCSssLCS ∈∀= 212121 , ,)),(),,(max( σ      (5) 

Therefore, only codewords with reject_num = 0 (which also 
implies max_match = 0) will be added into the library.   

A traditional GA mutation function might randomly pick an 
individual in the population, randomly pick a pair of bits in the 
individual representing one of its 16 bases, and randomly 
change the base to one of the 3 other bases in the set of 4 
possible bases. In the proposed algorithm, however, we 
randomly select an individual, but then to exhaustively check 
all of the 48 possible base changes.  This is an attempt to speed 
beneficial evolution of the population by minimizing the 
overhead that would be associated with randomly picking this 
individual again and again in order to test those mutations.  We 
also specify that if none of the 48 mutations were beneficial, 
one of them is selected at random.  This enables the individual 
to remain in the population and possibly experience subsequent 
(multiple) mutations.  Figure 2 gives the pseudo code for the 
modified mutation function. 

When an individual in the population achieves a fitness of 
0, it is added to the set of good codewords, and the selected 
individual in the population is replaced by a new random 
individual.  The GA is allowed to run until one of three 
termination criteria is satisfied: the number of codewords in the 
set is as large as desired; the algorithm has run for a specified 
maximum number of generations; or the algorithm has run for 
a specified maximum amount of time.  We store the codeword 
values and the elapsed time at which they are each found, in 
memory during a run, and we store that data to a disk file at the 
end of a run.  We also calculate and store the average time at 
which the ith words are found across multiple runs to assess 
average performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Modified mutation algorithm. 

IV. HARDWARE ACCELERATION OF LCS 
CALCULATION 

The most time consuming part of the proposed GA 
algorithm is to calculate the fitness value for each individual. 
Performance profiling of our software GA version showed that 
>98% of the computing time was spent calculating the LCS 
distance between DNA strands. The LCS distance is calculated 
using dynamic programming. Figure 3 gives the pseudo code 
of the algorithm. The intermediate results are stored in an n×n 
matrix, where n is the length of the DNA codeword in bases. 
The calculation starts at the top left corner of the matrix and the 
final result is the value calculated in the cell located at the 
bottom right corner. For DNA codewords with length 16, at 
least 256 operations are needed before we can obtain the final 
result. Therefore, the throughput of the software based LCS 
calculation is less than 1/n2.  

 

 

 

 

 

 

 

 

Figure 3 LCS distance calculation. 

The algorithm can be implemented using a 2D systolic 
array. The systolic array is an n×n matrix. Figure 4 (a) gives 

Mutation( ) 
//M is the set of mutated individuals;  
//L is the set of library codewords; 
Randomly select an individual s from initial population; 
M = Φ; 
FOR i = 1 TO n 
    B = {A, T, C, G} – {s[i]}; //B is the set of three nucleotides that 

is different from the ith nucleotide of s 
    Generate three mutated individuals {s1, s2, s3} by replacing the 

ith nucleotide with one of the elements of B; 
    M = M ∪ {s1, s2, s3}; 
END 
Evaluate the fitness for each m ∈ M; 
IF   (∃m, fitness(m) = 0)   THEN L = L ∪ {m}; 
ELSE     //evolve the population by replacing the original 

individual with a new individual with better fitness 
    Select the individual x which has the lowest (best) fitness and 

x∈M; 
    IF  fitness(x) < fitness(s)  THEN  replace s with x; 
    ELSE replace s with a random individual from M; 
END 

RETURN     

LCS(a, b)  
    Initialize lcs[0][i] and lcs[i][0], 0≤i≤n-1 

FOR i = 0 TO n-1 BEGIN 
    FOR j = 0 TO n-1 BEGIN 
        IF (a[i] = b[j]) THEN k = 1; 
        ELSE k = 0; 

            lcs[j][i] = max(lcs[j-1][i], lcs[j][i-1], lcs[j-1][i-
1]+k);  
        END 
    END 
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the structure of each cell in the matrix.  Each cell consists of 
three registers: A, B and ans. For the cell at location (i, j), the 
registers A and B are used to store the ith nucleotide of one 
DNA codeword (north word) and the jth nucleotide of the other 
DNA codeword (west word) respectively.  The register ans is 
used to store the intermediate result of the dynamic 
programming calculation. Each cell has five inputs. Two of the 
inputs connect to the register A and register B of the upper and 
left neighbor cells. The other three inputs connect to the ans 
registers of the upper, left and diagonal neighbor cells. In the 
present hardware version it takes two clock cycles for a cell to 
update its answer. In the first clock period, input registers A 
and B are updated, and in the second clock period, the cell 
output answer is calculated and the register ans is updated. In 
order to prevent ripple through operation, the cells in the even 
columns and even rows or odd columns and odd rows are 
synchronous to each other and operate as described above, but 
in the rest of the cells (which are also synchronous) the two 
operations are reversed, i.e. the ans output is calculated in the 
first clock period and the A and B inputs are updated in the 
second clock period.  

The overall architecture of the 2D systolic array is shown in 
Figure 4 (b). The marked cells calculate their answers in the 
same clock cycle while the unmarked cells calculate their 
answers in the next clock cycle. In this way, the results 
propagate through the array diagonally. The final result is 
given by the ans register of the cell at the right bottom corner 
of the 2D array. It is easy to see that after a latency period that 
is required to fill the pipeline, the throughput of the systolic 
array is ½, i.e. 1 output result per 2 clock periods. When n 
increases, the throughput remains the same while the hardware 
cost increases, as long as the reconfigurable hardware chip has 
sufficient resources to implement a full n×n array of cells.  
Another detail is that the systolic array must be fed by an array 
of registers that delay the entry of the bases on the right of the 
North word and at the bottom of the West word.  In effect, this 
synchronizes the presentation of those parts of the operand 
words with the diagonal waves of intermediate calculations in 
the cells that proceed from the upper left corner down and to 
the right through the array.  

 

 

 

 

 

 

 

 

Figure 4 2D systolic array for LCS calculation. 
 

We note that version of this array for words of length 32 vs. 
16 would use 4X the resources, but clock at the same rate.  

V. HYBRID ARECHITECTURE 
 

 

 

 

 

 

 

Figure 5 System architecture. 

The proposed hybrid architecture consists of a host CPU, a 
hardware accelerator and a software program running on the 
host CPU. The host CPU and the hardware accelerator are 
connected via the system bus. Figure 5 shows the architecture 
of the system. In order to increase the portability of the design, 
we divide it into two modules: the bus interface and the 
hardware accelerator core. The bus interface module connects 
to the bus as a slave. It has a set of command registers and an 
information exchange memory, which can be accessed by both 
CPU and the hardware accelerator. For different bus 
architecture, a new bus interface must be developed.  

A. Hardware acceleration for GA based codeword search 

A two-level method is adopted to control the hardware 
accelerator. At the top level, the operations of the hardware 
accelerator are categorized into 7 states: {idle, init, check_pop, 
mutation, check_mutate, update_pop, update_lib}. In the init 
state, the hardware accelerator generates a random initial 
population, and sets up either an empty initial library, or reads 
an initial partial library from a disk file.  In the mutate state, the 
hardware accelerator produces a population of 47 mutated 
individuals based on a chosen individual. The hardware 
accelerator calculates the fitness for all the individuals in the 
initial population, and in the mutated population, in the 
“check_pop” and “check_mutate” states, respectively. In the 
“update_lib” state, the hardware accelerator writes the newly 
discovered acceptable codewords into the library. In the 
“update_pop” state, the hardware accelerator writes the best (or 
a randomly chosen) mutated individual back to the working 
population.  

Each state corresponds to an operation in the GA algorithm. 
Figure 6 (a) shows the control and data flow graph (CDFG) of 
the algorithm based on this state division. The “update_lib” 
and “update_pop” operations are one cycle operations because 
they only perform a memory write. All the other operations are 
multi-cycle operations, which again can be divided into several 
sub-states. When the top level state machine enters the 
corresponding state of a multi-cycle operation, the second level 
state machine is triggered.  

We call an operation a blocking operation if its successors 
in the CDFG cannot start until this operation is done. Similarly, 
an operation is called non-blocking operation if its successors 
can start right after this operation started. The “init” and 
“mutation” operations are both non-blocking operations. While 
the hardware accelerator is generating the initial population and 

(a) Cell architecture 

A

B ans

North 
word

west 
word

Upper 
ans

Left 
ans

Lower 
cell

Right 
cell

corner 
cell

corner 
ans

A

B ans

North 
word

west 
word

Upper 
ans

Left 
ans

Lower 
cell

Right 
cell

corner 
cell

corner 
ans

(b) Checker board 
architecture of 2D systolic 

North word

W
es

t w
or

d

North word

W
es

t w
or

d

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

CPU Bus InterfaceBus Interfaceregister memory

Hardware Accelerator
GA / Exhaustive

Hardware Accelerator
GA / Exhaustive

System Bus

326

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



the mutated population, it is at the same time checking the 
fitness of the generated individual. The “check_pop” and 
“check_mutate” operations are blocking operations. Their 
successors, i.e. “mutate” and “update_pop”, cannot start until 
they have been finished. Figure 6 (b) shows the scheduling of 
the operations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  Top level state machine controller. 

A buffer is needed to pass the results of one operation to its 
successor. In particular, a first-in-first-out (FIFO) storage 
should be used as the output buffer of a non-blocking 
operation. However, the implementation of the FIFO is 
relatively easy in this design because the non-blocking 
operations are always faster than their successors. Therefore, it 
is not necessary to check the FIFO underflow condition. We 
use dual port memory as the output buffer for the design. Three 
memory blocks are used: Initial Population Memory (Mpop), 
Mutated Population Memory (Mmutate) and CodeWord Library 
Memory (Mlib). The input and output buffer of different 
operations are given in Table 1. 

Table 1. The input/output buffer of operations. 

operations Input Output 

init - Mpop 

check_pop Mpop Mlib 

mutate Mpop Mmute 

check_mutate Mmute Mlib 

update_lib Mpop Mlib 

update_pop Mmute Mpop 

 

B. Hardware software interface  

The hardware accelerator and the host CPU program run 
asynchronously. Four-way handshaking protocol is used to 
synchronize the communication between hardware and 
software, as shown in Figure 7. For example, when the 
hardware accelerator finds a new codeword, it raises the 
“PE_got_new_word” flag to the host program. After detecting 
this flag, the host program reads the new codeword then raises 

the “host_got_new_word” flag. After detecting this flag, the 
hardware accelerator then clears the “PE_got_new_word” flag 
and acknowledges the host program by raising the 
“PE_got_message” flag. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Hand-shaking between host and PE. 

After detecting this flag, the host program then clears the 
“host_got_new_word” flag and acknowledges the hardware 
accelerator by raising the “host_got_message” flag, and 
continues. After detecting this flag, the hardware accelerator 
then clears the “PE_got_message” flag and continues.  After 
the handshaking, the host program and the hardware 
accelerator work asynchronously until the host or hardware 
accelerator raises another message flag.  

C. Parallel GA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Hardware architecture for parallel GA. 

The hardware accelerator discussed above uses about 
12,263 LUTs (look-up-tables), which is only about 42% of the 
programmable resources in a Xilinx Virtex II 3000 FPGA and 
about 16% of the programmable resources in a Xilinx 
XC2VP70 FPGA. Therefore, we evaluated a further speed-up 

Host 
Program

PE_got_new_
word?

working

PE_Got_new
_word

Read new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PEHost 
Program

PE_got_new_
word?

workingworking

PE_Got_new
_word

Read new wordRead new word

Host_got_new_word?Host_got_
new_word

PE_got_message?
PE_got_
message

Host_got_message?
Host_got_
message

PE

(b) Scheduling of operations   

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

mutate

non-
blocking

init

check pop

check mute

update

non-
blocking

blocking

blocking

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update 
LibraryPE_got_new

_word2
PE_got_new

_wordn

GA1
(sub-pop)

GA1
(sub-pop)

Bus Interface

PE_got_new
_word1

GA2
(sub-pop)

GA2
(sub-pop)

GAn
(sub-pop)

GAn
(sub-pop)

Arbitrator

Update 
LibraryPE_got_new

_word2
PE_got_new

_wordn

(a) Control and data flow graph  
done

init check 
pop

update 
lib

mutate check 
mutate

update 
popstart done

idle

found found

done

initinit check 
pop

check 
pop

update 
lib

update 
lib

mutatemutate check 
mutate
check 
mutate

update 
pop

update 
popstart done

idleidle

found found

327

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



enhancement that involved implementing multiple parallel 
hardware accelerators on a single FPGA, as shown in Figure 8. 

The system consists of n hardware accelerator modules, 
which are denoted as GA1~GAn, an arbitrator and a bus 
interface. The value of n is determined by the size of the 
FPGA. For example, n is 2 for the Virtex II 3000 FPGA and 5 
for the XC2VP70. Each module implements the above 
mentioned genetic algorithm to search for the DNA codeword. 
They are independent to each other. The populations in 
different GA modules are initialized using different random 
seeds.   

 All the GA modules are connected to the bus interface 
through an arbiter. When a GA module finds a new codeword, 
it raises the “PE_got_new_word” flag and requests to be 
connected to the bus interface to communicate with the host. 
The arbiter broadcasts the new codeword to all other GA 
modules and raises the “update_library” flag. The GA module 
that receives the “update_library” request must terminate its 
current operation and go to “update_lib” state. If multiple GA 
modules raise the “PE_got_new_word” flag simultaneously, 
the arbiter must select one of them and invalidate the others. 
The decision is based on a fixed priority. The arbiter also 
connects the selected GA module that has found a new 
codeword with the bus interface to communicate with the host. 
If another GA module finds a new word, it must wait till the 
end of the current host-PE communication procedure to be 
connected to the bus interface. Figure 9 shows the state 
machine controller of the arbiter. The arbiter will be in the idle 
state after reset. When one of the GA modules raises the 
“PE_got_new_word” flag, the arbiter will go to the 
“update_all_libraries” state during which the arbiter raises the 
“update_library” flag. In the next clock period, it goes into the 
“PE_communicating” state during which the arbiter connects 
the GA module to the bus interface.  

 If the communication finishes before another GA module 
finds a new word, then the arbitrator goes back to the idle state. 
Otherwise, it first goes to the waiting state. After the 
communication is done, it goes to the “update_all_libraries” 
state and repeats the previous steps. 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 9 State machine controller of the arbitrator. 

D. Hardware acceleration for exhaustive search 

The effectiveness of the stochastic search starts decreasing 
when the search space increases and the solution space 
decreases. Therefore, as codewords are added to the library, the 
time required for the GA to find a new codeword increases 
exponentially. Furthermore, using stochastic search, we will 
never know whether still another new codeword can be added 
to the library. The only way to answer this question is by using 
exhaustive search, i.e. checking every possible codeword in the 
universe of all possible codewords. The complexity of 
exhaustive search increases linearly with the number of 
codewords already in the library.  However, the complexity of 
exhaustive search also increases exponentially with the length 
of the codewords. As the name suggests, for a given initial 
library, the exhaustive search portion of the hybrid algorithm 
must scan the entire codeword space and find all remaining 
additional valid codewords that satisfy constraint equations (2)-
(5). For DNA codewords of length 16, and for an initial library 
with 100 codewords, exhaustive search would take 52 days on 
a 2.0GHz Intel Xeon processor running a software fitness 
checker at 10 microseconds per check. 

With small modification, we can implement the exhaustive 
DNA codeword search using hardware. The hardware 
accelerator for exhaustive codeword search consists of only 
one memory, which is used to store the codeword library, a 32 
bit counter cycled from 0 to its maximum value to represent the 
potential new word, and two systolic array fitness checkers. 
For each codeword x, the calculation of ),( sxLCS and 

),( sxLCS , where Ss∈ , are performed simultaneously by the 
two fitness checkers. At 100Mhz clock frequency, the 
hardware accelerator takes about 1.5 hours to scan the entire 
~4.3 billion codeword space for codewords of length 16, which 
is over 800 times faster than the workstation PC software only 
case. At the completion of exhaustive search we can say that a 
codeword set is locally optimum, in the sense that given the 
series of random numbers used to drive the stochastic GA in 
the early phase of building, no additional codewords can be 
added to increase the size of the library.  To date, little data has 
been published in the literature on locally optimum edit 
distance codes of lengths greater than about 12 bases, and this 
hardware accelerator enables us to efficiently explore this 
aspect of the problem domain for the first time. 

VI. EXPERIMENTAL RESULTS 

A hardware accelerator that uses a stochastic GA to build 
DNA codeword libraries of codeword length 16 has been 
designed, implemented, and tested. The first version uses one 
fitness evaluator and is implemented on a single FPGA chip. 

 The design has actually been ported onto three different 
reconfigurable computing platforms, including a Xilinx XUP 
Virtex-II Pro evaluation board [13], a laptop computer with the 
Annapolis Wildcard FPGA board [14], and a desktop computer 
with the Annapolis Wildstar–II FPGA board.  Different bus 
architectures are used to connect the hardware accelerator to 
the host CPU in each of the different platforms. The PLB bus is 
used in the Xilinx Virtex-II Pro evaluation board, while the 
PCMCIA card bus and PCI-X bus are used in the system with 

PE_Comm
unicating

Idle

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication 
done

Communication 
done

PE_Comm
unicating

PE_Comm
unicating

Idle

Update_all
_libraries

Update_all
_libraries

Wait

PE_got_new_
word

PE_got_new_
word

Communication 
done

Communication 
done

328

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



WildStar and WildCard, respectively. The other difference 
among these platforms is the amount of resources available on 
the FPGA chips resident on the boards. 

 Table 2 shows the size of the reconfigurable logic and the 
on-chip memory for the three different computing platforms. 
The design is synthesized using Synplify from Synplicity. It 
uses 12,263 LUTs (look-up-tables), which is about 42% of the 
programmable resources in a Xilinx Virtex II 3000 FPGA. The 
hardware accelerator for exhaustive search of DNA codeword 
length 16 uses 21,733 LUTs, which is about 75% of Virtex II 
3000 FPGA. 

Table 2 Available reconfigurable logic and on-chip memory 
resources of different platforms. 

 

Figure 10 shows a comparison of the average performance 
of the GA based codeword search algorithm running in 
software on a single workstation processor (upper curve) and 
the hardware accelerated hybrid  architecture (lower line).  The 
performance is measured in terms of the time it takes to build a 
large library.  Less time is better, so the lower curve is better 
than the upper curve. In this plot the x axis is codewords found, 
where each codeword consists of a strand and its reverse 
complement. The GA is a stochastic algorithm, so each point in 
the curves is the average over multiple runs of the times taken 
to find the # of codewords on the x axis. For these experiments 
we set n and σ to be 16 and 10 respectively.  The upper curve 
for the software version was run on one workstation with 1 P4 
processor. The lower curve for the hardware GA was run with 
a 100MHz FPGA clock frequency.  
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Figure 10 Comparison of average performance. 

Compared to the software only implementation, the 
hardware accelerator running at 100MHz provides 

approximately a 1000X speed-up. The speed-up of the 
hardware versions is due to the parallel and pipelined 
architecture of the hardware. If we were able to increase either 
the number of fitness calculating arrays a we would expect 
almost linear speed-up (a/0.98).   Also, based on previous work 
[15] that used a distributed Island Model GA run on a cluster of 
workstations, we would expect linear speed-up as the number 
of distributed GA populations p is increased. 

Figure 11 shows a comparison of the best performance 
among software GA, and two versions of the hardware GA.  
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Figure 11 Comparison of best performance. 

The top red curve for the distributed software multi-deme 
GA was run on a cluster using 10 P4 processors. The inter-
processor communication is implemented using MPI (message 
passing interface). The middle blue curve for the hardware GA 
was run on the Annapolis Wildcard-II in a P3 notebook PC 
with a 30MHz FPGA clock frequency. The lower magenta 
curve for the hardware GA with exhaustive search was run on a 
Wildcard board in a P4 workstation with a 100MHz FPGA 
clock frequency.  The later run was set up to run the GA until 
240 words were found, and then switch to exhaustive search, 
after which 8 more words were found.   

We also used the exhaustive search version of the hardware 
accelerator to investigate the average size of locally optimum 
codeword libraries that can be built, and the efficacy of the GA 
for building them.  Figure 12 shows the distribution of the size 
of local optimal DNA codeword libraries that were generated 
by running hardware GA for 300 seconds followed by 
hardware exhaustive search. The results show that the size of 
the local optimal DNA codeword library follows a normal 
distribution with mean of about 122 codewords (word/word’ 
pairs). The experiment consists of 60 tests, which took about 
90 hours.  The equivalent test on a 30 workstation cluster 
would have taken about 3000 hours (4 months). 

Computing 
platform 

FPGA Logic 
Cells 

BRAMs 
(kb) 

PPCs 

XUP eval. 
board 

XC2VP30 30,816 2,448 2 

WildCard-II Xilinx Virtex II 
3000 

28,672 1,728 0 

WildStar Pro XC2VP70 74,448 5,904 2 
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Figure 12 Size of local optimal DNA codeword libraries built with 
300sec. GA plus exhaustive search. 

 Figure 13 shows data from a second experiment involving 
32 runs of GA for 600 sec. followed by exhaustive search, in 
terms of the size of the library built during the GA phase (red) 
and the number of words added by exhaustive search (green).  
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  Figure 13  Sizes of Libraries built with 600 sec. GA followed by 

exhaustive search. 
 

Figure 14 shows a histogram of the # of words added by 
exhaustive search for these runs.  On average, the GA alone 
finds 120.4 words vs. 121.7 with GA + exhaustive search, or 
about 98.9% of the words that can be found.  
 

Histogram of # Words added by Exhaustive Search 

0

2

4

6

8

10

12

0 1 2 3 4 5

# words added by Exhaustive Search

# 
ru

ns

# added by ES

  
Figure 14  Histogram of # words added by Exhaustive Search for 

the runs of Figure 13. 

VII. CONCLUSIONS AND FUTURE WORK 

In this work, we propose a novel architecture for 
accelerating a GA based DNA codeword searching algorithm. 
Our preliminary results show that, using a new hybrid 
hardware/software implementation, we can speedup the DNA 
codeword search procedure by more than 1000X.  We have 
also described a hardware exhaustive search extension that can 
produce known locally optimum codes. In the future, we plan 
to extend the current architecture to implement a multi-deme 
GA on a single FPGA, a more general GA, more accurate 
techniques to measure the binding strength of DNA pairs, and a 
checker for codes word of at least length 32. 
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