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Abstract— We applied Support Vector Machines to the predic-
tion of the subcellular localization of transmembrane proteins,
and compared the performance of different sequence kernels on
this task. More specifically we measured prediction accuracy,
computation time, number of kernel evaluations and number
of support vectors for the Spectrum, the full Spectrum, the
Wildcard, the Mismatch, the Local-alignment and the Residue-
coupling kernel. The Local-alignment achieved the highest pre-
diction accuracy, with an Matthews correlation coefficient of 0.51,
closely followed by the Mismatch kernel. However, the Local-
alignment kernel was also the most time consuming kernel and
seven times slower than the Mismatch kernel. The Spectrum
kernel was the fastest kernel but linked to the highest num-
ber of support vectors and kernel evaluations. The Residue-
coupling kernel showed the lowest number of support vectors
and kernel evaluations. No correlation between the number of
support vectors and prediction accuracy could be observed. A
localization predictor (TMPLoc) has been made available at
http://pprowler.itee.uq.edu.au/TMPLoc.

I. INTRODUCTION

Tn contrast to soluble proteins, which reside in the cy-
tosol or lumen of compartments, transmembrane proteins are
inserted into the membranes of organelles. They perform a
variety of essential functions as channels, pumps, receptors,
and energy transducers, and are therefore a major target for
drug development [1]. It is estimated that about 20%-30% of
a proteome are transmembrane proteins [2] but structure and
function are identified only for a fraction of them [3].

Determining the subcellular localization of a protein is
a first step in revealing its function. The vast majority of
current prediction algorithms however, are designed for soluble
or prokaryotic proteins1 and achieve low accuracies when
applied to transmembrane proteins in eukaryotes. Inspired by
the success of the recently developed string and sequence
kernels for support vector machines, we were interested in
the performance of these kernels for subcellular localization
prediction of transmembrane proteins.

More specifically we examine the Spectrum kernel [4], a
variant of the Spectrum kernel named full Spectrum kernel, the
Wildcard kernel [5], the Mismatch [6], the Local-alignment
kernel [7] and the Residue-coupling kernel [8] with respect
to prediction accuracy, computation time, number of kernel
evaluations and number of support vectors.

1Note that the number of localizations in prokaryotes is much more
limited than in eukaryotes. For instance, in Gram-negative bacteria the typical
locations predicted are the inner and outer membrane only.

We focus our study on localization prediction of transmem-
brane proteins for organelles along the secretory pathway,
utilizing data of the recently published LOCATE database
[9]. In the following sections we provide background mate-
rial concerning the biological application, current prediction
algorithms and kernel methods.

A. Biological background

Cells of eukaryotes are divided into several functionally
and structurally different membrane-bound organelles, that are
essential for the metabolism of the cell. A highly specialized
transport and sorting machinery is required to distribute pro-
teins between these locations. The transport follows mainly
the secretory and endocytic pathways, that comprise the fol-
lowing organelles: endoplasmic reticulum, Golgi apparatus,
endosome, lysosome and plasma membrane [10] (see Fig. 1).

Fig. 1. Flow diagram of secretory, endocytic and retrieval pathways.

The secretory pathway controls the flow of newly synthe-
sised proteins from the cell interior to all organelles along the
path to the cell exterior. The reversed direction of transport,
where proteins are internalized from the outside of the cell,
is called the endocytic pathway. Retrieval pathways transport
escaped proteins back to their original target location.

Proteins can be mediated to the interior of an organelle
(soluble proteins) or bound to the membrane of a compartment
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(membrane proteins). The most common class of membrane
proteins are α-helical transmembrane proteins, that are in-
serted into the membrane. The membrane spanning regions
form α-helices and the protein can pass through the membrane
once or multiple times (see Fig. 2).

Fig. 2. Single- and multi-spanning transmembrane proteins inserted into the
membrane.

B. Prediction algorithms

The early observation of Nakashima and Nishikawa [11],
that the overall amino acid composition differs significantly
between proteins of different subcellular localizations, has in-
spired the development of a multitude of prediction algorithms.
Since our focus is on kernel methods, we will discuss only
related approaches. So far only one method by Chou et al. [12]
has been published that specifically predicts the subcellular
localization of transmembrane proteins in eukaryotes. All other
methods target soluble or prokaryotic proteins.

SubLoc [13] is a predictor that calculates the amino acid
composition of a sequence and employs a support vector
machine with an Radial Basis Function (RBF) kernel to assign
subcellular localizations to soluble prokaryotic and eukaryotic
proteins.

PLOC [14] is composed of 12 support vector machines and
uses a jury decision to discriminate between 12 subcellular
locations. The input features are the single and the pair amino
acid composition and the best result was achieved with an
RBF-kernel.

Esub8 [15] utilizes a support vector machine with an RBF-
kernel and tries to take the order of sequence residues into
account by splitting the sequence in two halves and calculating
the amino acid composition for the first and the second part
of the proteins.

The CELLO software [16] characterizes proteins by four
different amino acid compositions: single amino acids, amino
acid pairs, amino acid triplets over a sub-alphabet and com-
positions for sections of the sequence. The system consists of
40 support vector machines, using RBF kernels, and predicts
locations in Gram-negative bacteria only.

An interesting approach has been taken by Nair and Rost
with the LOCtree system [17]. In this model the architecture of
the sorting machinery is mimicked by a binary decision tree
where each node is a support vector machine that controls
the path of a sequence through the tree. The branches of
the tree represent intermediate stages in the sorting process

while the nodes are emulations of the decision points in the
sorting machinery. The best performance was achieved with
RBF kernels.

Guo [8] introduced the residue-coupling model that encodes
a sequence by compositions of gapped amino acids pairs
over a range of gap sizes. This approach achieved very high
prediction accuracies (88.9% on a eukaryotic dataset), utilizing
support vector machines with RBF kernels.

Matsuda et al. [18] split the amino acid sequence into
N-terminal, middle and C-terminal part and calculated the
amino acid composition, the pair amino acid composition and
a frequency distribution over distances between amino acids
with similar physicochemical properties (basic, hydrophobic
and other) to represent a protein. They applied support vector
machines with RBF kernels and reported prediction accuracies
similar to Guo’s approach.

The only predictor for eukaryotic membrane proteins that
we are aware of is based on amino acid composition and
employs a least Mahalanobis distance classifier [12]. In this
paper Chou et al. extracted a data set with 2105 membrane
proteins localized at nine different organelles from Swiss-
Prot (Release 35.0) and reported an overall jackknife accuracy
of 65.9%. Since the data set was only weakly redundancy-
reduced and contained different proteins types and subcellular
locations, these results are not comparable with ours. We
compiled a recent, strictly redundancy reduced data set of five
locations, that contains transmembrane proteins only.

C. Kernel methods

The classical way to represent data for machine learning
algorithms is as a feature vector. For instance, an amino acid
sequence can be described by a vector of its amino acid
frequencies. This approach forces sequences to be encoded
by a fixed number of features, even if the sequences are of
variable length. Kernel methods circumvent this problem by
representing data through a set of pairwise comparisons.

More precisely, the mapping φ : X → F of sequences x ∈
X into a feature space F is replaced by a kernel function k :
X ×X → �. A data set S = (x1, . . . , xn) is then represented
as a n×n matrix of pairwise comparisons kij = k(xi, xj) [19].

Efficient and successful instantiations of kernel methods are
Support Vector Machines (SVMs). Let (y1, . . . , yn), with y ∈
{−1, +1}, be a set of class labels associated with samples
(x1, . . . , xn) in S, then SVMs utilize the following decision
function f to classify a query sample x:

f(x) = sgn

(
n∑

i=1

αiyi k(xi, x) + b

)
. (1)

Equation 1 defines a hyperplane in kernel space, that is
optimized by the training algorithm to separate the samples of
the two classes. For a query sample x, f(x) returns +1 or −1
to indicate the class the sample is predicted to belong to.

The offset b and the Lagrange multipliers αi are parameters
of the hyperplane that are computed during the training of the
SVM. Note that only samples xi with αi �= 0 contribute to
the classification. These samples are called support vectors. To
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train SVMs highly efficient algorithms have been developed
that solve a quadratic, constrained maximization problem:

W (α) = −1
2

n∑
i=1

n∑
j=1

yiyjαiαjk(xi, xj) +
n∑

i=1

αi

subject to

{∑n
i=1 yiαi = 0

0 ≥ αi ≥ C for i = 1, . . . , n.

(2)

Apart from the kernel and its parameters the only user
parameter of the algorithm is the complexity parameter C,
that regulates the trade-off between the complexity of the
classification boundary and the misclassification error. SVMs
are binary classifiers by nature. Multi-class problems are
typically solved by reformulating them as multiple binary
classification problems and training a set of binary SVMs in
a one-versus-one or one-versus-rest scheme [19].

II. METHODS

In this section we provide details of the SVM employed,
introduce the kernels examined and describe the data set that
our experiments were based on.

A. Support Vector Machine

For all experiments we utilized the SVM algorithm of
the WEKA library [20], that implements Platt’s Sequential
Minimal Optimization (SMO) [21] with an improvement by
Keerthi [22]. We extended the SVM implementation in WEKA
to allow for arbitrary kernel functions and added caching of
the kernel matrix. Following Schölkopf et al. [19] the kernel
matrix was normalized with

k′
ij =

kij√
kiikjj

. (3)

Multi-class problems are solved with a one-versus-one
approach in WEKA. For the five class problem (described
below), ten binary classifiers are therefore created, trained and
tested. The reported kernel evaluation times, number of kernel
evaluations and number of support vectors were calculated as
the sum over all ten binary classifiers.

The prediction performance of the classifier was measured
by the Matthews correlation coefficient (MCC) – a variant
of the classical Pearsons correlation coefficient for discrete
data [23], that is frequently used in the context of subcellular
localization prediction. The MCC is defined as

MCC =
tp · tn − fp · fn√

(tp + fn)(tp + fp)(tn + fp)(tn + fn)
(4)

with tp is the number of true positives, fp is the number of
false positives, tn is the number of true negatives and fn
is the number of false negatives. An MCC of +1 indicates
perfect correlation, an MCC of −1 perfect anti-correlation and
an MCC of zero no correlation at all.

To assess the significance of differences in prediction per-
formance we also report the 95% confidence interval for the
MCC:

δ95 = ±1.96 · σmcc√
n

(5)

with σmcc is the standard deviation of the MCC and n is the
number of folds of the cross-validation test.

B. Kernels

In this section we introduce the sequence kernels utilized
in this study. We use the following terminology: A protein
sequence s is described as string of symbols drawn from a 20-
letter amino acid alphabet A. A section of l consecutive amino
acids in the sequence is called an l-mer and the amino acid
composition of a sequence is the frequency distribution over
the symbols of the sequence. Kernel parameters are denoted
in parentheses.

Spectrum(l): The spectrum is a vector over all possible l-
mers that can be generated from the symbols in A. It contains
the frequencies of the l-mers contained in sequence s. The
kernel function is defined as the dot product between the
spectra of two sequences [4]. The kernel value is large if two
sequences share a large number of l-mers. Note that the kernel
function can be computed very efficiently due to the increasing
sparseness of longer l-mers.

Full-Spectrum(l): An obvious extension of the Spectrum
kernel is a full Spectrum kernel that is composed of spectra
with l-mer of increasing length. In contrast to the Spectrum
kernel it contains not only l-mers for one specific choice of
l but all l-mers from one up to l. Apart from this difference
the full spectrum is calculated exactly the same way as the
spectrum.

Wildcard(l, m): The Wildcard kernel [5] is also an exten-
sion of the Spectrum kernel. The amino acid alphabet A is
augmented by a wildcard symbol ∗ that can match any amino
acid. The wildcard spectrum of a sequence is then a vector
over all possible l-mers that can be drawn from A ∪ ∗ and
contains at most m wildcard symbols. The kernel function
is computed as the dot product of two wildcard spectra. For
m = 0 the Wildcard kernel is identical to the Spectrum kernel.
Note that the mismatches within an l-mer are position specific
when two l-mers are compared for counting.

Mismatch(l, m): The Mismatch kernel [6] can be seen as
an extension of the Wildcard kernel that lifts the limitation to
position specific mismatches within the l-mers. The mismatch
spectrum of a sequence is a vector where each element
contains the frequency of a specific l-mer and all other l-
mers with no more than m mismatches. The kernel output is
calculated as the dot product of the mismatch spectra. Note
that for m = 0 the Mismatch kernel, Spectrum Kernel and the
Wildcard kernel are identical.

Residue-coupling(r): The Residue-coupling kernel [8] uses
the frequency distribution of amino acid pairs with varying
gap sizes between the symbols. A sequence is represented as
a vector that contains the frequencies of all its gapped amino
acid pairs with gap sizes from zero to r, where r is the rank.
For r = 0 the vectorial representation of a sequence within
the Residue-coupling kernel and the spectrum for l = 2 of a
sequence are equivalent. In accordance with the kernels above
we used the dot-product for the kernel function to allow a
more stringent comparison of the different kernels, while the
original implementation by Guo [8] employs a Radial Basis
Function.2

2Note that all of the aforementioned kernels could be extended with an
RBF function.
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Local-alignment(β): The Local-alignment kernel com-
putes the sum over all local alignments between two se-
quences [7]. The alignments are quantified using the BLO-
SUM62 substitution matrix [24] to compare amino acids, a
gap opening penalty is imposed every time a gap needs to
be created to improve the alignment, and a gap extension
penalty is used for each extension of the gap required to
improve the alignment. A further parameter, β, controls the
contribution of non-optimal alignments to the final score. The
benchmark tests were conducted on a ported version of Saigo
and colleagues’ [7] freely available Local-alignment kernel
source at http://cg.ensmp.fr/˜vert/software/
LAkernel/LAkernel-0.3a.tar.gz.

C. Data set

There are little data for transmembrane proteins with lo-
calization annotation. We took advantage of the LOCATE
database [9] that has recently been made publicly available.
LOCATE contains mouse proteins derived from the mouse
transcriptome of the FANTOM3 Isoform Protein Sequence set
(IPS7), enriched by membrane organization and subcellular
localization annotation. We downloaded the XML version
(LOCATE whole db.xml, 15.08.2005) of the database and
extracted all transmembrane proteins with a unique subcellular
location. The dataset was then filtered for proteins targeted
to organelles along the secretory pathway: plasma mem-
brane (PM), endoplasmic reticulum (ER), Golgi apparatus GO,
lysosome (LY) and endosome (EN). These are the five classes
that predictor is expected to discriminate between.

Amino acid sequences of related (homologous) proteins
can be highly similar. This can lead to an overly optimistic
estimation of the true prediction performance. Protein data
are therefore redundancy reduced by removing similar and
identical samples from the data set. We used BlastClust [25]
for this purpose and eliminated all sequences with a sequence
similarity greater than 25%. The final data set consisted of
1287 sequences (839 plasma membrane, 249 endoplasmic
reticulum, 139 Golgi apparatus, 35 lysosome, 25 endosome).

III. RESULTS

In this section we discuss the results (prediction accuracy,
computation time, number of kernel evaluations and number
of support vectors) for the Spectrum, the full Spectrum,
the Wildcard, the Residue-coupling kernel and the Local-
alignment kernel. All following results are five-fold cross-
validated results on the test set, if not stated otherwise.

To achieve a fair comparison between kernels we optimized
the complexity parameter C and kernel specific parameters in
preliminary runs. Since an exhaustive parameter search on the
complete data set is too time consuming, and in an attempt to
lessen the risk of over-fitting, we performed parameter sweeps
on a reduced data set that contained only two of the five classes
(249 endoplasmic reticulum, 139 Golgi apparatus).3

3Reducing the data set by taking a fraction from all classes was a less
favorable option, due to the small number of lysosomal and endosomal
proteins.

In the first stage, we searched for an optimal C value. We
measured the MCC for kernels with reasonable4, but not nec-
essarily optimal, parameter settings (Spectrum(3), FullSpec-
trum(6), Wildcard(4,1), Mismatch(4,1), Residue-coupling(6))
over C values in the range [0.1, 10]. The Local-alignment
kernel was excluded from this evaluation, since it is very time
consuming to run. Figure 3 depicts the results of this parameter
sweep. The prediction performance settles for most kernels at
around C = 5 and this C-value was therefore used in all
subsequent experiments.
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C
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Full Spectrum(6)   
Wildcard(4,1)      
Mismatch(4,1)      
Residue−Coupling(6)
mean               

Fig. 3. MCC of Spectrum(3), Full Spectrum(6), Wildcard(4,1), Mis-
match(4,1) and Residue-coupling(6) kernel over range of C values on two
class problem. Thick line is mean MCC. Results are on the test set, five-fold
cross-validated.

In the second stage, we optimized the kernels parameters
on the two class data set (using the established C = 5
value) and found the following settings to perform best
(according to highest MCC): Spectrum(4), FullSpectrum(13),
Wildcard(6,4), Mismatch(4,1) and Residue-coupling(8). Since
the Local-alignment kernel is very time consuming to run, we
did not perform a parameter sweep for this kernel and chose
a value of β = 0.5, for which Saigo et. al [7] achieved the
best performance for remote homology detection. The selected
kernel parameters and a C value of 5 were employed for all
subsequent experiments.

Table I shows the prediction accuracy (MCC) of the kernels
for each subcellular location. The last column contains the
overall prediction accuracy with the corresponding 95% con-
fidence intervals. The best performing kernel was the Local-
alignment kernel and the worst performing kernel was the
full Spectrum kernel. Note that the prediction accuracy of the
full Spectrum kernel is lower than that of the plain Spectrum
kernel. Evaluating an entire spectrum of l-mers with varying
length l was therefore not superior to exploting l-mers of one
length only.

Apart from the full Spectrum and the Local-alignment ker-
nel there is no significant difference in the overall prediction
accuracy of the other kernels. For lysosomal (LY) targeted

4The parameters settings were ”reasonable” in the sense that the kernels
showed good performance with these settings in preliminary, explorative runs.
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TABLE I

PREDICTION ACCURACY (MCC) FOR DIFFERENT LOCATIONS AND

KERNELS. RESULTS ARE ON THE TEST SET, FIVE-FOLD CROSS-VALIDATED.

KERNEL = KERNEL USED, ER = ENDOPLASMIC RETICULUM, GO =

GOLGI COMPLEX, PM = PLASMA MEMBRANE, EN = ENDOSOME, LY =

LYSOSOME. OVERALL = OVERALL MEAN MCC AND 95% CONFIDENCE

INTERVAL IN BRACKETS, HIGHER MCC MEANS BETTER PREDICTION.

Kernel ER GO PM EN LY Overall

Spectrum(4) 0.54 0.46 0.46 0.59 0.25 0.46 (± 0.04)

FullSpectrum(13) 0.55 0.46 0.49 0.39 0.18 0.42 (± 0.01)

Residue-coupling(8) 0.53 0.55 0.54 0.56 0.13 0.46 (± 0.05)

Wildcard(6,4) 0.55 0.48 0.49 0.59 0.25 0.47 (± 0.04)

Mismatch(4,1) 0.56 0.47 0.55 0.43 0.43 0.49 (± 0.06)

Local-alignment(0.5) 0.56 0.57 0.55 0.61 0.27 0.51 (± 0.04)

proteins, the accuracy is generally very low, except for the
Mismatch kernel that performs surprisingly well for this class.
It is known that lysosomal targeted proteins are experimentally
difficult to identify and the class samples seem to reflect this
difficulty. Why however, the Mismatch kernel performs so
much better remains unclear and requires further investigation.

For the endosomal class most algorithms achieve good
accuracies with the notable exception of the Mismatch kernel
that performs here under average, and the full Spectrum kernel
that performs worst. Also it is worth noting that the Local-
alignment kernel reaches its peak accuracy, and the highest
accuracy at all for the endosomal class with an MCC of 0.61.

TABLE II

COMPARISON OF KERNEL EVALUATION TIME (KET) IN MILLISECONDS,

NUMBER OF KERNEL EVALUATIONS (NKE) DIVIDED BY 106 , AND

NUMBER OF SUPPORT VECTORS (NSV). VALUES IN BRACKETS ARE THE

95% CONFIDENCE INTERVALS. OVERALL PREDICTION ACCURACY

(OVERALL) TAKEN FROM TABLE I.

Kernel KET NKE NSV Overall

Spectrum(4) 6.2 (± 0.3) 23.5 (± 0.6) 3824 (± 20) 0.46

FullSpectrum(13) 71.6 (± 2.4) 17.2 (± 0.4) 2778 (± 37) 0.42

Residue-coupling(8) 34.8 (± 1.2) 13.6 (± 0.8) 2127 (± 16) 0.46

Wildcard(6,4) 348.4 (± 10.6) 20.9 (± 0.5) 3419 (± 23) 0.47

Mismatch(4,1) 168.6 (± 2.0) 18.5 (± 0.4) 2837 (± 16) 0.49

Local-alignment(0.5) 1227.9 (± 28.8) 17.7 (± 0.6) 2854 (± 21) 0.51

Table II compares kernel evaluation time (KET), number
of kernel evaluations (NKE) and the number of support
vectors (NSV), together with the overall prediction accuracy
(Overall) for each kernel. Note that KET, NKE and NSV are
the summed values over the ten binary SVMs used to handle
the five class problem.

The computationally most demanding kernel was the Local-
alignment kernel, which was approximately 200 times slower
than the fastest kernel (Spectrum). In comparison with the Mis-
match kernel, that achieved very similar prediction accuracy,
the Local-alignment kernel was still seven times more time

consuming. With respect to the number of kernel evaluations
and support vectors, both kernels are very similar again. The
lowest number of kernel evaluations and support vectors was
achieved by the Residue-Coupling kernel, while the Spectrum
kernel showed the highest numbers. No correlation between
the number of support vectors and the prediction accuracies
could be observed.

To gain a better understanding of the typical prediction
errors we calculated the confusion matrix for the Local-
Alignment kernel (see Table III). Since the confusion matrices
for the other kernels are similar, we show only the matrix for
the Local-Alignment kernel, that achieved the highest overall
MCC

TABLE III

FIVE-FOLD CROSS-VALIDATION CONFUSION MATRIX FOR

LOCAL-ALIGNMENT KERNEL. ROWS REPRESENT OBSERVED LOCATIONS

AND COLUMNS REPRESENT PREDICTED LOCATIONS.

PM ER GO EN LY

810 25 4 0 0 PM

107 137 5 0 0 ER

63 16 60 0 0 GO

14 0 1 10 0 EN

29 3 0 0 3 LY

Most of the wrongly classified proteins are predicted as
targeted to the plasma membrane – this is to be expected since
the plasma membrane class is the majority class. Furthermore,
the plasma membrane is assumed to serve as default location
for proteins that lack specific targeting signals [26]. Proteins
targeted to the ER and to the Golgi complex are distinguished,
but with low accuracy. Lysosomal proteins however, are hardly
recognized at all. Apart from the plasma membrane, there
is little confusion between the predicted locations and no
confusion at all between lysosomal and endosomal targeted
proteins.

IV. CONCLUSIONS

We utilized different, recently developed sequence kernels,
namely the Spectrum, the full Spectrum, the Wildcard, the
Mismatch, the Local-alignment and the Residue-coupling ker-
nel, for subcellular localization prediction of transmembrane
proteins. For all kernels, prediction accuracy, kernel evaluation
time, number of kernel evaluations and number of support
vectors were measured.

The Spectrum, the Wildcard, the Mismatch and the Residue-
coupling kernel achieve very similar prediction accuracies. The
highest prediction accuracy, with an MCC of 0.51±0.06, was
reached by the Local-alignment kernel, but was not signifi-
cantly different from the Mismatch kernel (MCC = 0.49±0.06)
for instance. However, the Local-alignment kernel was also
the most time consuming kernel (200 times slower that the
Spectrum kernel), which makes it a less attractive choice. The
full Spectrum kernel performed worse than the plain Spectrum
kernel and took ten times longer to evaluate.The Residue-
Coupling kernel required the lowest number of support vectors
and kernel evaluations, while the Spectrum kernel showed
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the highest numbers. No correlation between the number of
support vectors and prediction accuracy could be observed.

TMPLOC, a predictor for the subcellular localization of
transmembrane proteins, has been made available at http:
//pprowler.itee.uq.edu.au/TMPLoc. The software
accepts sequences in FASTA format and predicts five sub-
cellular localizations: endoplasmic reticulum, Golgi apparatus,
endosome, lysosome and plasma membrane. It is trained on the
LOCATE data set and utilizes the Residue-Coupling kernel,
that offers a good trade-off between prediction accuracy and
evaluation time.

Further work will examine kernels that exploit topological
features of transmembrane proteins and extend the range of
predicted locations.
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