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Abstract—Various phylogenetic reconstruction methods have
been proposed in order to determine the most accurate tree
that represents evolutionary relationships among species. Each
method defines a criterion for evaluation of possible solutions.
This criterion leads the search to the best phylogenetic tree.
However, different criteria may lead to distinct phylogenies,
which often conflict with each other. In this context, a multi-
objective approach can be useful since it could produce a set of
optimal trees (Pareto front) according to multiple criteria. We
propose a multi-objective evolutionary algorithm, called Phylo-
MOEA, which is focused on maximum parsimony and maximum
likelihood criteria. In experiments, several PhyloMOEA trials
were performed using four datasets of nucleotide sequences.
For each dataset, the proposed algorithm found a Pareto front
representing a trade-off between the criteria used. Moreover,
SH-test showed that a number of solutions from PhyloMOEA
are not significantly worse than solutions found by phylogenetic
programs using one criterion.

I. INTRODUCTION

Phylogenetic inference, which searches for the best tree that

explains the evolutionary events from a given dataset, is one

of the main problems in computational biology. It is often

modeled as a single objective optimization problem using one

criterion to evaluate possible solutions. There are several phy-

logenetic reconstruction methods which use distinct criteria.

Some research [1]–[3] has shown important differences in the

results obtained by applying distinct reconstruction methods

to the same input data. Rokas et al [4] pointed out that there

are several sources of incongruity in phylogenetic analysis:

the optimality criterion used, data used and evolutionary

assumptions concerning data.

A multi-objective approach, which can search for phy-

logenies using more than one criterion, can be a relevant

contribution since it produces solutions which are consistent

with all employed criteria. Recently, Handl et al [5] discussed

applications of multi-objective optimization in bioinformatics

and computational biology problems. Moreover, Poladian and

Jermiin [6] suggested that multi-objective optimization can be

used in phylogenetic inference from various conflicting input

data. The authors showed that this approach reveals sources

of such conflicts and provide useful information for a robust

inference.

The authors thank the State of Sao Paulo Research Foundation (FAPESP)
for the financial support provided (Grant Nº 01/13846-0).

We propose a multi-objective approach for phylogenetic

inference using maximum parsimony [7] and maximum like-

lihood [8] criteria. The algorithm developed to solve such a

problem, called PhyloMOEA, is a multi-objective evolutionary

algorithm (MOEA) based on the NSGA-II model proposed by

Deb et al [9]. The output from PhyloMOEA is a solution set

representing a trade-off between the criteria considered.

This paper is organized as follows. Section II provides rele-

vant background information about phylogenetic inference and

two of the most popular phylogenetic reconstruction methods:

maximum parsimony and maximum likelihood. Section III

presents main concepts of Genetic Algorithms (GAs) and

their application to phylogeny. Section IV discusses multi-

objective optimization problems and shows how GAs can

contribute to solve this kind of problems. Section V presents

the PhyloMOEA algorithm. Section VI describes the exper-

iments involving four nucleotide datasets and discusses the

main results. Finally, Section VII presents conclusions and

proposes future work.

II. PHYLOGENETIC INFERENCE PROBLEM

Phylogenetic analysis investigates evolutionary relationships

among species. Data used in this analysis usually come from

sequence data (nucleotide or aminoacid sequences), although

other types of data can be used [10]. Evolutionary relation-

ships are often represented as a leaf-labelled tree, called a

phylogenetic tree. In this tree, external nodes refer to actual

species in data, internal nodes refer to hypothetical ancestors

and branches represent relations among species. Since data

used in phylogenetic analysis are obtained from contemporary

species, a phylogenetic tree is a hypothesis (of many possible

ones) of the evolutionary events in the history of species.

A phylogenetic tree can be rooted or unrooted. In a rooted

tree, there is a special node called root that defines the

direction of the evolution, determining ancestral relationships

among nodes. An unrooted tree shows only the relative posi-

tions of nodes without an evolutionary direction. Additionally,

tree branches may have an associated length showing genetic

distances between connected nodes. Figs. 1 and 2 show a

rooted and unrooted tree, respectively.

The main goal of the phylogenetic inference is the deter-

mination of a tree that best explains the evolutionary events
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Fig. 2. An unrooted tree.

of the species under analysis. Swofford et al [11] classify

phylogenetic reconstruction methods into two categories: algo-

rithmic and optimality criterion methods. The former follows

a sequence of well-defined steps to generate a tree without

examining many alternatives in the search space. Moreover,

algorithmic methods go directly to the final answer quickly

producing a tree. Clustering approaches like Neighbor Join-

ing [12] are in this category.

On the other hand, optimization criterion methods incor-

porate an optimality criterion and a search mechanism. The

former defines an objective function that scores every possible

solution. The search mechanism examines the tree search

space in order to determine the best scored tree according

to the criterion used. There are exact and exhaustive strategies

that can find the best scored tree. However, these strategies are

only applicable in small datasets due to the tree search space,

which increases exponentially with the number of species

analyzed. For moderate and large datasets, only heuristic

search strategies are feasible but there is no guarantee that

the solution found is optimal. Optimality criterion methods

usually produce better results [1], although they are slower

than algorithmic methods. Examples of optimality criterion

methods are maximum parsimony [7], maximum likelihood [8]

and least squares [13].

The following sections present a brief review of maximum

parsimony and maximum likelihood since they are used in

PhyloMOEA.

A. Maximum Parsimony

The parsimony principle states that the simplest hypothesis

concerning an observed phenomenon must always be pre-

ferred. In phylogenetic inference, parsimony methods search

for a tree topology that requires the minimum number of char-

acter state changes. This tree, which is the simplest explanation

for a given data set, is called a maximum parsimony tree [10].

Let D be a dataset containing n species. Each specie has
N sites, where dij is the character state of specie i at site j.
Given a tree T with a node set V (T ) and a branch set E(T ),
the parsimony score of T is defined as:

PS(T ) =

N∑

j=1

psj , (1)

where psj is the number of character changes along branches

in T for site j. This quantity can be formulated as:

psj(T ) =
∑

(v,u)∈E(T )

C(vj , uj), (2)

where vj and uj are the character states of nodes v and u at
site j for each branch (u, v) in T , C is the cost matrix such
that C(vj , uj) is the cost of changing from state vj to state

uj . The leaves of T are labelled by character states of species
from D, i.e. a leaf representing k− th species has a character
state dkj for position j. The following properties can be noted
from (1) and (2):

1) Parsimony criterion assumes independence of sites, i.e.

each site is evaluated separately;

2) The calculation of the parsimony score only takes into

account the tree topology. Thus, the parsimony crite-

rion does not incorporate other information like branch

lengths.

It is necessary to determine the character states of internal

nodes from T so that PS is minimized. This is the called
small parsimony problem, which can be solved by the Sankoff

algorithm [14] for an arbitrary cost matrix C. When C satisfies
Cxy = 1 if x 6= y and Cxy = 0 if x = y, the Fitch
algorithm [7] can be used.

The task of finding the maximum parsimony tree in the

search space is called the large parsimony problem. This

problem was proved to be NP-hard [10], however several

heuristic techniques have been proposed in order to overcome

such a difficulty [15].

B. Maximum Likelihood

Likelihood is a widely-used statistical measurement. It

evaluates a probability that a hypothesis could give rise to

the observed data [11]. The likelihood of a phylogenetic tree,

denoted by L = P (D|T,M), is the conditional probability of
the sequence data D given a tree T and a stochastic evolution
model denoted by M . Two assumptions are necessary to
compute likelihoods:

1) Evolution at different sites is independent;

2) Evolution from different tree lineages is independent,

i.e. each subtree evolves separately.

Let Di be the sequence data set D at site i. L is calculated
from the product of partial likelihoods from all sites:

L =

N∏

i=1

Li, (3)

where Li = P (Di/T,M) is the likelihood at site i. An effi-
cient method to calculate L was proposed by Felsenstein [8]
using a dynamic programming approach, where L is obtained
by a post-order traversal of T . Usually, it is convenient to work
with logarithmic values of L, then (3) results in:

lnL =

n∑

i=1

Li (4)
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In order to maximize L for a given tree T , it is necessary
to optimize the branch lengths of T and the parameters
of M . This can be achieved using classical optimization
methods [10]. Finding the maximum likelihood tree in the

search landscape is a more difficult problem. Moreover, only

heuristic approaches [16]–[19] are feasible for moderate or

large datasets.

Genetic Algorithms (GAs) are heuristics that can be used in

phylogenetic inference. The next section discusses GAs and

their application in phylogenetic analysis.

III. GENETIC ALGORITHMS IN PHYLOGENETIC

INFERENCE

Genetic Algorithms are search and machine learning tech-

niques inspired by natural selection principles [20]. They have

been applied to a wide range of problems of science and

engineering [21]. A GA uses a set of individuals, called

population, which represents feasible solutions for a given op-

timization problem. Each individual has an associated fitness

value, which is based on the objective function. Individuals

use an internal encoding that must be able to store all relevant

problem variables and codify all feasible solutions.

First, a GA creates an initial population and calculates

the fitness of its individuals. Then, a new population is

generated using three genetic operators: selection, crossover

and mutation [20]. The selection operator uses individuals’

fitness to choose the best candidates to generate the next

population. Features of the selected solutions are combined by

the crossover operator and new offspring solutions are created.

Then, small modifications are performed by the mutation

operator at a very low rate. While crossover is useful to explore

the search space, mutation can escape from local optima.

The average fitness of the new population is expected to be

better than the average fitness of the previous population. This

process is repeated until a stop criterion has been reached.

Thus, the fitness landscape in combination with the selection

leads GAs towards an optimal or a near-optimal answer. The

solutions found by the GA are in the final population.

Various papers have described the application of GAs to

the phylogeny problem focused on one optimality criterion.

In general, these studies use maximum likelihood [18], [19],

[22], parsimony [23], [24] or distance-based [25] criterion.

Experimental results have shown that GAs have better perfor-

mance and accuracy when compared to heuristics implemented

in widely-used phylogenetic software, like PHYLIP [26] and

PAUP* [27]. Moreover, GAs are also suitable for use several

optimality criteria in order to solve multi-objective optimiza-

tion problems (MOOP). The following section briefly de-

scribes MOOPs and the application of GAs to these problems.

IV. MULTI-OBJECTIVE OPTIMIZATION

A MOOP deals with two or more objective functions

that must be simultaneously optimized. In this context, the

Pareto dominance concept is commonly used to compare

two solutions. A solution x dominates a solution y if x is

not worse than y in all objectives and if it is better for at

least one. Solving a MOOP implies calculating the Pareto

optimal set whose elements, called Pareto optimal solutions,

represent a trade-off among objective functions. Pareto optimal

solutions are not dominated by any other in the search space.

The curve formed by plotting these solutions in the objective

function space is entitled Pareto front. If there is no additional

information regarding the relevance of the objectives, all

Pareto optimal solutions have the same importance. Deb [21]

pointed out two fundamental goals in MOOP:

1) To find a set of solutions as close as possible to the

Pareto optimal front;

2) To find a set of solutions as diverse as possible.

Many classical optimization techniques have been proposed

to deal with MOOPs [21]. The simplest approach transforms

a MOOP into a single optimization problem using a weighted

sum of objective functions. This strategy only finds a single

point in the Pareto front for each weight combination. Thus,

several runs using different weight values are required to

obtain a reasonable number of Pareto optimal solutions. Never-

theless, this method does not guarantee solution diversity in the

frontier. There are other methods to deal with MOOPs, but all

of them have limitations, i.e. they need a priori knowledge of

the problem, for example, target values; which are not always

available.

On the other hand, evolutionary algorithms for multi-

objective optimization (MOEAs) have been successfully ap-

plied to both theoretical and practical MOOPs [21]. In general,

the most elaborated MOEA models are capable of finding a

distributed Pareto optimal set in a single run.

The following sections describe PhyloMOEA, the proposed

MOEA to solve the phylogenetic inference problem using

maximum parsimony and maximum likelihood criteria.

V. A MULTI-OBJECTIVE APPROACH TO PHYLOGENETIC

INFERENCE

As mentioned in Section II, the use of various phylogenetic

reconstruction methods can produce different results for the

same input data. Huelsenbeck [1] performed a study of the

main phylogenetic approaches. In this study, most methods

performed successfully for simulated datasets generated for

four species. However, under some conditions, methods failed

to find the true tree producing different answers. Other studies

[2], [3], [28] using simulated and real datasets confirmed

these results. Consequently, the selection of the reconstruction

method is a crucial step in phylogenetic analysis.

Optimality criterion methods are based on only one criterion

in order to evaluate possible solutions. Thus, the phylogenetic

reconstruction problem is often solved as a single objective op-

timization problem. As results obtained from diverse phyloge-

netic methods often disagree, a multi-objective approach, that

takes into account several criteria simultaneously, is a feasible

alternative. This approach not only allows to determine the

best solution according to each criterion separately, but finds

intermediate solutions representing a trade-off among criteria

used.
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This paper formulates the phylogenetic inference problem

as a MOOP with two optimality criteria: maximum parsimony

and maximum likelihood. In order to solve such a problem,

we have proposed a MOEA algorithm called PhyloMOEA,

which is based on the NSGA-II [9] model. The main aim of

PhyloMOEA is to determine of a set of non-dominated solu-

tions (trees), which represents a trade-off between parsimony

and likelihood scores. The following subsections describe the

proposed algorithm in more details.

A. Internal Encoding

Phylogenetic trees are usually represented using graph data

structures [29]. PhyloMOEA uses the Graph Template Library

(GTL) [30] to work with unrooted trees. GTL makes easy

implementation of genetic operators possible and facilitates

the storage of additional information, such as branch lengths.

Furthermore, parsimony and likelihood criteria can operate on

rooted or unrooted trees.

B. Initial Solutions

PhyloMOEA uses two populations, a parent population and

an offspring population, in the same way as NSGA-II. The

parent population is denoted as Pi, where i refers to the
i − th generation. In the first generation, solutions from P1

are created at random, and, in subsequent generations, Pi

stores the best solutions found in the previous i−1 iterations.
Solutions in Pi are also used to create the offspring population,

denoted by Qi, by applying selection, crossover and mutation.

PhyloMOEA can generate initial random trees in P1; how-

ever, these trees are often far from maximum parsimony and

likelihood trees. In order to overcome this drawback, addi-

tional solutions, provided by maximum likelihood, parsimony

or bootstrap analysis, can be included in the initial popula-

tion. This strategy is usually used in GA-based phylogenetic

programs [19], [22].

C. Fitness Evaluation

PhyloMOEA evaluates trees in Pi and Qi using the parsi-

mony and likelihood criteria. The parsimony and likelihood

scores are calculated using Fitch [7] and Felsenstein [8]

algorithms, respectively. The tree fitness is obtained using two

values: a rank and a crowding distance [21].

The rank value is calculated using a non-dominated sorting

algorithm [21] applied to R = Pi∪Qi. This algorithm divides

R into several frontiers, denoted by F1,F2, . . . ,Fj . The first

frontier (F1) is formed by non-dominated solutions from R.
Solutions in F1 are removed from R and the remaining

solutions are employed to calculate the next set of non-

dominated solutions, denoted by F2. This process is repeated

in order to find F3, and so on, until R is empty. The rank
value of an individual is the index of the frontier it belongs

to.

The crowding distance is useful to maintain the population

diversity. It reflects the density of solutions around its neigh-

borhood. This value is calculated from a perimeter defined by

the nearest neighbors in each objective.

PhyloMOEA uses a tournament selection which picks two

individuals at random and chooses the best one, which has the

lowest rank. If both solutions have the same rank, the solution

with the longest crowding distance is preferred.

D. Crossover Operator

The crossover operator implemented in PhyloMOEA is the

same as [18]. It combines a subtree from two parent trees and

creates two new offspring trees. Given trees T1 and T2, this

operator performs the following steps:

1) Prune a subtree s from T1;

2) Remove all leaves from T2 that are also in s;
3) The offspring subtree T ′

1 is obtained by regrafting s to
an edge randomly chosen from T2

The second offspring, denoted as T ′

2 is created in a similar

way: prune a subtree from T2 and regraft it in T1. Fig. 3

illustrates this operator.
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Fig. 3. Example of the crossover operator.

E. Mutation Operator

There are three well-known topological modifications used

in phylogenetic inference [11]: Nearest Neighbor Interchange

(NNI), Sub-tree Pruning and Regrafting (SPR) and Tree

Bisection and Reconnection (TBR). NNI was employed in

PhyloMOEA, since it performs minimal tree modifications.

This operator carries out the following steps:

1) Choose an interior branch whose connected nodes i, j
define two pairs of neighbors: w, x adjacent to i (w, x 6=
j) and y, z adjacent to j (y, z 6= i).

2) Execute a swap of two nodes taken from each pair of

neighbors.

Fig. 4 illustrates the NNI operator. The mutation operator

also modifies branch lengths in order to improve the tree

likelihood value. A branch length is multiplied by a factor

obtained from a gamma distribution [18]. In each mutation,

some branch lengths, chosen at random, are modified.

Branch lengths from trees in the final population are

optimized using a non-decreasing Newton-Raphson method

described by Yang [31]. Due to this optimization being very

time-consuming, it is applied only after a PhyloMOEA exe-

cution. Fig. 5 shows the PhyloMOEA algorithm.
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Fig. 4. Example of NNI mutation operator.

Algorithm:PhyloMOEA

begin

Create an initial population P1 containing N solutions1

Perform non-dominated Sorting in P12

Calculate crowding distance values of P13

Apply selection, crossover and mutation operators in4

P1 and generate a new population Q1

foreach generation t = 2, . . . , n do
Perform non-dominated sorting in R = Pt ∪ Qt5

Calculate crowding distance values of R6

Calculate Pareto frontiers F1,F2, . . .Fj from R7

Store the N best solutions from Fk in8

Pt+1,|Fk| ≤ N, k = 1 . . . l
Create a new population Qt+1 by applying9

selection, crossover and mutation operators

in Pt+1

Perform branch length optimization of solutions10

in Pn.
end

Fig. 5. PhyloMOEA algorithm.

VI. RESULTS AND DISCUSSION

PhyloMOEA was tested using four nucleotide data sets.

The rbcL 55 dataset comprises 55 sequences (1314 sites)
of the rbcL chloroplast gene from green plants [18]. The

mtDNA 186 dataset contains 186 human mitochondrial DNA
sequences (16608 sites) taken from The Human Mitochondrial

Genome Database (mtDB) [32]. The RDPII 218 dataset
comprises 218 prokaryotic RNA sequences (4182 sites) taken

from the Ribosomal Database Project II [33]. Finally, the

ZILLA 500 dataset includes 500 rbcL sequences (1428 sites)
from plant plastids [16].

Maximum parsimony and likelihood analyzes were per-

formed in the four datasets using programs NONA [34] and

RAxML-V [17], respectively. These programs include so-

phisticated heuristics that produce satisfactory results quickly.

Table I shows the parsimony and likelihood scores of the

results obtained from these programs.

Trees in the initial population were generated from boot-

strap data applied to each dataset. These data was obtained

using the program PHYML [16], which performs bootstrap

analysis using the BIONJ algorithm [35]. The parsimony and

likelihood scores of these trees are close to the scores shown in

TABLE I

PARSIMONY AND LIKELIHOOD RESULTS FOUND BY NONA AND

RAXML-V.

Dataset NONA RAxML-V
Pars. Likelihood Pars. Likelihood

rbcL 55 4874 -24627.848 4894 -24583.331

mtDNA 186 2438 -41049.768 2450 -40894.550

RDPII 218 41534 -170831.121 42631 -156595.873

ZILLA 500 16219 -87361.484 16276 -86993.826

Table I. However, for RDPII 218 and ZILLA 500 datasets,
bootstrap tree scores are not close enough to the scores

obtained by NONA and RAxML-V. Consequently, it slows

down the PhyloMOEA’s convergence. In order to overcome

this drawback, solutions from Table I are included in the initial

population.

Table II shows the parameters of PhyloMOEA used for

the experiments. It can be noted that ZILLA 500 dataset
requires the largest number of generations and population

size. Furthermore, the HKY85 [36] nucleotide model was

used in likelihood calculations since it is often used in the

literature [16]–[19].

TABLE II

PARAMETERS USED BY PHYLOMOEA IN THE EXPERIMENTS.

Parameter Value

Generations 500 (rbcL 55, mtDNA 186,
and RDPII 218)
2000 (ZILLA 500)

Population size 50 (rbcL 55, mtDNA 186,
and RDPII 218)
100 (ZILLA 500)

Crossover rate 0.8
Mutation rate 0.05
Mutation operator NNI
Evolution model HKY85

Due to the stochastic nature of GAs, PhyloMOEA was

executed 20 times for each dataset. At the end of a Phylo-

MOEA execution, duplicate tree topologies are removed from

the final population. Finally, the Pareto optimal solutions are

calculated, although this may eliminate promising topologies

from the perspective of parsimony criterion. If two solutions

have an equal parsimony score, only the solution with the best

likelihood remains in the Pareto-set. Thus, all non-duplicated

topologies, entitled Final Solutions, are maintained.

Table III presents a summary of the experiment results.

It shows the maximum, average and standard deviation of

the number of Pareto and Final solutions for all executions.

Moreover, this table shows the best score, average score and

standard deviation for the maximum parsimony and maximum

likelihood criteria for all runs.

The values in bold in Table III shows the parsimony and

likelihood scores improved by PhyloMOEA when compared

with scores from Table I. In the case of the parsimony

criterion, only the mtDNA 186 score was improved. On the
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other hand, all likelihood scores were slightly increased, except

for the 500 ZILLA dataset, where a better improvement was
reached.

Figs. 6, 7, 8 and 9 show the Pareto fronts obtained

in one PhyloMOEA execution for rbcL 55, mtDNA 186,
RDPII 218 and ZILLA 500 datasets, respectively. These
figures also show Final Solutions near the Pareto front. Due

to the parsimony score being an integer value, the resulting

Pareto front is a discontinuous set of points connected by

lines. The two extreme points from the frontier represent the

maximum parsimony and maximum likelihood trees found

by PhyloMOEA. If both points are close to one another, a

reduced number of intermediate solutions is expected. This is

the case of rbcL 55 and mtDNA 186 datasets , as illustrated
in Figs. 6 and 7. Moreover, Table III shows the small size

of the Pareto front for both datasets. On the other hand,

extreme points in RDPII 218 and ZILLA 500 datasets are
distant one from another. Thus, there are a greater number of

intermediate solutions, as shown in Figs. 8 and 9 and in Table

III. Nevertheless, for all datasets, PhyloMOEA was able to

find a relatively large number of Final Solutions.

When a set of trees is obtained from a phylogenetic analysis,

it is useful to compare these solutions using a statistical

test. The Shimodaira-Hasegawa test (SH test) [37] was used

in order to evaluate the Pareto optimal and Final Solutions

found by PhyloMOEA. The SH-test calculates a P−value for
each solution, which indicates if a tree is significantly worse

than the best scored one according to a criterion. If a tree

has a P−value lower than a given bound (usually 0.05), it
can be rejected. The SH-test was performed for parsimony

and likelihood criteria using programs PHYLIP [26] and

PAML [38], respectively.

Table IV shows summary results from the SH-test applied to

the best PhyloMOEA’s execution in each dataset. The number

of non-rejected (P ≥ 0.05) and rejected (P < 0.05) trees
according to parsimony and likelihood criteria for Pareto and

Final solutions are shown. For the rbcL 55 dataset, it can be
seen that none of the Pareto solutions were rejected for the SH-

test applied to both criteria. This is due to extreme solutions

in Pareto front having their parsimony and likelihood scores

close, and therefore intermediate solutions cannot be rejected.

In the case of themtDNA 186 dataset, only parsimony scores
of extreme points are close while likelihood scores are distant.

Consequently, the SH-test applied to the parsimony criterion

does not reject any solution. However, four solutions are

rejected for likelihood criterion. On the other hand, extreme

solutions scores for RDPII 218 and ZILLA 500 datasets
are distant. Thus, SH-test rejects a number of Pareto solutions

for parsimony and likelihood criteria.

In the case of the Final Solutions, the SH-test applied to par-

simony and likelihood criteria rejects approximately two thirds

of the solutions for rbcL 55, RDPII 218 and ZILLA 500
datasets. The only exception is the SH-test using the likelihood

criterion for the RDPII 218 dataset where most solutions
are rejected. On the other hand, the SH-test for parsimony

criteria does not reject most of the Final solutions from the

mtDNA 186 dataset. It reveals that parsimony scores for
Final Solutions are close to the best parsimony score. The

likelihood scores of Final Solutions from the mtDNA 186
dataset are also close to the maximum likelihood score, but in

this case the proportion of rejected solutions are greater.

We pointed out that the SH-test was designed to be applied

for one criterion, i.e. this is not a multi-criteria test. However,

the SH-test shows that some of the Pareto optimal solutions

are not significantly worse than the best trees resulting from

a separate analysis. Thus, PhyloMOEA was able to find in-

termediate solutions that are consistent with the best solutions

obtained from the parsimony and likelihood criteria.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a MOEA to solve the phy-

logenetic inference problem using parsimony and likelihood

criteria. This approach was motivated by the literature in

area [1]–[3], [28], which points out that various phylogenetic

inference methods leads to inconsistent solutions. This fact

was verified for all datasets analyzed in the experiments

where parsimony and likelihood criteria leads to different

trees. The proposed algorithm, called PhyloMOEA, was able

to find a set of trees that represents a trade-off between these

criteria. A SH-test applied to Pareto and Final Solutions found

by PhyloMOEA indicates that some alternative solutions are

consistent with criteria used.

Despite the relevant results found by PhyloMOEA, there

are aspects that should be addressed in order to improve the

algorithm and corresponding results:

• PhyloMOEA requires several hours to find acceptable

Pareto-solutions if initial trees are poorly estimated. This

problem can be improved using advanced genetic oper-

ators that take into account local search strategies [16],

[17]. PhyloMOEA’s performance is also decreased by the

likelihood calculation, which is computationally inten-

sive. There are some techniques that address this problem

[17], [39], [40];

• PhyloMOEA does not optimize parameters of the evolu-

tion model employed in the likelihood calculation. It uses

approximated values for these parameters. These values

can be optimized when the algorithm is running [18];

• PhyloMOEA uses a simple cost matrix to calculate the

parsimony score. There is some parsimony criteria that

uses more complex cost matrix and its use may improve

results [11];

• The likelihood calculation performed by PhyloMOEA

does not consider the rate heterogeneity among sites. In

real datasets, sites frequently evolve at different rates.

When rate heterogeneity is employed, the accuracy of

the likelihood analysis is often improved [41].

• This research has not investigated metrics for conver-

gence and diversity of the obtained Pareto front. Mea-

surements for convergence are difficult to obtain since the

Pareto front is unknown in this case. However, various

diversity metrics found in the literature [21] can be

employed.
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TABLE III

SUMMARY OF EXPERIMENTS’RESULTS.

Number of Pareto Trees Number of Final Trees Parsimony Tree Scores Likelihood Tree Scores
Dataset Max. Average ±σ Max. Average ±σ Best Average ±σ Best Average ±σ

rbcL 55 10 7.05 ±1.39 54 48.20 ±3.00 4874 4874.00 ±0.00 -24583.330 -24583.330 ±0.00

mtDNA 186 12 9.05 ±1.23 55 48.95 ±2.61 2436 2437.10 ±0.64 -40894.343 -40894.528 ±0.06

218 RDPII 35 28.75 ±2.97 85 77.40 ±4.15 41534 41534.00 ±0.00 -156595.850 -156595.850 ±0.00

500 ZILLA 24 18.50 ±2.52 121 102.40 ±7.99 16219 16219.00 ±0.00 -86991.649 -86993.561 ±0.66

TABLE IV

SUMMARY OF SH-TEST RESULTS.

Pareto Trees Final Trees
SH-test Parsimony SH-test Likelihood SH-test Parsimony SH-test Likelihood

Dataset Non-Rej. Rej. Non-Rej. Rej. Non-Rej. Rej. Non-Rej. Rej

rbcL 55 10 0 10 0 16 37 17 36

mtDNA 186 8 0 4 4 37 8 22 23

RDPII 218 10 25 6 29 21 57 11 67

ZILLA 500 12 9 14 7 27 79 29 77
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Fig. 6. Final Solutions and Pareto front for rbcL 55 dataset.
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Fig. 7. Final Solutions and Pareto front for mtDNA 186 dataset.
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Fig. 8. Final Solutions and Pareto front for RDPII 218 dataset.
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Fig. 9. Final Solutions and Pareto front for ZILLA 500 dataset.

• Since PhyloMOEA produces a set of trees, it is pos-

sible to calculate branch support values and consensus

trees in each dataset. These calculations can be used to

compare PhyloMOEA’s results with other methods, that

produce solution sets, such as a bootstrap analysis [42]

or Bayesian inference [43].

To sum up, preliminary results have shown that Phy-

loMOEA can make relevant contributions to phylogenetic

inference. Moreover, there are several aspects that can be

investigated to improve the current approach.
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