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Abstract – This paper investigates the solution of the feature 
selection problem in biochemical signal transduction pathways 
by examining the sensitivity of the features with respect to the 
model complexity using Basis Pursuit Regularization (BPR). 
Feature selection is effectively transformed into a continuous 
regularization problem with a characteristic 1-norm imposed on 
the parameter vector to penalize the models complexity. This 
technique makes possible the design of sparse models for the 
pathway data and because of the nature of the 1-norm it is 
possible to analyze the entire solution path (parameter locus) as 
the regularizer changes from zero to infinity.    

I. INTRODUCTION 
A major challenge in studying networks of cellular 

processes is the complex interactions among the genes, 
proteins or other compounds involved. The aim is to 
understand the nature of those interactions and consequently 
obtain some insight into the behavioral characteristics of the 
cell itself. Since the model of the process governing the cell is 
most of the times available, parameter estimation (and 
subsequently feature selection) is important in determining 
how exactly the various compounds interact. In the Nuclear 
Factor kappa Beta (NF-kB) cellular signaling pathway for 
example, the NF-kB is responsible for regulating numerous 
genes that are important for further inter and intra – cellular 
signaling, cell growth or apoptosis, making its precise 
understanding crucial [2].  

Although the model is known there is a need to detect 
exactly how the various proteins or enzymes interact and this 
is largely controlled by the parameters in the model. Feature 
selection will inevitably lead into a reduced representation of 
the pathway and based on the parameters selected further 
identification of the importance of each compound will 
follow. The importance of NF-kB for example ([1][2]), as a 
drug target can now be exploited since it has been identified 
as a key in chronic inflammatory and auto immune diseases 
[2].  

Previous work on feature selection in Systems Biology 
problems involved selecting the appropriate feature set based 
on parametric sensitivity analysis estimates [1] [2] [4] taking 
into account the oscillatory behavior of the systems output as 
it progressed through time. Although the results were very 
promising obtaining a final set of 9 features out of the total 64 
(in the best case in [2], experiments were made in the NF–kB 
signaling pathway in both [2] and [1]), there is no 
consideration for possible colinearities between the variables 
that might allow for a case of a variable that is initially 
contributing positively in the estimation process changing 
attitude after the addition of another (Simpson’s Paradox 
[13]). The novelty is largely on the study of the oscillations 

(of periods and magnitude) of the concentration of NF-kB 
and their use in deriving the sensitivity derivatives.  

In [1] there is an attempt to cover the co-dependency of the 
parameters but based largely on [2] the reduced 9 parameter 
model is considered and the pair wise interactions were 
studied.  Although providing promising results the questions 
that still remain is first, how the remaining parameters could 
have affected the original selection of the 9 used and second, 
how the remaining parameters could have affected the further 
dual modulation carried out, and of course the argument 
continuous recursively. A viable solution would be not to 
only employ pair wise modulation and examine the co-
dependency from the start.  

Most of the methods suffer from exactly that, none is 
emphasizing enough the fact that a variable might change 
attitude when another is added to the set. Discriminating 
features based on statistical measures such as t-test, the Fisher 
criterion [6][9][10][11], chi-test [10], Entropy feature ranking 
and PCA [10] [11][14] is hampered by the inherent 
assumption of normality (for optimal results) of the measures. 
Many of the methods act just as a preliminary stage towards 
classification and the bulk of the weight when achieving 
optimum performance is imposed on the classifier leaving the 
feature selection stage somewhat unattended. In addition, 
there are no objective criteria in selecting the optimal set or 
where to stop when ranking the features, there is no optimal 
rule for where to set the threshold other than trial and error. 

Basis Pursuit deals with a continuous optimization problem 
instead of a discrete search one, yielding a globally optimum 
result with the colinearity problem addressed by making use 
of the piecewise linear trajectory of the parameter progression 
as the regularizer varies from zero to infinity. This is a way of 
studying the sensitivity of the feature selection process as the 
regularizer changes its value. This property allows 
researchers to study the whole parameter locus examining 
how each feature will behave as the whole family of sparse 
classifiers is calculated.  

In the rest of the paper section II describes the model under 
consideration and gives the basics of its internal mechanism. 
Section III analyses the BPR method as a feature sensitivity 
tool outlining the importance of feature selection, what is 
meant by parameter activity and inactivity and how to obtain 
and use the parameter locus as a feature sensitivity tool with 
respect to the models complexity. Section IV is focused on 
the implementation of BPR in Ordinary Differential Equation 
(ODE) models as well as describing two commonly used 
techniques to work with the model in a more convenient way, 
namely the derivative and the integral approach, as well as 
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giving a detailed explanation as to why one preferred instead 
of the other. Section V includes the results obtained after 
applying BPR to the Raf Kinase Inhibitor Protein (RKIP) 
regulated on the Extracellular signal Regulated Kinase (ERK) 
pathway along with an analysis of the results of the feature 
selection process. 

II. THE RKIP REGULATED ERK  SIGNALING 
PATHWAY 

Pathway models in biology are representations of the 
biochemical reactions governing the cell and are formulated 
as a set of differential equations describing these interactions. 
The models mostly used are linear in their parameters which 
represent the kinetic constants or reaction rates with which 
each reactant is participating in the biochemical process. The 
model consists of a set of ODEs assuming that spacial 
localization is not important and diffusion effects are not 
considered explicitly [15] (if this was the case then Partial 
Differential Equation (PDE) models would be appropriate 
[15]). In addition, it is also assumed that there is substantial 
number of molecules of each substrate that participate in the 
reaction since differential equation models represent by 
definition averages [15]. Alternatively, if this was not the 
case (small copy number [15]) then stochastic modeling 
would be more appropriate [15]. 

 In general biochemical models can be non linear in the 
parameters (such as models describing the contact inhibition 
of Microcarrier Cultures [7] etc) suggesting non linear 
methods of optimization to be used. The work presented here 
will focus on cases where the system is linear in the 
parameters. 

For the simulation and testing of the validity of BPR the 
Raf Kinase Inhibitor Protein (RKIP) on the Extracellular 
signal Regulated Kinase (ERK) signaling pathway model is 
considered. Although the detailed specifics are mentioned in 
[5] a brief introduction will be included here as well.  

A. Model Description 
The RKIP regulated ERK model shown in Figure 1  and 

used in subsequent analysis is somewhat restricted in that it 
only represents the ERK pathway regulated by RKIP. In [5] 
six events were identified while here only the ones 
represented in the schematic (relevant to our analysis) are 
presented: 1) As the pathway evolves through time Raf-1 
(inhibited by RKIP) binds with RKIP with rate constants 1
and 2 to form the compound Raf-1/RKIP 2) free Raf-1 
phosphorylates MARK/ERK Kinase (MEK) and inactive 
MEK is converted into active MEK-PP. This binds to ERK 
and phosphorylates it into ERK-PP. ERK-PP interacts with 
Raf-1/RKIP complex and forms Raf-1/RKIP/ERK-PP, 3) 
RKIP-P is released from the complex Raf-1/RKIP/ERK-PP 
with rate constant 5 and binds with RP with rate constants 
9/ 10 respectively to form the complex RKIP/RP. The 

RKIP-phosphotase (RP) is artificially introduced here to 
complete the model and emphasize the dephosphorylation of 
RKIP-P into the original active RKIP.      

Previous work on this example [5] involved simple 
linearization of the difference equations and then solving for 

the parameters (since they enter in a linear fashion). Other 
approximations made to evaluate the derivatives on the LHS 
were based on polynomial interpolation of the simulated 
curves [5]. While this approach of approximation is valid 
theoretically it is very sensitive to noise which is increased in 
magnitude as the powers of the polynomial increase. The 
same effect on noise is true for the parameter estimation 
scheme where effectively if there is noise in the model it is 
considered to be normally distributed. The experimenter has 
to take a large number of estimates in time to combat this 
problem and in practice it is rarely used. In addition there is 
no feature selection stage/mechanism to qualitatively infer on 
the parameters. The sensitivity analysis is restricted in 
understanding the effects various compounds have on RKIP 
and ERK-PP concentration. 

1
1 1 2 2 3 5 4

2
1 1 2 2 3 1 1 1 1

3
1 1 2 2 3 3 3 9 4 4

4
3 3 9 4 4 5 4

5
5 4 6 5 7 7 8

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (

d x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d x t x t x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d x t x t x t x t x
d t

θ θ θ

θ θ θ

θ θ θ θ

θ θ θ

θ θ θ

= − + +

= − + +

= − + +

= − −

= − +

6
5 4 9 6 1 0 1 0 1 1

7
6 5 7 7 8 8 8

8
6 5 7 7 8 8 8

9
3 3 9 4 4 8 8

1 0
9 6 1 0 1 0 1 1 1 1 1 1

)

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

t

d x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d x t x t x t x t x t
d t

d

θ θ θ

θ θ θ

θ θ θ

θ θ θ

θ θ θ

= − +

= − + +

= − −

= − + +

= − + +

1 1
9 6 1 0 1 0 1 1 1 1 1 1

( ) ( ) ( ) ( ) ( )x t x t x t x t x t
d t

θ θ θ= − −

   

Figure 1 schematic representation of the RKIP regulated ERK signalling 
pathway. The rectangles represent the rate constants with which the various 
compounds (concentration in circles) interact. Solid arrows show 
bidirectional flow and thin ones single directions.  

The argument posed in this paper is that BPR could provide 
a coherent and robust analysis of the behavior nor only of two 

(1) 
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but all of the states in the model (as a result of the global 
study on feature selection) in relation to the parameters. 
Feature selection and as a consequence the study of its 
sensitivity with respect to the model complexity is therefore 
important in understanding exactly how RKIP affects the 
ERK pathway progression not necessarily based on 
sensitivity observations of the changes of the compounds 
concentrations but based on the parameters as well. In (1) and 
Figure 1 each parameter is with iθ  and each state (or circles 

in Figure 1) with ix  with the model having 11 states and 11 
parameters.    

III. FEATURE SENSITIVITY WITH BASIS PURSUIT 
REGULARIZATION. 

One of the most important problems when selecting 
variables to include in a model is the possible interaction 
between them and specifically in biochemical systems, how 
they affect the further interpretation of parameter 
significance. This section deals with the basics of the BPR 
method, how it is derived and how the parameter locus is 
used to interpret feature importance.  

A. The Importance of Feature Selection and Identifiability  
Feature selection in general plays a very important role in 

any regression scenario and it is basically a process where the 
designer selects which features/variables will benefit the 
performance of the system more improving the identifiability 
of the system. The goal is to clean the data from irrelevant 
features (due to redundancy or noise for example) in order to 
make subsequent analysis easier either for regression or for 
understanding the general structure of the data. Feature 
selection is largely an empirical process in that sometimes the 
designer has to rely on prior knowledge of the system, in 
general this is a discrete non convex NP complete problem 
and so it is not feasible to examine every possible set of 
features and suboptimal techniques need to be applied like 
Sequential Forward Selection and variants where the optimal 
feature set is constructed in a sequential fashion by adding the 
most informative features one at a time. BPR differs in that 
instead of a combinatorial search for the optimal feature set 
the optimization of an objective function is sought. One 
important aspect is that it provides a globally optimum 
solution and the feature selection problem is now a 
continuous optimization problem which although piecewise 
quadratic it can be converted into a full quadratic 
programming problem which makes the solution tractable 
[3][8]. 

B. Basis Pursuit Regularization 
In BPR feature selection is approached as a continuous 

optimization problem where the same formulation could be 
used to provide the solution for either a regression or a more 
general modeling problem. The important aspect of the 
algorithm is the use of a 1-norm on the parameter vector 
realizing in effect a penalty for the model complexity. This 
has the additional effect of introducing derivative 
discontinuities into the regularization function (when a 

parameter 0iθ = ) that forces some of the parameters to be 
zero (sparseness into the parameter space) [3][8][12]. 

The parameter locus for the whole family of sparse 
classifiers can be computed since the evolution of the optimal 
parameter vector is a linear function of the regularizer. 
Feature selection can now be addressed by studying each 
parameters progression as the regularizer changes from zero 
(Maximum Likelihood solution) to infinity (all parameter 
values are zero).  

Basis pursuit regression was proposed as a way of 
introducing sparseness into the feature space due to derivative 
discontinuities that appear when θ=0 (since the derivative of 
the objective function cannot be defined).  The objective 
function to be minimized is given by: 

21
2 2 1

( , , )f λ λ= − +D t y     (2)

where y is the m-dimensional model output vector, θ is the n-
dimensional parameter vector, λ is the non-negative 
regularization coefficient and D is the data set {Φ,t}. This 
objective is used directly with linear regression models: 

( )Ty = x
where the bias term associated with regression models is not 
present since it is assumed that the target vector and input 
features are all zero mean. The regression model assumes 
independent and identically distributed, zero mean, normally 
distributed measurement noise, where a Laplace prior 
distribution is placed on the parameter vector. 

An important aspect of the basis pursuit regression 
approach is that it implicitly performs feature selection in a 
globally optimal fashion.  It can be easily seen that the 
solution to (2) is unique and globally optimal, given a 
sufficiently varied training set. 

To see the properties of BPR and to help understand why it 
implicitly performs feature selection, consider the 
differentiation of (2) with respect to the parameter vector.  
This gives: 

( )1

sgn( )

sgn( )

T

T

λ

λ−

=

= −H t
     (3) 

where θ refers to the subset of active parameters, 
H=ΦTΦ  and t y= −  and is termed the residual vector.  
While this isn’t a direct solution, due to the presence of 
sgn(θ) on the right hand side, it shows that the normal 
equations are similar to the least squares normal equations, 
apart from the extra “shrinkage” term.  This partially shows 
the linear dependence of the parameter vector to the 
regularizer , the second part of (3) is obtained after solving 
for the optimal parameter vector θ. Equations (3) are not 
necessary for the application of the method; they are simply 
presented here to illustrate mathematically the piecewise 
linearity of the parameter vector trajectory. Although these 
equations show that the parameter vector moves linearly 
along various segments what remains is to further explain 
how these segments are defined. From (3) by removing the 
sign we have: 

Tλ λ1 1− ≤ ≤         (4) 
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which defines a (- , ) box within which all parameters should 
optimally reside. The change in the set of parameters entering 
and sometimes exiting the box (Simpson’s Paradox) defines 
the knots in the piecewise linear curve.   

C. Parameter Activity and Inactivity 
The box defined by (4) depicts an implicit set of 

active/inactive parameters at each iteration of the algorithm. 
The inactive parameters are defined as simply the ones that 
are contained within: 

Tλ λ1 1− < <     (5) 
while the active ones lie in the boundary or outside the box. 
The realization of activity/inactivity plays an important role 
in the efficient calculation of the parameter locus and is 
linked with the piecewise nature of the parameter trajectory. 
Furthermore, the active parameters will have non zero value 
or 0>  and the inactive ones 0= , it can also be shown 
that by considering small perturbations of the inactive 
parameters the inner product between their features and the 
residuals is bounded above by . sgn( )T λ=  gives a 

set of An  equality constraints that the active parameters must 

satisfy and (5) a set of 2 In  inequality constraints for the 
inactive ones. The change from active to inactive and vice 
versa signifies a knot in the parameter locus and the feature 
selection capability lies in studying the locus and selecting 
the appropriate  associated with the corresponding step in 
the algorithm progression.  

D. Regularization Parameter Locus 
One important feature for this class of regression models is 

that the parameter locus ( )λ  is a piecewise linear curve, 
stretching from ( ) 0∞ =  to the maximum likelihood 
solution at (0)  (assuming that H is non-singular).  The 
“knots” in the piecewise linear locus occur when a parameter 
changes state from inactive (in the box defined by(- , )) to 
active (outside or equal to ), or vice versa, and the 
dimension of the optimal solution in (3) changes.  When λ is 
locally perturbed and the active parameter set does not 
change, the normal equations in (3) demonstrate that the 
parameters are a linear function of λ, so the optimal 
parameter locus around that point is linear. It is possible to 
efficiently compute the complete optimal parameter locus by 
starting at 0=  and this is discussed further in [3][12]. 

Feature selection is based upon studying the behavior of the 
progression of the parameters as the regularizer  changes. 
Highly correlated or noisy features will in generally drop out 
in early stages of the parameters locus progression. In 
addition, in order to make a decision for whether a parameter 
aids the performance of the model or not it is important to see 
how the errors progress as  changes. It is then a straight 
forward task to infer on a parameters importance to the 
model. A more detailed description of the method will be 

presented in the section V where BPR is applied in the 
Michaelis-Manten signaling pathway. 

E. Parameter Locus Example 
From (3) it is evident that the parameter locus is piecewise 

linear as  changes from zero to infinity. To illustrate this 
effect graphically a simple example was chosen depicting the 
Homogeneous Gas Phase Reaction of NO with O2 (the 
Bodenstein – Linder model) : 

2 22 2NO O NO+ ↔
The ODE model is given by: 

2 2
1 2( )( )dx a x b x x

dt
θ θ= − − −

where i, i=1,2 are the parameters and a, b are constants 
given by 126.2 and 91.9 respectively. 

The example was chosen so as to illustrate the Simpson’s 
Paradox [13]effect where the addition of an extra parameter 
may cause a previously included one to drop out of the 
optimal feature set.  Figure 2 shows the parameter locus 
generated where it is clear from the early stages that although 

1 has initially a beneficial effect the addition of 2 causes it 
to temporarily drop out until the regularizer changes value 
accordingly. 

Figure 3 indicates how 1 changes with respect to 2.
Notice how this version of the locus changes sign from 
positive to negative showing the negative effect that one 
parameter has to the other as the regularizer changes value.
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Figure 2 The piecewise linear trajectory illustrated for two parameters as the 
regularizer was varied from zero to infinity. 
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Figure 3 The parameter locus showing the changes of one parameter with 
respect to the other.  

As the regularizer changes from zero to infinity the 
parameter locus can give a detailed picture of how the feature 
selection process is affected by the model complexity, the 
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appropriate model can now be selected based on information 
about the parameters individual behaviour and in relation to 
others.  

IV. APPLYING BPR TO ODE MODELS. 
In the previous section the basic theoretical aspects were 

covered leaving now the implementation part of the problem 
to be addressed. When all the states are measurable and when 
the parameters enter the model in a linear fashion one can 
often use shortcut methods to reduce the parameter estimation 
problem from an ODE system to an algebraic one [7]. 

Consider the general model formulation presented in (6) 
where the system now has m states and n parameters with x
being the states and  the parameters. A more compact 
representation in matrix format is given in (7) where x is the 
derivative of the states (structures as a vector),  is an m n×
matrix (m states and n variables) formed by the combinations 
of the states and  the parameter vector and y is the output 
vector where all the states are measurable and it is assumed 
that there is corruption from a zero mean and 2σ variance 
random sequence.  

1
1 11 2 12 1

2
1 21 2 22 2

1 1 2 2

( ) ( ) ... ( )

( ) ( ) ... ( )

( ) ( ) ... ( )

n n

n n

m
m m n mn

dx x x x
dt
dx x x x
dt

dx x x x
dt

θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ

θ ϕ θ ϕ θ ϕ

= + + +

= + + +

= + + +

   (6) 

2

( , )
(0, )

t
N σ

= Φ

= +

x x
y x

      (7) 

Notice that this is still the original ODE dynamical system 
with the main problem being the derivatives on the LHS of 
both (6) and (7). The task is now to either approximate them 
or see if by integrating both parts (since there is access to the 
original state curves) could lead in converting the dynamic 
system to a static, linear in the parameters model representing 
the behavior of the system from time 0 0t =  to time it .

A. The Derivative Approach  
Consider the state-space model formulation as given in (6) 

which depicts the general structure for a model having m 
states and n parameters covering the case where the 
parameters enter in a linear fashion. The problem with this set 
of ODEs is the derivatives on the LHS of the equation, if 
these were to be calculated then the system would have the 
form: 

ˆ( )

ˆ( )
it t

d t
dt

η

η θ
=

=

= Φ

x

x

      (8) 

In the derivative approach the LHS derivative of (7) is 
approximated using an interpolated version of the state 
trajectories.  

Based on (8) the BPR objective function can now be stated 
as: 

1
1

ˆ ˆ( ) ( ) ( )
TN

i i i i i
i

J Qθ η θ η θ λ θx x
=

= − Φ − Φ +     (9) 

where J is the objective function to be minimized,  is the 
parameter vector, Q is a weighting matrix so as to cover the 
general case where the designer needs additional information 
about the statistical properties of the data to be incorporated 
into the solution, the subscript i denotes the time instants and 
in Q could signify the use of a different weighting at each 
point in time, in the present case no weighting was applied 
and so Q I= for every time point. 

Another important feature is the summation in time in (9); 
this is an important aspect associated with the derivative 
approach since it solves the singularity present when 
considering each single time instant (described in detail in 
subsection C).   

To proceed in using (9) one needs to have an approximated 
curve fit of the state trajectories represented in the LHS of (6) 
constituting the targets in the objective function. Strictly 
speaking the data fit should be constructed in such a way so 
as to adequately represent the state trajectories and at the 
same time smooth out any random noise components [7], the 
derivative approach has been criticized as inaccurate since it 
actually amplifies the measurement noise present in the 
model, if the model used is indeed the true model describing 
the process governing the cell then an approximation as close 
as possible to the original curves (interpolation) is sufficient 
[7]. This is a trial and error procedure and in most cases a 
visual inspection of the fitted versus the original curves as 
well as an estimate of the normality of the residuals (this 
under the assumption that any measurement noise is at least 
zero mean) should be sufficient to give a qualitative estimate 
of the fitting process [7].  

The next subsection describes another alternative for a 
shortcut estimation method for the parameters, namely the 
Integral approach where now (6) is integrated in both sides so 
as to obtain an expression based on the states constituting the 
solutions of ODE model.      

B. The Integral Approach 
Starting again from (6) and integrating both sides the ODE 

model is now transformed into: 

0

0

( )

( ) ( )

it

t

i i

d dt dt
dt

t t

θ

θ

x x

x x

= Φ

= + Ψ

   (10) 

0

where  ( ) ( )
it

i
t

t dtΨ Φ= x  and integration takes place from 

time 0 0t =  to time it , the objective function is now given 
by: 

0 0 1
1

( ) ( ) ( )
TN

i ii i i
i

J t Q tθ θ θ λ θx x x x
∧ ∧

=

= − − Ψ − − Ψ +  (11) 

where again the i subscript denotes the different points in 
time and Q I= in this scenario as well.

Although the integral approach will not in general be prone 
to noise amplification as it is the case with the derivative 
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approach, it will produce, in the current case (the Michaelis-
Manten model), a singular data matrix resulting in a system 
with infinite number of optimal solutions (singularity is 
inherent because of the structure of the resulting algebraic 
model, more on the next subsection) making the derivative 
alternative much more reliable. 

C. Singularity Analysis 
To analyze the singularity present and see how the integral 

approach fails to provide adequate results a simpler pathway 
model is considered that suffers from the same problem as the 
ERK one. The Michaelis-Manten signaling pathway is a 4 
state 3 parameter model represented in(12): 

( )

( )

1 2 3

1 2

1 2 3

3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

dE t E t S t ES t
dt

dS t E t S t ES t
dt

dES t E t S t ES t
dt

dP t ES t
dt

θ θ θ

θ θ

θ θ θ

θ

= − + +

= − +

= − +

=

     (12) 

1 2 3 31
1

1 2 32
2

1 2 3 33
3

34

( , )
or

0

0 0

t

x x x xx
x x xx

x x x xx
xx

θ
θ
θ

= Φ

−
−

=
− −

x x
      (13) 

where the state matrix  is rank deficient. To illustrate the 
co-dependency of the parameters it is sufficient to reach the 
low echelon form of having at least one row of zeros. 
Indeed the low echelon form of (its transpose is used here 
in order to show more clearly the dependence on the 
parameters) is given by: 

3 1 2 3 1 2 3 1 2

3 3 3

0
0 0 0 0

0

x x x x x x x x x

x x x

− −

−
showing that there is a linear dependence between parameters 
1 and 2 resulting in the state matrix having rank 2. The 

immediate meaning is that for a single instant in time the 
system is singular; for the solution to be unique one has to 
consider at the whole time span (at least two time intervals) 
so as not to allow the state matrix to loose rank, something 
that it is covered when summing in time using the derivative 
approach. With the integral approach however because of the 
integration action the singularity persists making the method 
unsuitable for use in this scope. 

In addition, the state matrix includes nonlinear 
combinations of the states and in general there is no input 
driving the system (or assumed to be constant) and  assuming 
sufficient smoothness of (x) the model can be considered as 
a nonlinear (in the states) autonomous system. A natural way 
of reaching a solution would be to linearize about the 
equilibrium points resulting in a linear (in the states) state-
space model. Close examination however reveals that there is 

an infinite set of equilibrium points obtained by ( ) 0Φ =x
because of the rank deficiency of (x), leading to infinite 
many ( )∇ Φx x  Jacobean matrices after linearization. This 
reinforces the previous statement that for a single instant in 
time the problem is singular the solution to which is 
considering the whole time span of study. 

The problem with the integral approach is now more 
apparent since there is integration in time entering the process 
which will result in a system being again singular. 

V. RESULTS AND DISCUSSION 
The RKIP regulated ERK signaling pathway was 

considered so as to test the feature selection sensitivity with 
respect to the modeling complexity capabilities of BPR. 
Figure 4 shows its simulation using the nominal parameter 
([ 1, 2, 3] =[0.46, 0.016, 0.7])  values and initial conditions 
presented in Table 1 and for the estimation process normally 
distributed zero mean unit variance measurement noise was 
also introduced.  

Table 1 Table summarizing the initial condition and nominal parameter 
values for RKIP regulated ERK signalling pathway. 
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Figure 4 Simulation of the RKIP regulated ERK signalling pathway.

Proceeding in estimating the optimal parameter values 
using BPR it is evident (Figure 5) that BPR provides optimal 
results (exact parameter estimation) for a value of 0.01λ = .
The crossed lines in the figure below represented the 
estimated curves. 

When the estimation method is applied the system is been 
modified to include some added normally distributed zero 
mean noise so as to make the estimation process more 
realistic. 

Figure 5 shows the estimation outcome of the system where 
the solid linea are the target curves and the estimated ones are 
represented by the corresponding crosses; Figure 6 shows the 

State x1 x2 x 3 x 4 x 5 x 6 
Init. 
Value 70.0010 47.6273 17.3763 22.3146 1.4151 13.3234 
Nom. 
Param. 0.5300 

    
0.0072 

    
0.6250 

    
0.0024 

    
0.0315 

    
0.8000 

State x 7 x  8 x  9 x  10 x  11 

Init. Value    68.8972    87.2797 1.6715 46.1116    76.1367 
Nom. 
Param. 

    
0.0075     0.0710 

    
0.9200 

    
0.0012 

    
0.8700 
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parameter locus as  changes. Analyzing the parameter locus 
further, although most of the parameters affect the progress of 
the system at a very early stage as  progresses parameters 1, 
9, 11, 6, and 4 appear to be the most significant (arranged in 
order of importance). 
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Figure 5 Simulation of the ERK pathway and the predicted curves 
estimated using the BPR method. Solid lines are the target curves and the 
crosses represent the estimated ones.
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Figure 6 The parameter locus of the ERK model. Out of the 11 parameters 
only 5 exhibit substantial control.

A. ERK Pathway Model Analysis 
Another key aspect is that features 2, 5, 7, 10, 8 never enter 

into the process and still the system reaches optimal 
performance. This is of great importance since now apart 
from a minimal model representation the importance of the 
remaining parameters (based on the changes of the error as 
varies, Figure 7) is also available. It is obvious that after the 
fifth parameter enters the process (observing Figure 7 from 
right to left) there is no significant change in the overall error 
of the system, signifying the fact that even if these parameters 
were omitted they would still cause no significant effect on 
the system. Figure 7 is to be read from left to right taking into 
consideration that the error is increasing as more parameters 
are left out of the model, so in this case even if 5 of the 
features are removed (the ones mentioned above) the error 
still remains very close to zero. As soon as more significant 
figures are removed the error is incresed (reaching a 
maximum at the right side of the curve). 

The question that still remains is how this information can 
now be studied in conjunction with the model itself, what can 
be learnt from the feature selection process or how to assign 
meaning to the feature selection results.  

Each parameter represents a kinetic/rate constant 
quantifying the rate with which a reactant is taking part into a 

biochemical reaction. When the parameter associated with a 
reactant is insignificant it is indicative that the reactant in 
question carries no substantial effect into the outcome of the 
model. In relation to the minimal model representation, if a 
parameter does not enter into the feature selection process at 
all it implies that the substance associated with the parameter 
has no effect to the outcome of the system at all. It is this 
interpretation of the modeling outcome that is providing the 
means to compartmentalize the signaling pathway model into 
different parts each providing different weight to the progress 
of the system. 

Consider the schematic of the ERK model depicted in 
Figure 1, observing carefully, parameters (kinetic/rate 
constants) 1, 9, 11, 6, and 4 are located in separate parts of 
the network, each in one of the four previously identified as 
separate subsections of the whole pathway [5] signifying 
important events in the whole signaling network. It should be 
mentioned that previous studies [5] have analyzed and 
identified the mechanisms of the entire ERK pathway, there 
is no distinction of which one is important and which not or 
how the progress of the pathway will be affected by 
disregarding irrelevant features. The compartmentalized 
version of the pathway is presented in Figure 8 where the 
feature selection outcome is being translated into the 
pathway.        

The results obtained from BPR are therefore not only in 
accordance with previous independent studies but also 
provide a further insight into the whole structure of the ERK 
pathway. Furthermore, this would mean that (Figure 8): 
1. When the Raf-1/RKIP complex is formulated the Raf-1 

substrate is combined with RKIP and the rate in which 
Raf-1 is introduced is of crucial importance. 

2. This could also affect the free Raf-1 that will ultimately 
phosphorylate MEK and convert inactive MEK into 
active MEK-PP.  

3. When MEK-PP is binding with ERK the rate of MEK-PP 
introduction is more important as MEK-PP/ERK is 
phosphorylated into active ERK-PP. 

4. The RKIP-phosphotase (artificially introduced in the 
example) is less important in the formulation of RKIP-
P/RP than RKIP-P. This also affects the feedback 
converting RKIP-P/RP back into RP as well as the 
generation of RKIP. 

5. Parameter 11 is very important since it is related to two 
separate events, affecting indirectly the rate with which 
RKIP is produced and the later production of RKIP which 
is combined with Raf-1. This is why 2 is not included 
into the optimal set; it is influenced indirectly by 11.

6. Parameter 4 controls the rate with which Raf-1/RKIP 
binds with ERK-PP to form the complex Raf-
1/RKIP/ERK-PP and it is more important than the rate 
with which ERK-PP is introduced. The Raf-
1/RKIP/ERK-PP complex is largely responsible for the 
release of active Raf-1 which later increases the release of 
MEK-PP and eventually ERK-PP [5], so in a sense 
parameter 3 is linked with 4 and the loop seems to be 
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initiated and largely controlled by the rate of introduction 
of Raf-1/RKIP.        

7. In simple terms, the minimal model (disregarding features 
2,3,5,7,8,10) should be translated into if the control of the 
pathway is needed then most of the events could be 
controlled by only considering features 1,9,11,6 and 4.  
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Figure 7 The error locus of the BPR method in the ERK model. As more 
features are added into the process the error of the system is reaching zero.

Figure 8 Schematic Representation of the Compartmentalized version of the 
ERK pathway. The most significant parameters lead to the version of the 
pathway shown. 

VI. CONCLUSION 
The Basis Pursuit Regularization (BPR) method has been 

applied to the RKIP regulated ERK signal transduction 
pathway where an analysis of the feature selection process 
with respect to the model complexity was performed. BPR 
addresses the feature selection process as a feature sensitivity 
with respect to the regularizer variable (model complexity) 
and the problem now is effectively a continuous optimization 
problem due to the 1-norm complexity penalty on the 
parameter vector, introducing sparseness into the parameter 
space. The nature of the norm implies a linear relationship of 
the parameter vector with the regularizer in the objective 
function, allowing the calculation of the whole family of 
sparse models (parameter locus). Feature selection can now 
be studied easily since the designer can see how the 
parameters change as the regularizer changes from zero 
(Maximum Likelihood Solution) to infinity (all the parameter 
are zero) and at the same time examine possible colinearities 

(Simpson’s Paradox [13]) in the features. In the example 
considered the main scope of the analysis was to examine 
parameter interactions (model sensitivity) and how these 
affect the outcome of the model. 

Future work will focus on how to implement the method in 
cases where there is no linear dependence on the parameters 
as well as assessing the sensitivity derivatives of the feature 
set derived from BPR. Combining BPR and normal methods 
in sensitivity analysis may provide a way to examine how to 
obtain an expression of the parameter locus for dynamic 
models while at the same time considering the possible 
colinearities between features. 
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