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Abstract

The susceptible, infected, removed model for epidemics as-
sumes that the population in which the epidemic takes place is
well mixed. This strong assumption can be relaxed by permitting
the epidemic to spread only along the links of a contact network
or graph. This study uses evolutionary computation to search
for graphs that exhibit one of two extreme behaviors: maximum
epidemic duration or maximal number of individuals catching
the disease. The focus of the paper is on comparison of two
representations for evolvable networks. The first makes local
expansions of the network specified by a linear chromosome.
The second, a permutation-based representation, joins a large
cycle with another cycle specified by the permutation. The linear
chromosome representation, based on iterated simplexification,
yields inferior results in both fitness measures but creates
networks with a structure more like a personal contact network.
Location of such behaviorally extreme networks will provide a
set of test cases for intervention strategies as well as providing
conjectures to focus standard mathematical investigation of the
types of networks that yield extreme behavior. This study also
proposes a testing protocol for network representations for
epidemic modeling.

I. INTRODUCTION

The susceptible, infected, removed (SIR) epidemic model
is a simple epidemics model that assumes a well-mixed popu-
lation. It is broadly used in epidemiological research. A pool
of individuals is divided into three groups. Those that have
not yet contracted the epidemic disease are termed susceptible.
Individuals that currently have the epidemic disease are termed
infected. Infected individuals are assumed to be able to infect
others with the disease. Those that have had the disease in the
past but are no longer able to infect others are termed removed.
The exact meaning of “removed” depends on the disease,
encompassing states as diverse as permanent immunity and
death. In the SIR framework, an individual can have a disease
at most once; once removed they stay that way.

An SIR epidemic is initialized with all but a few individuals
in the susceptible state and those few (in this study one) placed
in the infected state. In each time-step of the model each
susceptible individual has a chance a of becoming infected
for each infected individual in the model. These chances of
becoming infected are independent and all infected individuals
are assumed to be in contact with all susceptible individuals.
After probabilities of infection have been evaluated and newly
infected individuals identified, those individuals that were pre-
vious infected are moved to the removed state. The epidemic
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disease is assumed to last for one time step in each individual
that contracts it in this study.

One problem with the SIR model is that it does not scale
well with the size of the population of individuals on which
the epidemic is being simulated. If there are n total individuals
and m are currently infected then there is a probability

B=1-(1—a)™ (1)

of any given susceptible individual contracting the disease.
As n grows the probability of the epidemic ending on a given
time step in which a substantial fraction of the population
remains susceptible decays exponentially. This implausible
scaling property is a consequence of the assumption that the
population is well mixed. A standard method of relaxing this
assumption is to place the individuals on a social contact
network that designates links along which the epidemic disease
can spread.

Social contact networks can, with some reasonable set of
assumptions, be derived from survey data [8], [3], [5] or
may be generated at random. Derivation from survey data is
necessarily inaccurate and is also made difficult by the need to
respect the privacy of the individuals surveyed. One fact that
survey data demonstrates is that in diseases spread by sexual
contact the statistics for the number of neighbors at a node
in the network has obey a power-law or Poisson distribution.
Diseases with airborne spread, on the other hand [4] have
contact networks based on shared air space. An airliner or a
cubical-farm will create a cligue of individuals that are all in
contact in the disease spread network.

The goal of this study is a preliminary study of evolutionary
computation as a tool to search the space of networks for
networks that exhibit some form of extreme behavior in a
network-limited SIR model. This will bound the range of
possible behavior, permitting a valuable comparison with net-
works derived from contact data. Eventually, the mechanisms
by which such networks form must be embedded in the
representation of evolvable networks. In [5], for example, it
is found that links are more likely to be present between
individuals in the same demographic group. In [1] it was
found that the links most likely to transmit disease were
those crossing demographic boundaries. Sophisticated models
of how networks form should not be evaluated in tandem with
an initial study of software for evolving networks exhibiting
extremal behavior; combining multiple complex systems in an
initial study can yield incomprehensible results. This study
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thus restricts itself to simple evolvable models of network
formation, leaving the incorporation of expert knowledge
about the types of networks that occur in natural populations
for later.

We now define some useful terminology. In the SIR model
the variables S, I;, and R; denote the number of susceptible,
infected, and removed individuals in time step ¢. The duration
of an epidemic is the smallest ¢ > 0 for which I; = 0.

The terminology of combinatorial graphs is useful for
describing networks. Readers desiring a more complete intro-
duction to graph theory can find it in [10]. A combinatorial
graph or graph, G, consists of a set V(G) of vertices and a set
E(G) of edges where E(G) is a set of unordered pairs drawn
from V(G). Two distinct vertices of the graph are neighbors
if they are members of the same edge. When drawing a graph,
vertices are shown as dots or circles and edges are shown as a
Jordan arc joining their members. Examples of graphs appear
in Figures 2 and 3. The number of edges containing a vertex
is the degree of that vertex. If all vertices in a graph have the
same degree, the graph is said to be regular. If the common
degree of a regular graph is k, then the graph is said to be
k-regular. Graphs that are 3-regular are called cubic graphs.
A graph is connected if one can go from any vertex to any
other vertex by traversing a sequence of vertices and edges.
The diameter of a graph is the largest number of edges in a
shortest path between any two of the vertices. The diameter
is, in some sense, the shortest path across the graph.

Fig. 1. Replacement of a vertex of degree five with five vertices of degree
three; each original neighbor of the degree five vertex becomes a neighbor of
one of the vertices of degree three.

All of the topological complexity of networks is available in
cubic graphs, but not in networks with lower maximum degree.
To see this notice that a vertex of degree n > 3 can be replaced
with a cycle of n nodes (an example of this is shown in Figure
1) each of which is adjacent to one of the neighbors of the
vertex that was replaced. This vertex-to-cycle transformation
can turn any graph into a cubic graph while retaining its
topological complexity. This does not mean that the resulting
graph has the same behavior as a personal contact network;
rather it ensures that we have a rich space of connectivities
available. Regular graphs are immune to the scaling problems
of standard SIR models as each infected individual is able
to infect at most a fixed number of other individuals; the
probability of infection spreading in no longer exponentially
related to the absolute number of infected individuals, rather it
depends only on the structure of the network. For this reason,
as well as simplicity in an initial study, we choose to use

Fig. 2. The basic simplexification move applied to vertex zero of a graph.

representations that generate connected, cubic graphs.

The remainder of this study is structured as follows. Section
IT specifies the representations for evolvable networks. In
Section IIT the design of the experiments are given. Section
IV gives and discusses the results of the experiments. Section
V sums up the significance of the results while Section VI
outlines next steps.

II. EVOLVABLE NETWORK REPRESENTATIONS

There are a large number of ways to represent networks or
graphs for evolution. Most of the representations are incom-
plete in the sense that there are many graphs that cannot be
specified within the representation. Complete representations,
such as a list of edges that could contain any of the possible
edges, contain no expert knowledge (e.g. plausible structural
bias) about the networks and so tend to pose a very difficult
search problem. The representations used in this study are
both incomplete and incorporate expert knowledge of one or
another sort.

A. Iterated Simplexification

Figure 2 shows an example of simplexification. A simplex
is a collection of vertices that are mutual neighbors. Simplex-
ification of a vertex replaces the vertex with a simplex. The
simplex has as many vertices as there were neighbors of the
original vertex. Each of these new vertices is a neighbor of
one of the vertices that was a neighbor of the original vertex.
When a vertex with d neighbors is simplexified then d—1 new
vertices are created (the vertex that is simplified is retained,
vertex O in Figure 2). Assuming that the vertices in the original
graph are numbered 0,1,...,n — 1 then the new vertices are
numbered n,n+1,...,n+d— 2. The edges between vertices
of the new simplex and the neighbor of the vertex that is
simplified are done so that if the members of the simplex are
sorted in increasing order then so are their neighbors outside
of the simplex. This convention specifies uniquely a graph
resulting from the simplexification of a vertex.

In order to obtain an evolvable representation we pick an
integer bound N larger than the number of vertices in the
graph (1000 in this study). The representation consists of a list
of numbers in the range [0..N —1]. The list specifies successive
vertices to be simplexified. As the graph is constructed the
list is read from left to right. Each number is reduced modulo
the number of vertices currently in the graph to specify the
number of a vertex to be simplexified. Each simplexification
is performed and the graph structure is updated before the
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Fig. 3. The generalized Petersen graph with parameters 5,2 and a
permutation-generalized Petersen graph for the permutation [5 6 9 8 7] are
shown above.

next number is processed. The starting graph is the four-vertex
graph shown in Figure 2.

This representation is stored as a string of numbers. Each
simplexification adds 2 new vertices to the graph and so, by
the end of network development, the number of vertices in a
graph is 44-2n where n is the length of the string of numbers.
The variation operators used in the evolution are two-point
crossover and uniform mutation with probability v = 0.05.
This mutation operator has a probability v of generating a
new number in the range [0... N — 1] at each point in the list.

Two versions of iterated simplexification (ISX) are used.
The full version uses a list of » numbers to specify n sim-
plexification. The cyclic version uses a short list of numbers,
cyclically, to make n simplexification. This cyclic method is
likely to create graphs with more structural regularity than the
full method and also specifies a smaller search space. Since
the numbers are still in the range [0. .. N] the cyclic method
does not simply repeat the same sequence of simplexification
over and over. Rather there is an interplay between the size of
the graph as it grows and the pattern of simplexification.

B. Petersen Permutation

The generalized Petersen graph with parameters n,k is
denoted P, ;. It has vertex set 0,1,...,2n — 1. The vertices

Epidemic duration as a function of alpha.
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Fig. 4. Epidemic duration as a function of the probability of disease spread o
on the generalized Petersen graph Poq,1. Vertical lines denote o = 0.5,0.61

0...n—1 are connected in a cycle. The vertices n..2n—1 are
also connected in a cycle but adjacent vertices in this cycle are
of the form i, (i+k); (mod n). Finally, pairs of vertices i, n+i
are also connected. An example, Ps o is shown in Figure 3.
The permutation-generalized Petersen graph (PGPG) replaces
the inner cycle, shown as a star in Figure 3, with a permutation
of n---2n—1. An example of a PGPG is also shown in Figure
3.

An ordered-gene representation is used for evolving PGPG
graphs. The basic data structure is a permutation of the
numbers n...2n — 1. The PMX crossover operation for
permutations [6] is used. This crossover operator choses a
position in the permutation. The part of the list before the
crossover point are preserved. The part after the list has the
same elements as before crossover but they appear in the order
that they occur in the other permutation. The mutation operator
consists of applying a number of transpositions (exchanges
of pairs of elements). This representation for networks is
abbreviated PPR.

C. Plausibility of Representations

Graphs produced by the iterated simplexification represen-
tations are more plausible as personal contact networks than
those produced by the Petersen-permutation representation
because they maintain a local structure for the network as
it grows. The Petersen-permutation representation can (and
usually does) produce graphs with many edges that make long
jumps relative to the distances as measured by the outer cycle.
As we will see in the results section these representations
produce very different searches of the network space as well.
The results suggest that plausibility fights with optimality
of epidemic duration, an issue that should be considered
when using networks in later modeling studies for epidemic
intervention.

III. EXPERIMENTAL DESIGN

Two fitness measures for networks are used in this study.
The epidemic duration fitness (ED-fitness) is the sampled
average length of an epidemic in the graph. The total removal
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Fig. 5. 95% confidence intervals for the mean epidemic length for the best solutions found in the parameter study for the iterated simplexification representation.

fitness (TR-fitness) is the sampled average number of individ-
uals in the removed category at the end of the epidemic. In
all experiments maximizing epidemic duration the probability
of an infected individual passing the infection to an adjacent
susceptible individual was set to a = 0.5. This parameter
was chosen to maximize the variability of epidemic behavior
because it lies midway between the extreme behaviors of a
disease that cannot spread and one that must spread. Figure
4 shows the dependence of epidemic duration, computed by
simulation, on the graph Pq,1. For experiments maximizing
the total number of removed individuals, the parameter o was
set to 0.61, near the maximum of the curve in Figure 4.

In a cubic graph any « not close to 1.0 dictates that
epidemics that do not last long have a nontrivial probability of
occurring. Since very short epidemics are not affected much
by the structure of the network, epidemics that lasted less
than three time steps were discarded in fitness evaluation
for all experiments. Since network-limited SIR epidemics
are stochastic processes, fitness was estimated by taking the
average of 100 acceptable simulations (simulations in which
the epidemic duration was at least three time steps).

The iterated simplexification representation is, as far as
the authors know, a novel representation presented first in
this study. A parameter-setting study was performed for two
population sizes (40 and 400), two per-loci mutation rates
(0.1 and 0.05), and three variations of the representation (full
and cyclic of length 12 and 6) for both fitness functions. The

number of simplexification performed in each experiment was
198 yielding a contact network with 400 vertices. The number
of vertices in the network is called the epidemic population
size.

The Petersen-permutation representation uses an ordered
gene, a class of representations that have been well studied
for problems such as the traveling salesman, bin packing,
and scheduling problems[2]. Mutations for this representation
consist of exchanging to elements of the list (performing a
transposition). A parameter study for the Petersen-permutation
representation was performed for both fitness functions using
three mutation rates (10, 5, and 1 transpositions) and two
population sizes (40 and 400).

Each of the parameter setting experiments consists of 30
runs for each set of parameters studied. A run continues for
100,000 mating events using single tournament selection with
tournament size seven. In this model of evolution a group of
seven individuals from the population is selected and sorted.
The two most fit are copied over the two least fit. The copies
are then subjected to the crossover and mutation operator for
the run being performed. For the best set of parameters located
for each fitness function and both representations larger sets
of 100 runs, called production runs are performed to search
for optimal structures. Examination of the parameter setting
runs shows jumps in best fitness in some runs near the end of
the run and so the production runs are continued for 250,000
mating events.
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Fig. 6. 95% confidence intervals for the mean number of individuals removed for the best solutions found in the parameter study for the Petersen-permutation

representation.

IV. RESULTS AND DISCUSSION

The representation that the authors consider more plausible,
iterated simplexification, was markedly worse for solving
the optimization problem posed by both fitness functions.
The initial random populations using the Petersen-permutation
representation were more fit than the best optimized structures
located with the iterated simplexification representation. This
result yields a strong positive on the question of representation
having an impact. It also provides evidence that plausibility
and optimality may be conflicting goals.

The results of the parameter setting study for iterated
simplexification on the ED-fitness function are shown in Table
I and Figure 5. The results for the parameter study for the
Petersen-permutation representation on the ED-fitness function
are shown in Table II. The results of the parameters setting
studies for the TR-fitness function and ISX representation
are shown in Table IIl and Figure 6. The results of the
parameter setting study on the TR-fitness function for the PPR
representation are shown in Table IV.

Parameter setting for the ISX representation on the ED-
fitness function shows modest but statistically significant re-
sults. Examining Figure 5 we see that a 40-member population
with the length-6 cyclic representation and the lower mutation
rate is the best and is significantly better than 7 of the other
twelve parameter sets tested. There are clear trends the most
pronounced of which is that the shorter the representation

Population | Represen- | Mutation | Mean Fitness
Size tation Rate Fitness | 95% C.I
40 ISX Full 0.1 8.72 (8.68,8.75)
40 ISX 12 0.1 8.83 (8.78,8.87)
40 ISX 6 0.1 8.94 (8.87,9.00)
40 ISX Full 0.05 8.77 (8.72,8.83)
40 ISX 12 0.05 8.85 (8.77,8.92)
40 ISX 6 0.05 8.96 (8.91,9.01)
400 ISX Full 0.1 8.68 (8.65,8.72)
400 ISX 12 0.1 8.79 (8.74,8.83)
400 ISX 6 0.1 8.91 (8.86,8.97)
400 ISX Full 0.05 8.77 (8.72,8.82)
400 ISX 12 0.05 8.83 (8.78,8.87)
400 ISX 6 0.05 8.87 (8.81,8.95)

TABLE 1

RESULTS OF THE PARAMETER SETTING STUDY FOR ITERATED
SIMPLEXIFICATION WHILE MAXIMIZING EPIDEMIC LENGTH. THE
NUMBERS FOLLOWING ISX THAT ARE NOT “FULL” IS THE LENGTH OF THE
CYCLIC GENE USED. MUTATION RATE IS PER LOCI. THE NUMBER OF
SIMULATIONS PER PARAMETER SET IS N = 30.

the better it performs. The lower mutation rate and smaller
population sizes are slightly (but not significantly) better.

The parameter study for the PPR representation on the ED-
fitness function shows fewer significant differences than that
for the ISX representation; the intermediate mutation rate is
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Population | Mutation | Mean Fitness
Size Rate Fitness | 95% C.I
400 10 18.9 (18.8,19.0)
400 5 18.7 (18.6,18.8)
400 1 18.9 (18.7,19.0)
40 10 18.7 (18.7,18.8)
40 5 18.8 (18.7,18.9)
40 1 18.9 (18.7,19.0)

TABLE 11

RESULTS OF THE PARAMETER SETTING STUDY FOR ITERATED
SIMPLEXIFICATION WHILE MAXIMIZING EPIDEMIC LENGTH USING THE
PPR REPRESENTATION. THE MUTATION RATE IS PER LOCI. THE NUMBER
OF SIMULATIONS PER PARAMETER SET IS N = 30.

Population | Represen- | Mutation | Mean Fitness
Size tation Rate Fitness | 95% C.I
40 ISX Full 0.1 432 (42.8,43.6)
40 ISX 12 0.1 46.0 (45.5,46.6)
40 ISX 6 0.1 45.5 (45.0,46.0)
40 ISX Full 0.05 45.0 (44.5,45.6)
40 ISX 12 0.05 453 (44.8,45.7)
40 ISX 6 0.05 45.5 (45.0,46.1)
400 ISX Full 0.1 42.8 (42.4,43.2)
400 ISX 12 0.1 46.6 (46.0,47.2)
400 ISX 6 0.1 46.9 (46.3,47.5)
400 ISX Full 0.05 45.6 (45.1,46.1)
400 ISX 12 0.05 472 (46.7,47.8)
400 ISX 6 0.05 47.4 (46.8,48.0)
TABLE III

RESULTS OF THE PARAMETER SETTING STUDY FOR ITERATED
SIMPLEXIFICATION WHILE MAXIMIZING THE TOTAL NUMBER OF
REMOVED INDIVIDUALS. THE NUMBERS FOLLOWING ISX THAT ARE NOT
“FULL” ARE THE LENGTH OF THE CYCLIC GENE USED. MUTATION RATE IS
PER LOCI. THE NUMBER OF SIMULATIONS PER PARAMETER SET IS
N = 30.

significantly worse in one comparison, but just barely. The
nominally best parameter choice is a population size of 400
and a mutation rate of 10 transpositions and this is the one
used for production runs.

The parameter setting study for the ISX representation on
the TR-fitness function showed several significant differences.
The two cyclic representations using the larger population size
and lower mutation rates are the best; the cyclic representation
of length 6 was better than the one of length 12 but not
significantly. The parameters 400,6,0.05 were chosen for the
production runs.

The parameter setting study for the PPR representation on
the TR-fitness function showed no significant differences. The
parameter set with the best mean was a population size of 400
and a mutation rate of one transposition and so this was used
in the production runs.

Population | Mutation | Mean Fitness
Size Rate Fitness 95% C.I.
400 10 287.1 (286.2,287.9)
400 5 286.8 | (286.3,287.4)
400 1 287.5 | (286.6,288.4)

40 10 287.0 | (286.1,288.0)

40 5 286.7 | (286.1,287.3)

40 1 287.2 | (286.4,288.1)
TABLE IV

RESULTS OF THE PARAMETER SETTING STUDY FOR THE PETERSEN
PERMUTATION REPRESENTATION WHILE MAXIMIZING NUMBER OF
INDIVIDUALS REMOVED. MUTATION RATE IS THE NUMBER OF
TRANSPOSITIONS USED. THE NUMBER OF SIMULATIONS PER PARAMETER
SET IS N = 30.

Summary data for production runs
Repre- | Fitness | Mean Fitness
sentation | function | Fitness 95% C.I.
ISX ED 9.048 (9.01,9.07)
PPR ED 19.06 | (18.99,19.13)
ISX TR 50.8 | (50.57,51.06)
PPR TR 288.5 | (288.2,288.9)
TABLE V

MEAN FITNESS AND 95% CONFIDENCE INTERVALS ON MEAN FITNESS FOR
THE PRODUCTION RUNS FOR BOTH REPRESENTATIONS AND BOTH FITNESS
FUNCTIONS. THE NUMBER OF TRIALS IS N = 100.

A. Production Runs

The production run for the ISX representation on the ED-
fitness found a minimum fitness of 8.79, a maximum of
9.73, and a 95% confidence interval on its mean fitness
is (9.013,9.077). This interval is disjoint from that for the
parameter setting run that established the parameters, and so
the additional evolution time, 2.5x longer, yielded significantly
improved fitness. The distribution of these fitnesses is shown
in Figure 7. The significant increase in fitness also appeared in
all the other production runs; 95% confidence intervals appear
in Table V.

Note that outliers with high fitness appear in the production
runs for the ISX representation for the ED-fitness (Figure 7),
in the PPR representation on the ED-fitness function (Figure
8) and in those for the PPR representations on the TR-fitness
(Figure 10). Such fitness outliers may indicate that he fitness
landscape is rough or that the algorithm has, in many of the
runs, not stopped improving. This type of outlier was not
apparent in the production runs for the ISX representation for
the TR-fitness function (see Figure 9) but the distribution has
a substantial right tail.

Recall that the diameter of a graph is the length of the
longest path among those paths in the graph that are shortest
paths between some two vertices, a form of “distance across
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Fig. 7. The above histograms shows how the final finesses were distributed
in the production run for maximizing epidemic length using the iterated
simplexification representation.
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Fig. 8. The above histograms shows how the final finesses were distributed
in the production run maximizing epidemic length using the Petersen-
permutation representation.

the graph”. If we compute a 95% confidence interval on the
diameter of the best graph found in the 100 production runs
for both representations and the ED-fitness function then the
result for the PPR representation is (9.93,10.1); for the ISX
representation it is (24.9,26.5). This is additional evidence
that the two representations are exploring completely different
parts of network space.

V. CONCLUSIONS

The two representations in this study produce markedly
different results in optimizing both the ED- and TR-fitness
functions. These different results were clearly not because
one representation was better at exploring network space;
the evidence from the diameters of graph located suggests
that they are exploring completely different parts of network
space. The portion of network space explored by the PPR
representation had far more fit networks in it. To reiterate:
for both fitness functions the random structures in the initial
populations for the PPR representation were more fit that the
best-of-run evolved structures for the ISX representation.

Distribution of Total Removed, Iterated Simplexification
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Fig. 9. The above histograms shows how the final finesses were distributed
in the production run maximizing total removal using the ISX representation.

3 Distribution of Total Removed, Petersen Permutation
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Fig. 10. The above histograms shows how the final finesses were distributed
in the production run maximizing total removal using the Petersen-permutation
representation.

The parameters setting studies were more useful for the
ISX representation but were of some value for both represen-
tations. A more complete parameter setting study might yield
additional benefits both by examining both more values of
the parameters that were checked (population size, mutation
rate, and length-of-representation for the ISX representation)
and by looking at more parameters, e.g. duration of evolution
and tournament size for selection. Given the extraordinary
difference between the PPR and ISX representations, however,
it seems unlikely that any amount of parameter setting will
close the gap. This in turn suggests that a search for additional
representations is an excellent idea.

The cyclic version of the ISX representation can be general-
ized for any linear representation in which the individual loci
in the gene represent graph construction operators. The ISX
representation is a simple version of a graph grammar which
constructs a graph by applying editing operations to a growing
graph. Any graph grammar could use a cyclic string of
commands (though it is possible to construct set of operations
for which such cycling is vacuous). The cyclic representations
have two potential advantages. The first is that they have
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exponentially fewer genes and hence an exponentially smaller
search space. The second is that a cyclic construction imposes
some type of regularity on the resulting graph which, in turn,
moves the graph out of the very large region of “random”
graphs that dominate network space. This issue requires some
additional explanation.

One way of classifying the space of graphs on n vertices is
to list the set of (%) = n(n—1) pairs of vertices and say, for
each, if an edge is present or not. This yields a simple binary-
string representation. The distribution of number of edges in
this space is binomial with a quadratic number of possible
edges - which means almost all the graphs have about half the
possible edges. Personal contact networks, on the other hand,
are quite sparse; they lie deeply in the tail of the distribution
of number of possible edges. This means that the simple
binary-string representation that spans the space represents the
desired networks poorly. While it might be possible to make
sparseness a secondary fitness goal it seems far more likely
that incorporating expert knowledge, in a graph grammar or
other structured representation, is a far better way to proceed.

Based on the experience in this study we suggest the
following tentative protocol for testing graph representations
for locating extremal epidemics.

1) Carefully specify how networks are generated, iden-
tifying features representing the incorporation of ex-
pert knowledge about natural epidemiological networks.
Such expert knowledge is almost certainly required be-
cause almost all networks are not as sparse as plausible
personal contact networks.

2) A substantial number of random networks should be
generated and tested for epidemic fitness measures in-
cluding but not limited to TR- and ED-fitness. This can
exclude representations which manage to squelch all or
most of the variability and hence are pointless to evolve.

3) A parameter study or sweep [9] for the representation
should be performed. There is substantial room to im-
prove the design of parameter sweeps relative to the ones
used in this study. These are full-factorial designs on
those parameters the authors intuition suggested would
be important. More sophisticated sampling designs[7]
would permit the examination of more parameters, e.g.
tournament size or length of evolution, or more values
of a given parameter such as population size or mutation
rate.

4) Production runs should be performed for the best pa-
rameters and the resulting best-of-run graphs subject to
intensive analysis. This includes comparison with other
representations, visualization of the network, and cross-
comparison with fitness measures other than those used
to produce the graph.

VI. NEXT STEPS

The most important next step is to craft evolvable network
representations that incorporate plausible features of natural
contact networks. These networks are not typically regular
graphs and will be different for different modes of disease

spread. The type of networks found in [8] for the spread of
sexually transmitted diseases have a connected core featuring a
few high-degree nodes and a large number of additional nodes
of degree 1, for example. The spread of airborne diseases [4]
does not have this type of structure and a good representation
here should generate groups of individuals of moderate size
that are all in contact, representing shared air spaces.

The maximum number of infected individuals at any time
step during the epidemic is another potentially interesting
fitness function. The mutual information of this new fitness
function and the ED- and TR-fitness functions is an issue
that should be investigated; are graphs good at one of these
always good at the others? Graphs that are high in one measure
but low in another may be a challenging target for a search
algorithm but informative about the qualities of a network that
are predictive of fitness behavior of networks in general.

Another generalization for this line of research is to increase
the sophistication of the epidemic model. The SIR model is
quite simple. If can be made more plausible by permitting
removed individuals to become susceptible after a delay, by
permitting the duration of the infected period to var according
to some distribution rather than automatically lasting for one
time step. Modeling a latency in the infection process is also
a potentially valuable model feature.

Finding good tools to visualize not only the networks but
the progress of epidemics across them is another area that
would help generate useful intuition about the character of
evolved networks. Such visualization may be very helpful in
understanding the representations presented in this study and
others designed in the future.
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