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Abstract— In this paper we survey the current state of the art
in spiking neural networks research and outline our approach
to building smart machines. A thorough understanding of the
history, open questions, and limitations of these networks can
help the research community to gain a better grip on this new
technology and to bridge the missing gaps. It is necessary to
look at various aspects of spiking neural networks, such as
the different modeling approaches, encoding schemes, simulators
and learning techniques in order to efficiently make use of
these networks. One paramount characteristic of spiking neural
networks is the precise timing of inputs and outputs. As a
dynamic system itself, it naturally lends itself to solving problems
in the continuous domain such as time series analysis. This will
be the focal point of our efforts to develop a smart machine
utilizing spiking neural networks.

I. INTRODUCTION

Science progresses best when observations force us

to alter our preconceptions -Vera Rubin

How to build smart machines? The field of Artificial Intel-

ligence has been investigating for a long time the possibility

of building a truly intelligent machine that would replicate

human behavior. There have been countless attempts to make

a machine ”see” or ”hear”, focusing on the intrinsic vocabulary

of a specific field.

For example, researchers have been devising neural net-

works in combination with genetic algorithms to build in-

telligent automated customer representatives [1]. Calling the

hotline to get a phone number from an automated service can

be very frustrating. It seems very unlikely that these systems

improve in the near future without radically changing our

preconceptions about understanding and engineering human

behavior as diverse capabilities. Very few people consider the

brain to process signals the same way for touch, hearing or

seeing, rather they are comfortable with the notion that we

have build-in modules for every task [2]–[4].

In his book, on Intelligence, Jeff Hawkins, founder of

Palm Computing, Handspring and the Redwood Neuroscience

Institute, describes a new theory of the brain, the memory-

prediction framework [5]. In his framework he desribes a

new approach to understanding the intricate workings of the

human brain through a common algorithm that is performed

by all the cortical regions. This idea surfaced first in a paper

published in 1978 by Vernon Mountcastle, who points out

that the neocortex is remarkably uniform in appearance and

structure, having the same layers, cell types and connections

throughout. He postulates that the only reason that one region

of the cortex looks slightly different from another is because

of what it is connected to and not because its basic function

is different [6]. Hence, all the regions might perform the same

basic operations. This single idea unites many diverse and

wondrous capabilities of the human mind.

For example, Hawkins describes the existence of a so-called

special visual area that seems to be specifically tailored to rep-

resenting letters and digits. But the age-old question is whether

we are born with the language area or not. Written language

is a far too recent invention for our genes to have evolved a

specific mechanism; hence, the cortex is still dividing itself

into task-specific functional areas long into childhood [5].

This would suggest that the brain regions develop specialized

functions depending on the information input.

Naturally, our brain processes continuous data and current

technologies such as Markov models and traditional neural

networks claim to process dynamic data but truly they are

designed for static and discrete environments. Rabiners tutorial

on Hidden Markov Models emphasized that these were the

first techniques that really attempted to capture and model the

temporal structure of dynamic data [7]. Moreover, traditional

neural networks are most successfully applied to real-valued

data problems and give promising results when processing

static data.

In contrast to the previous models, the emergence of spiking

neural networks as dynamic systems themselves provides

an excellent tool for problems in the continuous domain.

For example, video surveillance would greatly benefit from

applying such models because of its strict requirements of

precise timing and continuous data processing.

II. CURRENT STATE OF THE ART

Spiking neural networks emerged within the past decade

and were made popular during a two-day workshop in August

1997 entitled Pulsed Neural Networks, resulting in a book

with the same title edited by Wolfgang Maas and Christopher

M. Bishop [8]. This recent development makes it possible to

represent a system with time varying data, e.g. time series,
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more accurately and does not discard important characteristics

of temporal data. In fact, an event can only cause an effect

in the future not the past. A truly intelligent computational

tool will focus on the propagation of the biological network

through time.

The essential feature of a spiking neural network is that

it explicitly takes the timing of inputs into account. The

precise spike timing, the input and output representation as

series of spikes, using the Delta function or more complex

shapes, and the ability to continuously process information as

a dynamic system itself makes SNNs stand out from previous

techniques, such as the Hidden Markov Models or traditional

neural networks.

Fig. 1. Input/Output of Spiking Neuron j. Vertical bars represent firing time.

An interesting feature of spiking neural networks is the

potential for having an unusually big memory capacity due to

polychronization, a process of generating reproducible time-

locked but not synchronous spiking patterns with millisecond

precision. These patterns represent memory, and their number

often exceeds the number of neurons, or even synapses, in the

network.

In 2004, Olaf Booij emphasized in his Masters thesis that

there is no practical way to teach the SNN model to process

temporal patterns [1]. In fact, there is no specific formula

of how to correctly model a spiking neural network to this

date. There are several techniques for modeling spiking neural

networks, the one we refer to here is called the General Spike

Response model and was originally developed by Wulfram

Gerstner [1], [8], [9]. Models of spiking neural networks can

be broadly classified by their level of abstraction. The most

abstract models do not describe the state of a neuron in terms

of molecules but rather by a real number, called its membrane

potential. The less detailed models make it easier to build a

network and to figure out how to make them learn something.

The General Spike Response Model (SRM) and the Thresh-

old and Fire Model are the most popular. Equation (1) is

the mathematical formulation of the SRM model, where the

total membrane potential of neuron j, uj(t), is the sum of

all the post-synaptic potentials (PSPs) caused by pre-synaptic

firings of neuron i and the refractory effect of a negative

reset potential. Once neuron j generates a spike at time tj

the membrane potential is reset by the spike after-potential,

described by η[t − t
(f)
j ]. Hence, the total membrane potential

of neuron j is composed of the η-function modeling it’s own

refractoriness, the ǫ-function describing the effect of the pre-

synaptic spikes of neuron i, the weights wji and the delays of

the connections dji. Let Fi represent the spike train from pre-

synaptic neuron i, Fj the spike train from the current neuron

j and Γj the spikes of pre-synaptic neuron i affecting the

potential of neuron j.

uj [t] =
∑

t
(f)
j

ǫFj

η[t−t
(f)
j ]+

∑

iǫΓj

∑

t
(g)
i

ǫFi

wji×ǫ[t−t
(g)
i −dji] (1)

The ǫ-function and η-function are not fixed in the Spike

Response Model, but there are certain limitations outlined by

Gerstner [1], [8], [9]. In fact, the ǫ-function must have a short

rising part followed by a long decaying part, describing the

effect of the pre-synaptic spike to the potential of the post-

synaptic neuron. Moreover, the η-function requires that η(t) =

0 for t≤0.

In 2003, Izhikevich introduced another simple model for

spiking neurons that he derived by applying bifurcation meth-

ods to Hodgkin-Huxley-type neuronal models [10]. According

to the author his model combines computational efficiency of

integrate-and-fire and resonate-and-fire models and biological

plausibility and versatility of Hodgkin-Huxley type models.

There are four dimensionless parameters in the model that can

be tweaked to produce desired spiking behaviors such as reg-

ular spiking, intrinsically bursting, chattering, low-threshold

spiking or fast spiking. In 2005, Izhikevich used his simple

model to finish simulating a large-scale model containing 1011

neurons and 1015 synapses [11].

In contrast to the more general models, the least abstract

models try to simulate the neuron very accurately and take

all the different biochemical processes into account, limiting

the computations to few neurons due to its high complexity.

Conductance-based models, like the Hodgkin-Huxley model

and compartmental models fall into this category.

A. Coding of Information

There are many ways the input and output to a spiking

neural network can be encoded. It depends on the type of

task the SNN should solve. First, the time-to-first-spike coding

includes one spike per numerical value, meaning that the firing

time is proportional to the numerical value. If the problem

contains more then one event, phase coding can be applied

which encodes a stream of numerical values. In other words,

the stream is sequentially encoded using one numerical value

in one spike-time during a time period, then combining these

periods one after the other. Both coding schemes have limited

capabilities due to the restriction of only one spike at a time

or period.

A popular method is thresholding where numerical values

are reduced to a stream of bits, seen as a spike train. Although

this coding scheme might result in large loss of information by

reducing every value to a bit, the dimension reduction could be
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an advantage, resulting in compact spike trains. The reduction

of neurons and spikes clearly stands out when having to deal

with large data streams.

Lastly, data from one variable can also be scattered over

more than one neuron called population coding. Here a numer-

ical value gets transformed into a couple of spike times, each

belonging to a different neuron, using receptive fields. This

coding scheme is also commonly referred to as the receptive

field method. Here every neuron overlaps the numerical value

with a Gaussian kernel (Equation 2) having a specific mean

and variance.

Kg[zij ] =
1

√
2π

× exp[
−z2

ij

2
] (2)

zij =
1

h
[vj − xi] (3)

Kg is the Gaussian Kernel, zij is the distance of observation

xi from point vj (Equation 3) and h is the bandwidth of

the sliding window. The height of the Gaussian kernel of the

numerical value determines the firing time of the neuron.

B. SNN Simulators

There is a large number of neural network simulators

available on the internet but a need-tailored SNN simulator is

very hard to find. This is in part due to the very recent devel-

opment of spiking neural networks and its enormous number

of modeling choices. We primarily focused on two simulators.

One of the simulators is Amygdala 0.4 which has improved

speed and capabilities for abstract modeling of spiking neural

networks to represent a more plausible biological network,

making it a valuable research tool for experimenting with large

numbers of neurons. The other simulator is Genesis that is not

only capable of modeling spiking neural networks but any kind

of biological network by simulating neural systems ranging

from sub cellular components and biochemical processes to

rather complex single neurons and beyond.

Our reasoning for choosing these two simulators is that they

can be used for cross-validation. In a mailing list posting in

July 2005, Ruediger Koch, one of the developers of Amygdala,

states that the software can be verified by comparing the same

neuron model that is simulated with Genesis to Amygdala.

Both simulators are available freely under the GNU General

Public License. The Amygdala simulator is written in C++

and available for Linux and Windows (cygwin). Alternatively,

the Genesis simulator is written in C and available for Linux,

Windows (cygwin) and Mac OS/X.

We focus on using Amygdala as our simulator of choice

because of its speed and simplicity. The creators of Amygdala

claim that about 500,000 input spikes per second can be

processed on an Athlon 2000+ when using the basic neuron

with static synapses.

Amygdala uses exclusively the time-to-first-spike as the

protocol between neurons and the network [12]. Furthermore,

Newtons method (see Program Listing P1 below) is used for

calculating the occurrence of a spike in a neuron.

P1: Next Spike Calculation (basicneuron.h)

1) Determine the membrane potential at the current state

(calculation time input spike time) by summing the state

of each input spike up to the calculation time.

2) Find derivative of the function for the calculation time.

3) Calculate intercept with the threshold.

4) Set new calculation time to time of intercept.

5) Repeat until:

a) Two successive iterations result in no change in

calcTime. (Does Converge)

b) The derivative of the function becomes negative.

Go to the next current state. (Does not Converge)

The simulator is based on integrate and fire model neurons,

where the user is able to create Basic and Alpha neuron models

with static or dynamic synapses. The Basic neuron is a simple

integrate-and-fire neuron model based on the Gerstner model

[8]. Alternatively, the Alpha neuron is based on the area W

neurons described in the Hopfield-Brody Mus Silicium papers

[13], [14]. Furthermore, the user can create models using static

or dynamic synapses. The dynamic synapses are modeled

based on the description by Maas and Markram [15], [16].

However, there are several limitations with Amygdala. First,

there are no different coding schemes other than the time-to-

first-spike. This could be a rather big problem when large

amounts of information need to be processed. Another limi-

tation is that neurons have to wait one simulation time step

before they fire. Furthermore, Amygdala uses an approxima-

tion for calculating the post-synaptic potential by using only

the synaptic time constant.

Other simulators include Spike, SpikeSNNS and SimSPINN

[17]–[19].

C. Applications

Spiking neural networks can be applied to any problems

traditional sigmoidal neural networks solve, especially where

time-varying data is involved. There are four general goals

within the traditional neural network domain for application

areas [20].

• Auto-association, where the network is fed with a

training-set of patterns, which it is supposed to store

by tuning its free parameters. When presented with a

new pattern it should reproduce the most similar training-

pattern.

• Pattern-association, where the network is fed with a

training-set of pairs of patterns and the network should

learn the generalized mapping between the input- and

output-patterns. When presented with a new input-pattern

it should produce an output-pattern that is consistent with

this mapping.

• Classification, which can be seen as a sub-task of the

pattern-association; the required output-pattern consists

of the predefined category the input-pattern belongs to.

• Clustering, in which training-patterns are not known a

priori, but the network should discover certain salient

features with which it is able to divide the data in different

classes.
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Not only can spiking neural networks accomplish these

tasks but is also capable of dealing with time dependent data.

In a recent review by Bohte, Joost and Kok they propose

an application of Spiking neural networks to liquid state

machines (LSMs) [21]. This application is based on the work

of Markram et al. [22] that a randomly connected network of

spiking neurons effectively implements a complex temporal

filter through the intricacies of reverberating activity and

synaptic dynamics. Given a temporally extended input, like

speech, the collective activity of the network can be described

as a trajectory through a high-dimensional state space, and this

trajectory should be identifiably specific for the input at hand.

A simple read-out decoder should then be sufficient to classify

the temporal pattern. Hence, spiking neural networks can be a

very useful tool for classification tasks on temporal data, such

as speech recognition and time-series prediction.

Moreover, Booij reported in his Masters thesis that spiking

neural networks have been successfully applied to classifi-

cation problems involving dynamic data, where the system

predicts a value of a certain dynamic set of variables given

its history [1], [23]. Indeed, a research group has recently

developed an unsupervised learning rule that clusters tempo-

ral patterns by learning to discriminate two different audio

samples [1], [24].

Other areas where spiking neural networks could make

real progress due to its dynamic nature are face recognition,

vision, and robot control. Additional areas of promise for the

application of spiking neural networks are scene segmentation

in film and the detection of criminal behavior with surveillance

cameras.

D. Community

Despite the recent development of spiking neural networks

there are many research groups already utilizing them in their

research. Yet we found it difficult to find a centralized US-

based portal dedicated to spiking neural networks.

One research group is at the University of Pennsylvania,

lead by Dezhe Z. Jin, who was a student of Sebastian Seung

from MITs Department of Brain and Cognitive Sciences.

According to their mission statement, their major goal is

to apply theoretical analysis of the biophysical properties of

neural networks. Currently they are working on research in the

following four areas: motor control learning in basal ganglia,

song generation and recognition in songbirds, olfaction in

mammals and insects and finally, orientation selectivity and

feature maps in the primary visual cortex [25].

Olaf Booij from Amsterdam University has written his

Masters thesis on spiking neural networks doing temporal

pattern classification in lip reading, where his spiking neural

network learns to recognize spoken words out of video frag-

ments with stunning results. Moreover, he gives an excellent

introduction to spiking neural networks making it a useful

reference and starting point for researchers that are interested

in using spiking neural networks in their own research. [1].

In addition, the Goodman Brain Computation Lab at the

University of Nevada has done intriguing research using

spiking neural networks by attempting to create realistic

brain models with enough innate knowledge to pass a simple

fitness test using their in-house SNN simulator, called NCS-

NeoCortical Simulator and a python program, called Brainlab,

applying a genetic algorithm for parameter tuning [26].

There are many other research groups and individuals that

are involved with spiking neural networks that would benefit

from a centralized resource. There is a high probability that

the spiking neural network community will grow larger within

the next years and develop not only efficient but useful

applications that will most likely change the way we see

the world today. For example, a more sophisticated video

surveillance application could possibly be capable of stoping

criminals in real time in the future. This does not have to

be as futuristic as it sounds but can be reality by employing

collaboration between researchers through communication.

E. Limitations

Despite the many applications of spiking neural networks,

one must be aware of our rather limited knowledge of the

intricate workings of biological neurons and how they process

and encode information. Additionally, there is limited empiri-

cal data and computational theory about computing time series

in biological and artificial pulsed neural nets.

III. CURRENT RESEARCH

BUILDING A SMART MACHINE

Our interest in spiking neural networks revolves mainly

around constructing an intelligent machine that will act as a

classifier for time series data. The desired characteristics of

such a machine are precise timing, hierarchical information

flow in both directions and plasticity emerging its own ma-

chinistic intelligence.

There are many open questions within the field of spiking

neural networks due to its recent development that need to be

addressed. First, it is rather unclear how one can efficiently

incorporate dynamic learning into spiking neural networks.

Then there are many modeling techniques that are proposed

but there is no sufficient computational theory or efficient

topology linked to it. Hence, our research focuses on three

specific areas:

• Pick a suitable neuron model and simulator.

• Utilize genetic algorithms to tune free parameters of the

chosen model.

• Utilize genetic algorithms to further optimize network

topology.

Currently most available SNN simulators are based on spe-

cific models and research problems or are defined too broadly.

Adapting such a simulator for our research appeared to be

very time consuming, because of the intensive amounts of

source code that needed to be understood and rewritten. After

reviewing simulators such as Genesis, Amygdala, SimSPINN,

SpikeSNNS and Spike, we opted for using Amygdala as the

simulator of choice because it has all the computational prop-

erties needed for our model, including the Gerstner Model with

Markram synapses and Hebbian learning [8], [9], [15], [16],
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[22], [27]. This technology is well documented in books and

papers and the computational properties look very promising.

Eventually we might write our own next-event SNN simulator.

Initially we will keep our models small and the topologies

fixed to gain more insights into the intricate workings of the

rather complex dynamics of spiking neurons.

Furthermore, we will utilize genetic algorithms for fine

tuning desired model parameters attempting to replicate the

behavior of Lloyd Watt’s tonic buster example from 1994

[28] and the more complex Jin model from 2004 [29]. The

Watts model has 2 neurons that are connected and tuned in

such a way that it produces adapting bursting behavior. In

contrast, the Jin model consists of a synfire chain of four

excitatory neurons and two globally inhibitory interneurons

of different types providing fast feedback and delayed feed-

forward inhibition. The Jin network recognizes a specific

spatiotemporal spike sequence when the last excitatory neuron

of the synfire chain spikes, but only if the sequence was

present in the input spike stream. Initially, we will use a simple

fitness function for parameter tuning of the network by taking

the difference between each output pulse train and the target.

After we achieve satisfactory parameter optimization, genetic

algorithms will be applied to investigate the possibility for

optimizing the network topology itself.

Currently, we are working on validating and generalizing

input methods for Amygdala. At the same time we are in the

process of writing our own simulator. This way we can have

complete control over the properties of the model, synapses

and learning techniques.

IV. FUTURE WORK

Once the simulator is giving satisfactory results for imple-

menting spiking neural networks using the Gerstner Model

with Markram synapses and Hebbian learning, we will write

a more sophisticated Genetic Algorithm for SNN Parameter

Optimization. The goal of the refined Genetic Algorithm is to

learn the appropriate output to a set of dynamic inputs and

apply it to time series analysis. Time permitting, we will look

at other network topologies to analyze their efficiency and

structure.
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