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Abstract The subcellular localization of a protein is closely 
correlated with its functions. Although many machine learning 
algorithms have been developed and applied to predict protein 
compartments using different data sources, such as protein 
amino acid sequence and motif information, automatic 
prediction of subcellular localization remains a challenging 
problem. In this study, we compared three support vector 
machines (SVM)-based computational strategies for interpreting 
differential detection of proteins in isolated organellar 
compartments by high-throughput mass spectrometry. The main 
focus is on how to deal with multi-compartmental ambiguity in 
predicting protein subcellular localizations. When applied them 
to a global-scale proteomic study, their Area Under the Receiver 
Operating Characteristics Curves (ROC) for four major 
organellar compartments (cytosol, microsomes, mitochondria, 
and nucleus) are more than 0.75. 

I. INTRODUCTION 

        Elucidation of gene function and protein regulatory 
mechanisms is a fundamental objective in human biology. It 
is well-known that determining the subcellular localization of 
a protein in a cell is a key to understanding its function and 
can facilitate biochemical experiments aimed at characterizing 
additional biological properties, such as purification. 
However, traditional experimental methods for examining 
subcellular localization are generally time-consuming and 
costly. Given the rapidly expanding plethora of 
uncharacterized proteins identified by the many ongoing 
genome sequencing projects, it is highly desirable to deduce 
or predict a protein’s subcellular localization automatically [1, 
2].  
       Currently, most of the automatic protein subcellular 
localization prediction methods fall into one of three 
categories [3]. The first one is prediction based on amino acid 
composition, as originally suggested by Nakashima and 
Nishikawa [4]. Different machine learning algorithms have 
been developed that make use amino acid composition 
information towards this end, including neural networks [5], 
support vector machines (SVM) [6], covariant discrimination 
[7] and augmented covariant discrimination methods [8], as 

well as SVM incorporating quasi-sequence-order effects ([9]. 
The second major approach is prediction based on calculating 
a set of sequence-derived parameters and comparing these 
with a representation of a number of localization rules that 
have been collated from the literature. The most widely used 
algorithm in this category is the popular PSORT algorithm 
[10], which is a commonly-used bioinformatics tool. The key 
idea of this approach is to decide the presence of various 
sequence motifs that enable proteins to be localized to a 
certain compartment. Different types of prior knowledge are 
required for this determination, which are, actually, hard to 
get for uncharacterized proteins. The third category of 
prediction is the homology-based prediction [2, 11, 12], 
wherein the inferences are based on transference of 
knowledge from characterized to unknown homologous 
proteins. 
       One of main limitations in most of these studies is that 
their principle methods focus on mono-compartment 
prediction (that is, a protein is presumed to localize to a single 
organelle only). For example, Lu et al. constructed a parser to 
extract a simple ontological representation for proteins 
assigned to multiple compartments, without exploiting the 
information encoded by multi-localizations [2]. Park and 
Kanehisa did not included proteins annotated with two or 
more subcellular locations in their analysis [13].  
       As an alternate to sequence- or homology-based 
predictions, proteomic methods based on subcellular 
fractionation in combination with high-throughput protein 
mass spectrometry have emerged as a powerful alternative 
experimental platform for assessing subcellular localization 
directly. Indeed, substantive recent technical advances now 
make this the preferred approach for genome-wide protein 
identification and quantification with high sensitivity and 
accuracy [14]. Compared with previous sequence 
information-derived prediction methods, these newer 
proteomic profiling-based screening methods are also proving 
to be more effective for resolving ambiguous or difficult 
localization problems [15].  However, current procedures 
involving biochemical methods for subcellular fractionation 
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are still far from perfect, and artifacts due to cross-
contamination can create misleading results. 

An in-depth comparative proteomic analysis of the 
organelles of six representative mouse organs (adult brain, 
heart, kidney, liver, lung, and embryonic placenta) was 
recently carried out [16], in which computational and 
statistical procedures were used in combination with available 
conventional annotations and the observed proteomic profiles 
to create a high-quality reference map of the putative 
subcellular localization and tissue-selectivity of 4768 
proteins. The present study is devoted to addressing the multi-
compartment problem in subcellular localization prediction. 
The specific objective is to compare some computational 
strategies for multi-compartmental prediction of protein 
subcellular localizations based on support vector machine 
(SVM) methods, including one-class SVM [17], binary SVM 
[18] and multi-class SVM [19], which cannot handle multi-
labeled prediction of subcellular localizations directly.  

II. DATA SETS AND PREPROCESSING 

      
  In this global-scale mouse proteomic study, healthy adult 
brain, heart, kidney, liver, lung and embryonic placenta were 
excised from euthanized 6-8 week old ICR female mice. The 
tissues were gently disrupted and fractionated into the four 
major subcellular compartments (cytosol, microsomes, 
mitochondria, and nuclei) using differential 
ultracentrifugation. The proteins were identified by tandem 
mass spectrometry followed by database searches of the 
acquired spectra using the multidimensional protein 
identification technology [14]. The procedures for processing, 
searching and rigorously evaluating the proteomic expression 
profiles have been detailed by [20, 21]. A total of 4768 
proteins were confidently identified in this analysis.  Nearly 
half (2390) of the identified proteins lacked a previously 
assigned subcellular localization based on annotation obtained 
from the ExPASy Server. Protein relative abundance was 
estimated in the respective fractions based on the ratio of the 
cumulative number of spectra matching to any given protein 
in each sample [22].  
       In order to generate a suitable supervised learning 
approach for predicting the 2390 proteins with unknown 
subcellular localizations, we need to obtain a reference set of 
proteins with known subcellular localizations. For this, we 
obtained the annotations for 1558 proteins from the SWISS-
PROT database (http://ca.expasy.org/sprot/). Additionally, we 
compiled a set of 820 proteins that had been independently 
identified in a single highly purified organelle in a previous 
proteomic study [15, 23-29]. Table 1 show a summary of the 
number of proteins in per monocompartmental and 
multicompartmental localizations.  As we can see from the 
table, 580 of the 2378 annotated proteins have 
multicompartmental localizations.  

TABLE I 
THE NUMBER OF PROTEINS IN PER MONOCOMPARTMENTAL AND

MULTICOMPARTMENTAL LOCALIZATIONS 

Class 
Label 

Subcellular localization Number of proteins 

1 Cytosol (Cyto) 301[1] (741[2])
2 Microsomes (Micro) 640 (1052) 
3 Mitochondria (Mito) 253 (405) 
4 Nucleus (Nuc) 604 (821) 
5 Cyto_Micro[3] 219 
6 Cyto_Mito 20 
7 Cyto_Nuc 143 
8 Micro_Mito 104 
9 Micro_Nuc 31 
10 Mito_Nuc 3 
11 Cyto_Micro_Mito 20 
12 Cyto_Micro_Nuc 35 
13 Cyto_Mito_Nuc 2 
14 Micro_Mito_Nuc 2 
15 Cyto_Micro_Mito_Nuc 1 

16 Unknown 2390 

[1]The number of monocompartmental proteins in cytosol 
[2]The number of monocompartmental and multicompartmental 
proteins in cytosol 
[3]Multicompartment localization: Cytosol and Microsomes 

III. METHODS 

       As discussed above, most of the previously studies [4-9] 
focused on the monocompartmental prediction, which was 
formulated as a multi-class classification problem (see Figure 
1(a)). Classes are mutually excusive by definition; that is, 
each case can be assigned to only one of several alternate 
classes. Essentially, protein subcellular localization prediction 
is a multicompartmental prediction problem, since some 
proteins may coexist in several different subcellular locations 
(see TABLE I). Therefore, we are indeed facing a multi-class 
multi-label classification problem (see Figure 2 (b)). So far, 
there are no effective computational procedures that can be 
used to treat this difficult multiplex (i.e., multi-label, multi-
localization) problem [11].   

A. Computational Strategies for multi-label prediction of protein 
subcellular localizations  

        As a first step towards resolving this multiplex problem, 
here we compared three computational strategies as follows:  
       Strategy one: It is called “cross-training” [30], a variant 
of “One vs. All” algorithm [31], in which each class is 
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(a) (
b
)

Fig 1.  Considering three classes (e.g. subcellular locations) A, B and 
C, we denote proteins that belong to A, B, C are circled by red, green 

and purple curves, respectively. Figure 1(a) is the classic 
classification problem while Figure 1 (b) is a multi-label 

classification problem occurred in our study.  Proteins uniquely 
belonging to classes A, B and C are denoted by “+”, “-“ and “#”, 

respectively.  Proteins belonging to both A and B classes are denoted 
by “*”, both B and C classes are denoted by “**” and both A and C 

classes are denoted by “***”.  Proteins belonging to classes A, B and 
C simultaneously are denoted by “****”. 

       
compared to all others. After the binary classification 
problems have been solved, the resulting set of binary 
classifiers was combined in some way. The cross-training 
algorithm has been applied with some success as a means of 
rationalizing pattern recognition as applied to multi-label 
semantic scene classification. In our implementation of this 
approach, we used the multi-labeled proteins as positive 
examples for each of the four associated localization classes 
during training. For example, if a protein was annotated as 
both nuclear and mitochondrial, it was considered as a 
positive example during training of both the nuclear and 
mitochondrial classes, but never as a negative example of 
either category. Therefore, the number of positive training 
proteins for cytosol, microsomes, mitochondria and nuclei is 
741, 1052, 405 and 821 respectively. After this processing, 
we can train a binary-class SVM for each subcellular 
localization. 
       Strategy two: It is called “super-class training”. The 
algorithm works as: a new class is defined for the proteins in 
each combination of compartments and a model is built for it. 
For example, in Figure 1 (b), we can define a new class for 
the proteins belonging to both A and B classes (denoted by 
“*”), both B and C classes (denoted by “**”), both A and C 

classes (denoted by “***”) and classes A, B and C 
simultaneously (denoted by “****”). The algorithm is also 
called MODEL-n (n stands for “new” class) by Boutell et al. 
[30], but they did not test and evaluate the performance of this 
method. TABLE II shows the number of training proteins 
used for training in each monocompartmental subcellular 
localization and multicompartmental subcellular localization. 
Since some of these combinations have few proteins, we just 
kept the localizations with at least 20 proteins. After this 
processing, we can train a multi-class SVM for all selected 
subcellular localizations.  

TABLE II 
THE NUMBER OF PROTEINS IN PER MONOCOMPARTMENTAL AND

MULTICOMPARTMENTAL LOCALIZATIONS USED FOR SUPER-
TRAINING 

Index Label Subcellular 
localization 

# training # 
prediction

A 1 Cytosol (Cyto) 301  
B 2 Microsomes 

(Micro)
640

C 3 Mitochondria 
(Mito)

253

D 4 Nucleus (Nuc) 604  
AB 5 Cyto_Micro 219 
AC 6 Cyto_Mito 20 
AD 7 Cyto_Nuc 143 
BC 8 Micro_Mito 104 
BD 9 Micro_Nuc 31 

ABC 10 Cyto_Micro_Mito 20 
ABD 11 Cyto_Micro_Nuc 35 

2390

         Strategy three: It is called one-class SVM [17]. 
Differentiation of members between known classes (i.e., 
subcellular localizations) is achieved by a data domain 
description. This is done by estimating a binary function that 
is positive where most of the data are located and negative 
elsewhere. A hyperplane with the largest possible margin is 
chosen to separate the training data from where the novel data 
are assumed to be. Once the data domain description is known, 
the problem is reduced to a classification task where only one 
class exists. The number of training proteins for cytosol, 
microsomes, mitochondria and nuclei is 741, 1052, 405 and 
821 respectively. The algorithm was detailed by Manevitz and 
Yousef [17]. 

B. Evaluating Performance of the Learning Strategies 

       We evaluated the performance of our machine learning 
strategies using the standard method of stratified 10-fold 
cross-validation [32]. In this procedure, we randomly divided 
the training set associated with each subcellular compartment 

m (m=1,…, k) into 10 sub-groups ( 101,..., mm GG ), keeping 

the number of proteins in the localization class approximately 
the same across each training category. For “cross-training” 
and one-class SVM algorithms, we constructed 10 different 

classifiers ( 1mC , 2mC , …, 10mC ) for each of the four 

subcellular compartments , where miC use all of the training 
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proteins from all of the groups except miG (m=1,…, 4).

Proteins in group miG were used for testing classifier miC .

For “super-class training” algorithm, we constructed 10 

different classifiers ( 1C , 2C , …, 10C ) for all 11 subcellular 

compartments, where iC use all of the training proteins from 

all of the groups except ( kii GG ,...,1 )(k=11). Facing such a 

multicompartmental localization prediction problem, different 
performance metrics have been applied. For example, Lu et 
al. used four standard statistics: specificity, precision, 
sensitivity and recall (the last two are identical) [2]. Scott et 
al. applied precision and sensitivity [3]. Here for each of the 
three strategies, we used the following measures to assess 
performance: 
      Total Accuracy (TA): the rate of the total of correct 

predictions (true positives) mT in each subcellular localization 

m compared to all predictions N, that is N

T
K

M
m

TA 1 , where K

is the total number of subcellular localizations. 
       F-measure: It is equal to 2RP/(R+P), where P (Precision) 
is the portion of true positives with respect all predicted 
positive for a given location, that is P=TP/(TP+FP), and R 
(Recall/ Sensitivity) is the portion of true positive with respect 
the sum of true positive and false negatives for a given 
location, that is R=TP/(TP+FN).TP, FP, TN, FN denote the 
total number of true positives, false positives, true negatives 
and false negatives, respectively. 
       Area Under the Receiver Operating Characteristics 
(ROC) Curves: ROC curves and their Area Under the Curves 
(AUC) can also be used to evaluate the power of different 
classifiers for predicting protein subcellular localization. ROC 
curves have been used to depict the pattern of sensitivity and 
specificity observed when the performance of a classifier is 
evaluated at different thresholds [33]. Since the prediction 
confidence (probability) from trained classifiers varies 
between 0 and 1, we created 100 thresholds of equal interval 
across the range of prediction confidence. For each of the 100 
thresholds, we calculated classifier specificity, sensitivity 
based on the cross-validation results.   

IV. RESULTS 

       We applied the discussed SVM-based strategies with 
radial basis kernel function to our proteome-wide mouse data. 
TABLE III shows the 10-fold cross validation results for 
training data using cross-training method and one class 
SVMs. The 10-fold cross validation results for training data 
using super-class training method are shown in the TABLE 
IV. Overall, the classification performances of classifiers built 
for mitochondria and nucleus are much better than cytosol and 
microsomes. The former two reached F-measure values more 
than 65% in all three strategies while the latter two have only 
43-67% F-measure values.  

TABLE III 
10-FOLD CROSS-VALIDATION PERFORMANCE ON TRAINING 

DATA USING CROSS-TRAINING AND ONE-CLASS SVM 
 Cross-Training One Class SVM 

Subcellular 
localization 

F-
measure 

(%)

Total 
Accuracy 

(%)

F-
measure 

(%)

Total 
Accuracy 

(%)
Cytosol 43.6 54.9 

Microsomes 51.6  62.7 
Mitochondria 65.8 68.6 

Nucleus 68.5 

      57.4 

71.6

59.6

TABLE IV 
10-FOLD CROSS-VALIDATION PERFORMANCE ON TRAINING 

DATA USING SUPER-CLASS TRAINING  

Subcellular localization F-measure 
(%)

Total Accuracy 
(%)

Cytosol (Cyto) 61.6  
Microsomes (Micro) 66.8 
Mitochondria (Mito) 69.5 

Nucleus (Nuc) 74.1  
Cyto_Micro 55.2 
Cyto_Mito 57.5 
Cyto_Nuc 45.5 

Micro_Mito 40.8 
Micro_Nuc 47.3 

Cyto_Micro_Mito NA[1]

Cyto_Micro_Nuc NA 

63.8

 [1]The denominator is zero in the formula to calculate precision 

       For the three learning strategies, super-class training is 
better than cross-training and one-class SVM, since its total 
accuracy is 63.8%, which is higher than that of cross-training 
(57.4%) and one-class SVM (59.6%). The results based on 
super-class training algorithm show that the performance of 
classifiers learned on monocompartmental localizations is 
better than that of classifiers learned on multicompartmental 
localizations. The classifiers trained on three-compartmental 
localizations are not learnable in this data set. When we 
closely look the predicted results for the proteins which have 
multicompartmental localizations, we found that many of 
these proteins are partial-correctly predicted. For example, 
protein A is in cytosol and microsomes, but the classifier 
based on super-class training can only assign it to cytosol or 
microsomes, not both.  
       Figure 2 shows the ROC curves of the four subcellular 
compartments based on the specificity and sensitivity 
calculated from the 100 thresholds of predicted confidence for 
the three learning strategies. For the super-class training, we 
just show the results of four base-subcellular compartments, 
since other super-classes have no good performance (see 
TABLE IV).  The AUC values of these ROC curves shown in 
Figure 2 are listed in TABLE V. Overall, the performance of 
super-class training approach is still a little better than those 
of cross-training method and one-class SVM. Most of the 
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(c) Super-class Training 

Fig. 2. ROC plots for the performance of the classifiers using three 
learning strategies                    

AUC values based on the super-class training algorithm are 
larger than 80%. The classifiers for mitochondria nucleus 
have the best performance in the three algorithms. 

TABLE V  
AREA UNDER THE CURVES (AUC) FOR THE FOUR SUBCELLULAR 

LOCALIZATIONS 

Subcellular 
localization 

Cross-
Training  

(%)

One Class 
SVM
(%)

Super-class
Training 

(%)
Cytosol  72.3 76.8 79.5  

Microsomes  76.7 81.6 81.6  
Mitochondria  75.5 84.8 84.4  

Nucleus  78.7 85.6 86.7  

       
V. CONCLUSION 

      In this study, we have evaluated three SVM-based 
computational strategies for predicting protein subcellular 
localizations on a proteome-wide scale. The approaches 
address some of the key problems associated with predicting 
multiple organellar compartments given proteins of uncertain 
association. The first extension is based on the classic “One 
vs All” method, called as “cross-training”; the second 
extension is based on the classic multi-class SVM method, 
named as “super-class training”; the last one is based on one-
class SVM. 
      Using large-scale proteomics data as a building block, the 
first algorithm achieved a total accuracy 57.4%, the second 
algorithm reached a total accuracy 63.8% and the last one 
have the total accuracy 59.68% over the four major cellular 
compartments. 
       Some reasons may explain why the cross-training 
algorithm has not shown good performance. One of these is 
probably due to the unbalance between the size of positive 
samples and that of the negative samples in the training data. 
A possible solution to this is that we may need to subsampling 
the large size of negative samples. The worse performance of 
the one-class SVM algorithm is probably because the 
approach tries to catch the distribution of a given class while 
the distributions of other classes have not been seen in the 
training. For super-class training algorithm, when the number 
of monocompartments is very large, it will also have some 
deficiencies since we may generate a lot of trivial super-
classes, which may not learnable as shown in this study, such 
as super-classes: Cyto_Micro_Mito and  Cyto_Micro_Nuc. 

385

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



REFERENCES

[1] Cai, Y.D., Chou, K.C. (2004). Predicting subcellular localization 
of proteins in a hybridization space. Bioinformatics, 20:1151-
1156. 

[2] Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D.S., Poulin, B., 
Anvik, J., Macdonell, C., Eisner, R. (2004). Predicting subcellular 
localization of proteins using machine-learned classifiers. 
Bioinformatics, 20:547-556. 

[3] Scott, M.S., Thomas, D.Y., Hallett, M.T. (2004). Predicting 
subcellular localization via protein motif co-occurrence. Genome
Res., 14:1957-1966. 

[4] Nakashima, H., Nishikawa, K. (1994). Discrimination of 
intracellular and extracellular proteins using amino acid 
composition and residue-pair frequencies. J. Mol. Biol., 238:54-
61. 

[5] Reinhardt, A., Hubbard, T. (1998). Using neural networks for 
prediction of the subcellular location of proteins, Nucleic Acids 
Res., 26:2230-2236. 

[6] Hua, S., Sun, Z. (2001). Support vector machine approach for 
protein subcellular localization prediction. Bioinformatics,
17:721–728. 

[7] Chou, K. C., Elrod, D.W. (1998). Using discriminant function for 
prediction of subcellular location of prokaryotic proteins. 
Biochem. Biophys. Res Commu, 252:63-68. 

[8] Chou, K. C. (2000). Prediction of protein subcellular locations by 
incorporating quasi-sequence-order effect. Biochem. Biophys. Res. 
Commun, 278:477–483. 

[9] Cai, Y. D., Liu, X. J., Xu, X. B., Chou, K. C. (2002). Support 
vector machines for prediction of protein subcellular location by 
incorporating quasi-sequence-order effect. J. Cell. Biochem,
84:343–348. 

[10] Nakai, K., Kanehisa, M. (1992). A knowledge base for predicting 
protein localization sites in eukaryotic cells. Genomics, 14:897-
911. 

[11] Chou, K.C., Cai, Y.D. (2005). Predicting protein localization in 
budding yeast. Bioinformatics, 21:994-950. 

[12] Mott, R., Schultz, J., Bork, P., Ponting, C.P. (2002). Predicting 
protein cellular localization using a domain projection method. 
Genome Res., 12:1168-1174. 

[13] Park, J.K., Kanehisa, M. (2003). Prediction of protein subcellular 
localizations by support vector machines using compositions of 
amino acids and amino acid pairs. Bioinformatics, 19:1656-1663. 

[14] Yates, J. R. (2004). Mass spectral analysis in proteomics. Annu 
Rev Biophys Biomol Struc., 33:297-316. 

[15] Schirmer, E. C., Florens, L., Guan, T., Yates, J. R., Gerace, L. 
(2005). Identification of novel integral membrane proteins of the 
nuclear envelope with potential disease links using subtractive 
proteomics. Novartis Found Symp, 264:63-76; discussion 76-80, 
227-230. 

[16] Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., 
Ignatchenko, A., Scott, M.S., Gramolini, A., Morris, Q., Hughes, 
T., Rossant, J., Frey, B., Emili, A. (2006) Global survey of organ 
and organelle protein expression in mouse: combined proteomic 
and transcriptomic profiling. Cell, 125:173-186.

[17] Manevitz, L.M., Yousef, M. (2002). One-class svms for document 
classification. Journal of Machine Learning Research, 2:139-154. 

[18] Vapnik, V. (1998). Statistical learning theory. New York: Wiley. 
[19] Weston, J., Watkins, C. (1999). Support vector machines for 

multiclass pattern recognition. In Proceedings of the Seventh 
European Symposium on Artificial Neural Networks. M. 
Verleysen, Ed., Brussels, Belgium: D-Facto Public, pp219-224. 

[20] Kislinger, T., Emili, A. (2003). Going global: protein expression 
profiling using shotgun mass spectrometry. Curr Opin Mol Ther, 
5:285-293. 

[21] Kislinger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J., 
Emili, A. (2003). PRISM, a Generic Large Scale Proteomic 
Investigation Strategy for Mammals. Mol Cell Proteomics, 2:96-
106. 

[22] Liu, H., Sadygov, R. G., Yates, J. R. (2004). A model for random 
sampling and   estimation of relative protein abundance in shotgun 
proteomics. Anal Chem. 76:4193-4201. 

[23] Andersen, J. S., Lam, Y. W., Leung, A. K., Ong, S. E., Lyon, C. 
E., Lamond, A. I., Mann, M. (2005). Nucleolar proteome 
dynamics, Nature, 433:77-83. 

[24] Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., 
Villen, J., Li, J., Cohn, M. A., Cantley, L. C., Gygi, S. P. (2004). 
Large-scale characterization of HeLa cell nuclear 
phosphoproteins. Proc Natl Acad Sci U S A, 101:12130-12135. 

[25] Krapfenbauer, K., Fountoulakis, M., Lubec, G. (2003). A rat brain 
protein expression map including cytosolic and enriched 
mitochondrial and microsomal fractions. Electrophoresis,
24:1847-1870. 

[26] Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., 
Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. N., Sihag, S., 
Kamal, M., et al. (2003). Integrated analysis of protein 
composition, tissue diversity, and gene regulation in mouse 
mitochondria. Cell, 115:629-640. 

[27] Nielsen, P. A., Olsen, J. V., Podtelejnikov, A. V., Andersen, J. R., 
Mann, M., Wisniewski, J. R. (2005). Proteomic mapping of brain 
plasma membrane proteins. Mol Cell Proteomics, 4:402-408. 

[28] Wu, C. C., MacCoss, M. J., Howell, K. E., Yates, J. R. (2003). A 
method for the comprehensive proteomic analysis of membrane 
proteins. Nat Biotechnol, 21:532-538. 

[29] Wu, C. C., MacCoss, M. J., Mardones, G., Finnigan, C., 
Mogelsvang, S., Yates, J. R., Howell, K. E. (2004). Organellar 
proteomics reveals Golgi arginine dimethylation. Mol Biol Cell,
15:2907-2919. 

[30] Boutell, M., Shen, X., Luo, J., Brown, C. (2004). Learning multi-
label semantic scene classification. Pattern Recognition, 37:1757-
1771. 

[31] Yeang, C.H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, 
R.M., Angelo, M., Reich, M., Lander, E., Mesirov, J., Golub, T. 
(2001). Molecular classification of multiple tumor types. 
Bioinformatics. 17 suppl., S316-S322. 

[32] Mitchell, T.M. (1997). Machine Learning. McGraw-Hill, N.Y. 
[33] Bradley, A.P. (1997). The use of the area under the ROC 

curve in the evaluation of machine learning algorithms. 
Pattern Recognition, 30:1145-1159. 

386

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)


