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Abstract— Juxtacrine signaling is intercellular communication,
in which the receptor of the signal (typically a protein) as well as
the ligand (also typically a protein, responsible for the activation
of the receptor) are anchored in the plasma membranes, so that
in this type of signaling the activation of the receptor depends
on direct contact between the membranes of the cells involved.
Juxtacrine signaling is present in many important cellular events
of several organisms, especially in the development process. We
propose a generic formal model (a modeling framework) for
juxtacrine signaling systems that is a class of dynamic discrete
systems. It possesses desirable characteristics in a good modeling
framework, such as: a) structural similarity with biological
models, b) capacity of operating in different scales of time and
c) capacity of explicitly treating both the events and molecular
elements that occur in the membrane, and those that occur in
the intracellular environment and are involved in the juxtacrine
signaling process. We implemented this framework and used to
develop a new discrete model for the neurogenic network and its
participation in neuroblast segregation.

I. INTRODUCTION

Juxtacrine signaling is an intercellular communication
based on transmembrane proteins, “anchored” in the plasma
membrane. The two principal types of transmembrane proteins
participating in this system are ligands and receptors: a
receptor can discharge a series of molecular reactions inside
of a cell if it is activated (through a ligand/receptor binding)
by a ligand positioned in the membrane of a neighboring cell.

As in juxtacrine signaling, both the receptor and the lig-
and are anchored in the membranes, the activation of the
receptor depends on direct contact between the membranes
(juxtaposed) of the involved cells. This implies that the ligands
act in a more restricted way, only operating on the adjacent
cells (immediate neighbors). There is a variety of signaling
pathways that are discharged by ligands anchored in the
membrane [1].

Juxtacrine signaling is vital in several phases of develop-
ment and maintenance of the tissues, for instance, in the neu-
rogenesis in Drosophila melanogaster [2], in the generation
of cellular polarity in ommatidia [3], and in the previous
development of vertebrates [4], among others. It actively
participates in the processes of cellular patterning, particularly
in the “fine” patterning. The two main mechanisms that operate
in systems of juxtacrine signaling for the formation of patterns
are the lateral inhibition and lateral induction.

A. Previous Work: Mathematical Models

The first, and well-referred, formal model for juxtacrine
signaling [5] was formulated in terms of the activity of the
ligand Delta and its receptor Notch. In this model the mech-
anism of lateral inhibition was described through a feedback
loop through which small differences among neighboring cells
are amplified and consolidated. In this work, Collier et al.
proposed a set of differential equations to control the rate of
production of these proteins.

The works of Owen and Sherratt [6], [7] and Wearing et
al. [8], [9] improve on previous models: instead of adopting an
“arbitrary” measure of the activity of the proteins as parameter,
they suppose that the variables of the model are: a) the amount
of free ligand molecules; b) the amount of free receptor
molecules and c) the amount of complex ligands/receptor
formed on the surface of the cell.

There are works [10], [9], [11], [12] that analyze the
behavior of these models and the pattern type that are capable
of generating in several geometries of cells (square, hexagonal,
etc).

Most models proposed for juxtacrine signaling are es-
sentially continuous. Some are continuous in both space
and time [6], others are continuous in time and discrete
in space [13], [7], [8]. Luthi et al. [14] proposed a model
for juxtacrine signaling that is discrete in both space and
time which consists primarily of a cellular automata with
continuous state variables.

The most recent model for juxtacrine signaling [15] incor-
porated the treatment of distribution inhomogeneous receptors
in the cell membrane. It is an extension of the model proposed
by Owen, Sherratt [6], [7] and Wearing et al. [8], [9] adding
relative terms to the diffusible transport of proteins between
segments of membrane of the same cell as well as modifying
the feedback functions so that considered the localised pro-
duction of ligands and receptors.

B. Motivation

We defined a juxtacrine signaling system as the set formed
by the molecular elements, including its interactions and
the molecular mechanisms that participate in the process of
juxtacrine signaling. These elements and mechanisms can be
intracellular — for instance signal transduction pathways or
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gene regulatory networks — or associated with the membranes
of the cells in the communication process, for instance binding
events between ligands and receptors positioned in the mem-
brane.

The principal existing models for juxtacrine signaling sys-
tems (henceforth referred to as JSS) can be divided into three
groups: a) the Models of Activity, for instance the model of
Collier et al. [5]; b) the Ligand-Receptor Models, for instance
the model of Owen and Serratt [6], [7] and c) the Segmental
Models, for example the model of Webb et al. [15]. All of
which:

(i) are based on differential equations, which makes them
difficult to analyze if the number of dependent variables
grows, since they demand the knowledge of many ex-
perimental parameters, which are typically not available;

(ii) except for the model type proposed by von Dassow et
al. [16], [17], “hide” the participation of the components
and intracellular mechanisms involved in the process
of juxtacrine signaling, for instance the participation of
certain critical genes and their corresponding regulation
mechanisms; that is, these models do not describe in
a detailed manner how these intracellular components
operate in the signaling process. This is done by “encap-
sulating” the influence of the intracellular components in
feedback functions, which makes these models focuses
on the binding events that which in the membrane.

Models discrete in both time and space, for instance the
model of Luthi et al. [14], also do not explicitly capture the
intracellular molecular interactions that occur in the process
of juxtacrine signaling.

In a “ideal” generic model (a framework) for JSS, we should
observe the following characteristics:

• a similar structure to of the models typically used by
biologists, so that it is intuitively strong to them;

• the capacity to represent several elements and their time
evolution present in JSS;

• rich and sufficiently comprehensive to capture several
types of molecular events (intra and extracellular) that
occur in the process of juxtacrine signaling, for in-
stance conformational modifications in membrane pro-
teins, protein-protein interactions that can occur in the
membrane or inside the cell, transcription, translation,
dependence between genes and post-translational mod-
ifications;

• a capacity of modular representation of the signaling
systems, because: a) the complexity of the signaling and
regulation networks suggests that its analysis demands
that the modeling methods are capable of treating parts of
the network as modules and b) several signaling networks
present groups of elements and mechanisms that present
operation and modular organization [18];

• capable of working over several orders of magnitude
in spatiotemporal scales, because signaling cellular net-
works operate with events whose answers vary from
tenths or hundredths of seconds (for instance, protein

modifications) to several minutes (transcriptional and
translational regulation, for example) [19];

• allow for integrating experimental data of different types
and sources.

Although the models of continuous time allows for a more
detailed description of the variation rates involved (for instance
of mRNA concentration and proteins), as already mentioned,
they demand the knowledge of experimental data not always
available (for instance values of kinetic constants). In addi-
tion, the discrete modeling of signaling systems [20] and of
regulation [21], [22] is already a relatively well established
activity.

In the following sections we describe a framework of
discrete modeling of JSS that, at the same time, contemplates
some of the characteristics mentioned above and can be used in
several situations and applications, in the context of juxtacrine
signaling process.

II. DESCRIPTION OF FRAMEWORK (METAMODEL J)

We propose a general formal model for juxtacrine signaling
systems named Metamodel J, as a class of dynamical systems
with discrete time and space and state variables which may be
discrete or continuous.

A. An overview of J

In J a tissue structure is represented by a regular lattice,
whose elements, denominated cells, have a 1 : 1 correspon-
dence with alive cells, as shown in Fig. 1. A lattice cell is an
autonomous entity whose state is defined by the state of its
intracellular components and membrane components.

Fig. 1. A two-dimensional hexagonal lattice example representing cells of the
neurogenic region, a group of ectodermic cells present during the neurogenesis
in D. melanogaster.

The intracellular components of a lattice cell are a class
of state variables that represent the states of the intracellular
molecular elements of the living cell. The components of lat-
tice cell membrane are another class of state variables, which
are divided in subclasses, and each subclass is associated
with a side (membrane segment) of the cell. The membrane
components represent the states of the molecular elements
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which are present in the segments of plasma membrane of
the living cell, as shown in Fig. 2.
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Fig. 2. All the lattice cells contain the same components: a class of state
variables associated with the intracellular molecular elements and a class of
state variables associated with the present molecular elements in each one of
the sides (membrane segments) of the cell. The number of sides depends on
the geometry and dimensions adopted for the lattice.

All the lattice cells contain the same components (intra-
cellular and membrane) and their states, for each discrete
time step, are determined by the application of the same
transition rules valid for every lattice cell. The transition
rules can be classified in intracellular (those which update the
intracellular components) and membrane (those which update
the membrane components).

The intracellular components along with their transition
rules represent the signaling nets and present intracellular
regulation in the living cell. The membrane components along
with their transition rules represent the signaling mechanisms
which operate in the plasma membrane of the living cell.

B. A more detail view of J

An M model in J corresponds to a dynamical system whose
general form is

M = (R,V, I, T ),

where R is a regular lattice, V is a finite set of variables
associated with each element of R, I is a set of initial
conditions associated with V and T is a set of transition rules.
In the following sections, the properties and restrictions that
define these components are better described.

1) Lattice characterization: A regular lattice R is a finite
periodic net of elements, denominated cells, in a (finite) space
of dimension d that is completely filled out by the cells. The
elements that characterize a lattice are: a) its dimensions (1D,
2D or 3D); b) its size, i.e., its number of cells; c) its topology;
d) the boundary conditions, namely the number of neighbors
of the cells that are located in the extremities (borders) of the
lattice (periodic or linear boundary).

2) Characterization of the cells and of V set: Given a
lattice R, a cell in R is identified by its relative position
p, represented by a point in the coordinated axes: p =
(x) ∈ N (for one-dimensional lattice), p = (x, y) ∈ N

2 (for

two-dimensional lattice) or p = (x, y, z) ∈ N
3 (for three-

dimensional lattice). In addition to its identifier, each cell p
in R contains a set of variables V = {E ,G,S,B,A}, whose
elements are described as follows:

• A finite set E of variables denominated intracellular sig-
naling and gene regulatory network input, (intracellular
network input for short). An element ek ∈ E is called
input and ek(t) ∈ E is called input value of ek in the time
t, t ∈ T, where T ⊂ N denotes the domain of the discrete
time and E ⊂ Z is the finite set of the possible values that
an input can assume. We represented the several values
of input ek(t) by a two-dimensional vector E.

• A finite set G of state variables denominated intracellular
metabolites and gene state in the intracellular signal-
ing and gene regulatory network (intracellular network
state). An element gk ∈ G is called state and gk(t) ∈ G

is called state of gk at time t, t ∈ T, where G ⊂ Z

denotes the finite set of the possible states that a gene or
intracellular metabolite can assume. We represented the
states gk(t) by a two-dimensional vector G.

• A finite set S of variables denominated intracellular
signaling and gene regulatory network output in short
we will call it intracellular network output. An element
sk ∈ S is called output and sk(t) ∈ S is called output
value of sk at time t, t ∈ T, where S ⊂ Z denotes the
set of the possible values that an output can assume. We
represented the various output values sk(t) by a two-
dimensional vector S.

• Associated with each cell in R, there is a finite set F ⊂
N

+ of segments representing the sides of the cell. The
number |F| of sides of a cell depends on the geometry
and the dimensions of the lattice.
To each side f ∈ F of each lattice cell two sets of
variables are associated:

– A finite set of state variables Bf , named state of
transmembrane signaling. An element bkf ∈ Bf is
called signaler and bkf (t) ∈ Bf is called signaler
state bkf at instant t, where Bf ⊂ Z is the set of the
possible states that a signaler can assume. The states
of the signalers are represented by a two-dimensional
vector Bf .

– A finite set Af of variables called state of environ-
mental signaling. An element ak

f ∈ Af is called
environmental signal and ak

f (t) ∈ Af is called value
of the signal environmental ak

f at instant t, where
Af ⊂ Z is the set of the possible values that an
environmental signal can assume. The environmental
signals represent not explicitly modeled external
events and may alter the state of the membrane
signalers. The states of the environmental signals are
represented by a two-dimensional vector Ap,f .

3) Definition of the Initial Conditions: The third component
of an instance of J corresponds to the set I of initial
conditions, from which the evolution of the system occurs.
The set I is defined as being the value that each variable, in

361

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



p−1

B
p−1,2

Bp,1 E
p

Gp S p
B

p

p,2
B

p+1

p+1,1

A
p,1

A
p,2

Fig. 3. Three cut-out cells (p − 1, p and p + 1) of a one-dimensional
rectangular lattice. The dotted line represents the membrane of the cells. The
cell p in this lattice has two neighbors: one to the left (p − 1) and one to
the right (p + 1). Bp,i denotes the vector of signalers B of the cell p in
side i, and, similarly,Ap,i denotes the vector of environmental signals A of
cell p in side i. Ep, Gp and Sp, denote, respectively, the inputs, the state
of the genes and/or intracellular metabolites, and the outputs of intracellular
network of the cell p. The arrows represent the influence relations among the
state variables.

each cell of R and on each side, assumes in the initial instant.
4) State Transitions: The state transition rules T , valid for

every cell in M , can be divided in the following classes:
Class Ψ
The updating of the state vector G, for every cell p ∈ R,

at each timestep, is made by a finite vector of functions

Ψ = [ψ1, ψ2, . . . , ψ|G|],

where ψk denotes how the gene and/or intracellular metabolite
gk, 1 ≤ k ≤ |G|, is updated in time, in other words, it describes
how the variable of state gk (for every p ∈ R) evolves in
discrete time steps.

The functions ψk : G
τ+1 × E

τ+1 → G are called functions
of transition of the intracellular network and are of the form

gk
p(t+1) = ψk(gu

p (t−x), · · · , gv
p(t−y), eq

p(t−x), · · · , er
p(t−y)),

where 1 ≤ u, v ≤ |G|, 1 ≤ q, r ≤ |E|, gk(t) ∈ G, ek(t) ∈ E

and 0 ≤ x, y ≤ τ , where τ corresponds to the earliest time
used by ψk.

Class Φ
Similarly, the updating of the vector of outputs S, is made

by a finite vector

Φ = [φ1, φ2, . . . , φ|S|],

where φk denotes how the output k, 1 ≤ k ≤ |S|, of the
intracellular network is updated in time, in other words, it
describes how the variable of output sk (for every cell p ∈ R)
evolves in discrete time steps.

The functions φk : G
τ+1 × E

τ+1 → S are called functions
of output of the intracellular network and are of the form

sk
p(t+1) = φk(gu

p (t−x), · · · , gv
p(t−y), eq

p(t−x), · · · , er
p(t−y)),

where 1 ≤ u, v ≤ |G|, 1 ≤ q, r ≤ |E|, gk
p(t) ∈ G, ek

p(t) ∈ E,
and, like in the previous case, 0 ≤ x, y ≤ τ .

Class Θ
The updating of the vectors of states Bp,f , 1 ≤ f ≤ |F|

and p ∈ R, is made by the vector

Θ = [θ11, · · · , θ1|F|, · · · , θ21, · · · , θ2|F|, · · · , θ
|Bf |
1 , · · · , θ|Bf |

|F| ],

where θj
f denotes how the membrane signaler j, 1 ≤ j ≤

|Bf |, of the side f , is updated in time, in other words, it
describes how the variable of state bjf (for every cell p ∈ R)
evolves in discrete time steps. We note that bj may be updated
independently at each side of the cell.

The functions θj
f : S

τ+1 × (Bτ+1
1 ∪ · · · ∪ B

τ+1
|F| ) × B

τ+1
f ×

A
τ+1
f → B are called output and neighborhood functions of

signaling and they are used to update the signalers bjp,f in the
following manner:

bjp,f (t+ 1) = θj
f ( sk

p(t− x), · · · , sl
p(t− y),

bmz,u(t− x), · · · , bnw,v(t− y),
bmp,f (t− x), · · · , bnp,f (t− y),
aq

p,f (t− x), · · · , ar
p,f (t− y) ),

where 1 ≤ k, l ≤ |S|, 1 ≤ q, r ≤ |Af |, 1 ≤ m,n ≤ |Bf |,
z, w ∈ V (p) = {v : v is neighboring p in R} (that is, z and
w are neighboring cells to the cell p), 1 ≤ u, v ≤ |F|, and
0 ≤ x, y ≤ τ
Ep represents internal events — a signal of an alternative

signaling pathway or the constitutive expression of genes,
for instance — and Ap,f represents external events — an
environmental signal, for instance the temperature variation.
They represent independent signals and are not explicitly mod-
eled but may alter the state of the genes and/or intracellular
metabolites. Their values are fixed in the model definition and
are not altered by any system transition rule.

In Fig. 3 we present a schematic representation of the
restrictions in the influence relationships — defined by the
classes Ψ, Φ and Θ — for the case of the one-dimensional
rectangular lattice.

C. Stochastic Models in J

In J it is possible to define both deterministic and stochastic
models. We denominate an instance of J as being deterministic
if only one transition function is associated to each variable
of the model. If the model is stochastic, we define a list of
functions per variable and we associate a probability to each of
the functions. This implies that in the definition of a stochastic
model it is necessary to define a finite set of functions F and
a distribution of probabilities PF in F .

III. IMPLEMENTATION

For building, simulating, analyzing and refining models in
J we have implemented a software, named J System (JS),
composed of three modules (see Fig. 4) :

a) A modeling setting; the main components of this module
are an interface for edition and visualization of models
and a system for verification of their consistency;
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b) A simulator of models in J;
c) An interface for visualization and analysis of simulations

and results, containing several components, such as a
viewer of cellular patterns and reports and descriptive
graph generators for the states behavior and evolution.

Analysis Environment

Simulator

Modeling  Environment

Dynamics

Patterning

User

Model

Refinements

Fig. 4. The global architecture of software SJ.

IV. APLICATIONS

Due to its generality, the metamodel J can have several
applications in different contexts, for instance:

i) in the modeling and analysis of formation of patterns in
juxtacrine signaling;

ii) in the study of methods of identification of units of
signaling and metabolic pathways induced by environ-
mental signals;

iii) in the simulation of cellular juxtacrine signaling and
regulation networks;

iv) in the reconstruction and in the structural and dynamic
analysis of networks of juxtacrine signaling.

In the following sections we showed the application of J
in the modeling of the elements and basic interactions (ex-
tracellular and intracellular) that participate of the neuroblast
segregation in D. melanogaster.

A. Delta-Notch na neurogenesis em D. melanogaster

The Notch pathway is a vital signaling pathway, present in
several events in the development of several organisms, e.g.,
in the neurogenesis in Drosophila [2], in the previous devel-
opment of vertebrates [23], [4], [24] and in the establishment
of boundaries between veins and interveins in the Drosophila
wing [25]. Signaling of the cell-cell type, mediated through
the Notch pathway, it is a mechanism that operates in several
situations where there are definitions of cellular fate.

One of the best known examples in which the Notch
pathway operates, is in the formation of the nervous system in
Drosophila, more specifically in the processes of neuroblasts
segregation and determination of sensory organ precursor

cells (that originate the sensorial bristles of the epidermis).
Soon after gastrulation, the cells of the neurogenic region (an
area of approximately 1,900 ectodermic cells formed by two
longitudinal strips of cells along the anteroposterior axis of the
embryo, in a position slightly dorsal in relation to the ventral
mesoderm) assume a bipontential character: they can become
neuroblasts — precursors of neural cells — or epidermoblasts,
that are the precursors to the epidermis. The distribution of the
neuroblasts and epidermoblasts in the neurogenic region, after
each cell assumed its fate, depends on elements of intracellular
regulation and cell-cell interaction.

The proneural genes (mainly of the achaete-scute complex)
assign to the ectodermic cells the potential for becoming neural
precursors. In the neurogenic region, cells expressing these
genes become clusters of cells (called proneural clusters).
Not all the cells of one neural cluster become neuroblast
and the process that leads to its specification involves lateral
inhibition: therefore after the formation of the clusters, all its
cells have the potential for becoming neuroblast, until one of
them (the future neuroblast) begins to express — through a
random event — genes of the achaete-scute complex in higher
levels than the others. This implies that this cell produces
a signal, transmitted through juxtacrine interactions between
Delta and Notch, which inhibits its neighbors from becoming
neuroblasts, by making it a neural precursor and the remaining
cells of the cluster become epidermic epithelial cells.

The architecture of this regulation network, its principal
components and its interactions (which we will call “canonical
network”) are schematized in the Fig. 5. Its main characteris-
tics ([26], [27], [28], [29]) can be summarized as follows:

– Delta is the ligand for the Notch receptor.
– When Delta activates Notch, the intracellular domain of

Notch (Notch intra) links to the Suppressor of Hairless
(SU(H)) transcription factor, that is from the CSL family

– The dimer SU(H)/Notch intra activates the transcription
of the genes of the Enhancer of split (e(spl)) complex
that codify for the transcriptional repressor E(SPL).

– E(SPL) represses the transcription of the proneural genes
achaete (ac) and scute (sc), that are the primary deter-
minant of the neural fate: cells with high concentrations
of the products AC and SC become neuroblasts; AC
and SC are transcription factors that contain a conserved
motif of the basic helix-loop-helix (bHLH) type. They
use the bHLH domain for dimerizing with other factors,
becoming active as dimers.

– AC and SC link each one of them to the Daughter-
less (DA) cofactor and, in the heterodimers condition
(AC/DA and SC/DA), they activate the transcription of
both to themselves and each other (see Fig. 5).

– AC/DA and SC/DA also activate the transcription of
the dl gene (that codifies for the Delta ligand) and of
the e(spl) gene, whose product (E(SPL)), as previously
mentioned, represses the ac and sc transcription .

– Thus, a loop is formed: a random event activates ac
and/or sc in a cell of the proneural cluster. They activate
dl, whose product (Delta) activates Notch in the neigh-
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boring cells, in the ones which, through the complex
SU(H)/N, e(spl) is activated that, consequently, represses
ac and sc.

– Delta represses the activity of Notch in the cell itself.
– e(spl) also promotes autorepression.
– The genes for Notch and DA have constitutive expres-

sion.

SU(H)

ac

E(SPL)

sc

AC

SC/DA

AC/DA

SC

DA

dl

e(spl)

+
P P+1

SU(H)/Notch_intra

Notch_intra Notch(receptor)

Delta

Notch_intra Notch(receptor)

Notch_intra

Delta

+

Delta

Fig. 5. Circles represents mRNAs, rectangles represents proteins, hexagons
represents protein complexes. Notch and DA have constitutive expression,
represented by ‘ + → Notch’ and ‘+ → DA’ , respectively. ‘X → Y’ denotes
that X activates Y and ‘X −• Y’ denotes that X inhibits Y.

B. A Boolean Model in J for Delta-Notch System

Based in the architecture suggested canonical network we
have built a new deterministic J model for neuronal precursor
patterning. It is formulated in terms of the presence and/or
absence of mRNAs, of the proteins and of the complexes
involved.

The assumptions of the model are: 1) the state of each
component is 0 or 1 (representing the absence or presence
of the correspondent substance); 2) the transition rules are
all logical functions that use the operators “AND”, “OR” and
“NOT”; 3) the transition rule associated with the transcrip-
tion of a gene is represented by a Boolean function of the
state of its activators and inhibitors; 4) the transition rule
associated with translation of a protein is represented by a
Boolen function of the state of the correspondent mRNA;
5) the transition rule associated with the binding of ligands
to receptors in the membrane is represented by a Boolen
function of the state of the free ligands and free receptors
in the membrane; 6) transcription of a gene occurs if its
activators are expressed and its inhibitors are not; 7) the effect
of the transcriptional activators and inhibitors is not additive;
8) the effect of the transcriptional inhibitors is dominant in
relation to the activators; 9) transcription and translation are
state functions of an ON/OFF type; 10) if transcription is ON,
mRNAs are transcribed in a one time step; 11) if translation is
ON, proteins are translated in a one time step; 12) if binding is
ON, ligand/receptor complex are formed in one time step; 13)
mRNAs decay in a step of time if they are not transcribed; 14)

transcription factors and other intracellar proteins undergoing
some type of post-translational modification decay in one time
step if its correspondent mRNAs are not present and 15)
ligand/receptor complexes in the membranes decay in a time
step if free ligands and free receptors are not present in the
membrane.

The description of model is as follows:

(a) We have mapped the cells of the neurogenic region
in a two-dimensional lattice R with periodic boundary
conditions and containing 1936 hexagonal cells.

(b) In regards to the variables, to maintain adherence to the
notation of Fig. 5 we have done the following:

• G = {Notch intra, SUH/Notch intra, espl, ESPL,

ac, sc, AC, SC, ACDA, SCDA, dl, DA, SUH};
• we did not adopt discrimination in the sides of

the cells, i.e., we assumed that each cell has
only one side (F = {1}), so that in each
cell we have only one set of signalers B1 =
{Delta,Notch,Notch/Delta};

(c) We did not include environmental signals in the model;
(d) In relation to the transition rules, we have done the

following:
• Notch intrap[t] = Notch/Deltap[t − 1].
• DAp[t] = 1 (constant input representing the constitutive

expression of DA).
• SUH/Notch intrap[t] = Notch intrap[t − 1] ∧

SUHp[t − 1] ∧ Deltap[t − 1] .
• SUHp[t] = SUH/Notch intrap[t − 1].
• esplp[t] = (SUH/Notch intrap[t − 1] ∧ ACDAp[t −

1] ∧ SCDAp[t − 1]) ∧ ESPLp[t − 1].
• ESPLp[t] = esplp[t − 1].
• acp[t] = ESPLp[t − 1]∧SUH/Notch intrap[t − 1]∧

SCDAp[t − 1] ∧ ACDAp[t − 1].
• scp[t] = ESPLp[t − 1]∧SUH/Notch intrap[t − 1]∧

SCDAp[t − 1] ∧ ACDAp[t − 1].
• ACp[t] = acp[t − 1].
• SCp[t] = scp[t − 1].
• ACDAp[t] = ACp[t − 1] ∧ DAp[t − 1].
• SCDAp[t] = SCp[t − 1] ∧ DAp[t − 1].
• dlp[t] = ACDAp[t − 1] ∧ SCDAp[t − 1].

• Deltap[t] = dlp[t − 1].
• Notchp[t] = 1 (constant input representing the constitu-

tive expression of Notch).
• Notch/Deltap[t] = Notchp[t − 1] ∧ neighborhood,

where

neighborhood =




1 if
∑

v∈V (p) Deltav[t − 1]) ≥ 4,

0 otherwise,

and V (p) is the set of the neighboring cells to the cell p.

1) Simulations and Preliminary Results: We made some
preliminary experiments simulating the process of neuronal
precursors segregation. For this, we assumed that there are two
interesting states in the model: the initial state, corresponding
to the situation in which all the cells are bipotents, and the
final, corresponding to the situation in which the neuroblasts
are segregated.

To represent the initial state we assigned to every cell, at t
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= 0, the logical value “1” for the Notch and DA variables and
“0” for all the other state variables.

Once we simulated the model, we observed that the system
remained in the steady state regarding the initial conditions
(bipotent cells). In the sense used by Wensche [30], this state
and its attraction basin correspond to a cell type. We then
introduced (by independent signals) several flotations in the
state of some model component, starting from the initial state.
We used these flotations in order to reproduce in silico the
best results in wet experiments well described in literature.

At first, we chose a random cell from the neurogenic region
and we increased the expression levels of ac and sc. As
expected this cell becomes a pro-neural precursor (defined
by the DL state) and in time it inhibits its neighbors from
changing in the same way. In these conditions, the system
enters a stationary state, which suggests that this state and
its attraction basin correspond to another cell type and that
the trajectory followed by the model represents the related
differentiation pathway.

Afterwards, we performed simulations varying the levels of
ac and sc expression in random cells and at random timesteps.
In these cases, we observed that:

• the cells in which the levels of ac and sc expressions
were disturbed (augmented) behaved as in the previous
simulation, became neuronal precursors.

• when the system enters in steady state we verified that:
a) lateral inhibition is fully observed (there were not two
neuronal precursors neighboring each other) and b) from
the total of cells, 24% became neuronal precursors, which
is compatible with the expected results. Fig. 6 shows the
pattern obtained.

Finally we simulated the knock out of ac and sc in two
ways: first we fixed e(spl) in “0” and then we did the same
for SU(H). In both cases we obtained an equivalent pattern
to the Notch mutant, with an excess of neuroblasts. We should
note that these observations are compatible with experimental
results [26], [2], [4].

Fig. 6. Example of patterning of the neuronal precursors where we can verify
the occurrence of lateral inhibition. The cells painted by white correspond to
the epidermoblasts and by blank correspond to the neuroblasts.

V. DISCUSSION AND CONCLUSION

The organization adopted for the metamodel in J was
designed to possess a structure similar to the one of the models
commonly used by the biologist community for JSS since we
consider this a desirable characteristic. We expect that the
structure of the lattice (where each cell is an autonomous
entity with the same components) representing the tissues,
the grouping of the state variables in intracellulars and of
membrane and the imposed restrictions in the transition rules
(distinguishing the representation of the events that occur in
the membrane of those that occur in the intracellular medium),
might have offered the similarity that we long for.

The formal models for JSS developed so far focus on the
binding events between ligands and receptors that occur in
membranes of communicating cells. J is capable of represent-
ing the participation of the intracellular components, which
extends the representation power of the current JSS mod-
els, allowing the most detailed representation of the several
structures (membrane and intracellular ones) and present in-
teractions in the transduction pathways, specially those related
to gene regulation involved in the formation of patterns in
juxtacrine signaling.

The capacity to operate with different scales of time is
guaranteed in J through the construction of delay cycles
modeled in the system memories. For that it is necessary
to define, for the specific model in subject, its unit of time,
that corresponding to a discrete timestep. This unit can be
defined as being, for instance, the interval of time of the fastest
considered molecular event. The “amount of time” of the other
considered events will always be proportional (larger than or
equal to) the established unit.

Good models of juxtacrine signaling should be capable
of treating the inhomogeneous distribution of ligands and
receptors in the membranes, because it influences polarization
events, for instance in dorsoventral polarization in the eyes of
Drosophila [3]. In this sense, the division of the membrane
in segments (sides) adopted in J it is important to allow the
representation of the located accumulation of proteins, which
can occur by local protein synthesis, active transport from
intracellular stores and selective degradation [31].

J can “emulate” other formal models of juxtacrine signaling,
as long as these are originally conceived with the discrete time
and space or it can be converted into a discrete approach.
We know that numeric methods of resolution of differential
equations correspond to conversions of this type; in addition,
many systems of differential equations can be approximated
by a system of equations of differences. Then we conclude
that J can be applied in the emulation of a wide range of
models, which reinforces its generality.

There is some similarity between J and P systems [32],
which are a class of distributed and parallel computational
devices. These devices are strongly inspired in cellular or-
ganization of membranes. In particular, a P systems variant,
called PBE systems [33], definitely present several similarities
to J, for instance: a) present a structure composed of regions
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delimited by several membranes, hierarchaly related; b) they
have transition rules (intern to regions) and communication
rules (sensitive to what occurs in the membrane boundaries)
and c) allows the environment representation (elements placed
outside the regions).

P systems are universal computational devices, that is,
equivalent to Turing Machines, so in principle, any model in J
may be simulated in a P system device. Nevertheless, despite
the similarities mentioned, we should note that: a) mapping
a J model into a P system is not always an easy task; b)
in addition, the resulting P system could lose the structural
similarity with biological systems, making it too abstract for
biologists.

We illustrated the use of J in the modeling of the Delta-
Notch system and its participation in the patterning of neuronal
precursors. In the simulations, we have obtained compati-
ble results with the expected patterns: occurrence of lateral
inhibition with, between 20 and 30% of the cells having
adopted primary fate (neuroblasts) and between 70 and 80%
cells having adopted secondary fate (epidermoblasts). How-
ever, refinements in the model are still necessary as well as
new improved simulations and analysis in order to identify
structural and functional properties in the model proposed for
the Delta-Notch system.

Natural deficiencies of J are those intrinsic to the discrete
modeling. In addition, due to its abundant details, the complex-
ity of computational time and space involved can represent a
drawback of J, depending on the model type that is created.
However, it is interesting to observe that juxtacrine signaling
is typical in the initial phases of the embryonic development,
where the amount of cells is relatively small; what is typically
complex is the signaling pathway. Although we have not
had problems with the simulations that we have done, it is
reasonable to suppose that in situations where the amount of
cells is immense, the computational demand can grow swiftly.
This suggests that extensions of this work can be related
to more efficient computational solutions. For instance, the
structure of the model supplies a natural ease in performing
its paralleling, which could be explored.

Other possible extensions for this work include: a) exploring
dynamical properties of J models, such as the development of
an algorithm for automatic generation of attraction basins for
small boolean models; b) application of J for a more detailed
analysis of the Delta-Notch system, which could incorporate
multi-level variables and environmental signals and c) appli-
cation of J to model and to analyze other biological events,
for instance the planar polarity generation in ommatidia [3].
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