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Abstract— The quantitative comprehension of a metabolic
system in its dynamic state is a prerequisite for purposed
strain improvement and enzymatic regulation. It is therefore
crucial to accurately obtain the extracellular and intracellular
metabolite concentrations in vivo in the time scale faster than
typical metabolite turn-over rate. Though intracellular metabolite
dynamics are addressable by latest rapid sampling technology, the
measurements are not satisfactory due to the low percentage of
intracellular volume to the total sample volume and often the low
concentration levels of most intracellular metabolites. When the
examined system is observable, a possible solution to this problem
is by means of available statistical estimation approach. Hence, in
this paper, the Sequential Monte Carlo filter is applied to estimate
the intracellular metabolite concentrations with the knowledge of
extracellular metabolite concentrations. The application of this
algorithm in a synthetic system with simulated data illustrates
the applicability of this approach. All the intracellular metabolite
concentrations are accurately estimated and the extracellular
states are reconstructed from their noisy measurements. The
dynamic flux distributions are also obtained and their underlying
biological meanings are described.

I. INTRODUCTION

Metabolic engineering, which manipulates the original
metabolic pathway structures and reaction rates through vari-
ous methods, has been undergoing rapid development since the
concept was introduced in 1990s [1] [2]. Especially after the
gene sequences of most organisms gradually became available,
metabolic engineering enters the ‘post-genomic’ era [3] [4]. It
is then possible to ‘knock-in’ or ‘knock-out’ a particular gene
or genes in order to activate or inhibit the linked enzyme(s),
whose change, ultimately incur variations in metabolic re-
action rates and metabolic pathway structures. Metabolic
flux, which is often viewed as the quantitative representation
of metabolic engineering, has received particular attention.
Metabolic balance analysis based solely on metabolic stoi-
chiometric information [5] and metabolic flux analysis based
on stoichiometric information with additional constraints from
13C labelling experiment data [6] [7] [8] [9] [10] are the main
approaches used for metabolic flux quantification. Meanwhile,
metabolic control analysis which intends to understand the
underlying enzyme activities by sensitivity analysis of control
coefficients, elasticity coefficients etc. arranged in the steady-
state representation of a specific metabolic system, has long
been viewed as a traditional method for studying enzyme
regulations [11] [12] [13].

Among all the above activities in metabolic engineering,
it is obvious that flux is a fundamental determinant of cell
physiology and it is the crucial part in a metabolic pathway.
Nevertheless, the fluxes dealt with in both metabolic flux
analysis and metabolic control analysis are only viewed as a
standard signal for system efficiency or sensitivity evaluation
in (pseudo) steady state. In order to undergo a re-engineering
of pathways, it is necessary to obtain a quantified and mech-
anistic knowledge of regulation phenomena not only on flux
phenotype level but also on genome, transcriptome, proteome
and metabolome level [14].

Over decades, much time and effort has been devoted
to gene sequences, functional genomics analysis, as well as
transcription (transcriptomics) and translation (proteomics).
However, these methods are unable to provide the change in
biological phenotypes coupled with changes in a mRNA or
protein. In order to elucidate the regulatory effects of genetic
alteration on biological reactions, an analysis constrained
exclusively to the metabolites is then necessary [15]. Under
some circumstances, only the activity of a specific metabolite
or an isolated group of metabolites need identifying and
quantifying, which is at the core of ‘metabolic profiling’ [15]
[16]. However, the necessity to analyze a large number of
metabolites within the period before an examined metabolic
system reaches its steady state is commonly encountered in
the quantification of cellular metabolism. Such comprehensive
profiling provides not only the regulation and control of
biochemical structure, but also the dynamic flux information,
both of which are vital for various strain improvement and
enzymatic activities investigation.

Due to the high turn-over rate of metabolites, which is usu-
ally on a subsecond scale, rapid sampling and fast quenching
technology [17] [18] [19] are needed for measuring metabo-
lite concentrations in vivo. The cells in usually substrate-
limited medium are stimulated by a quick substrate pulse
and the response sample volumes afterwards are suspended
by immediate rapid sampling and fast quenching facilities
[20]. The sample volumes are then separated to extracel-
lular samples and intracellular samples by various-purposed
centrifugation and extractions. A combination of enzymatic
assays, High Performance Liquid Chromatography (HPLC)
and Electrospray Ionization Liquid Chromatographic Tandem
Mass Spectrometry (ESI-LC-MS) can be used to quantify the
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metabolite concentrations [19] [21].
Although the above technology is capable of providing

dynamic metabolite concentration measurements, the potential
drawbacks that the intracellular metabolites often lie below
1mM [22] [23] and the intracellular volume usually is less
than 3% of the total sample volume, make the intracellular
measurements more prone to noise or even undetectable if
the specific concentration falls below the limits of detection.
Typically, 4-5 samples are obtained per second in a rapid
sampling experiment [21]. Therefore, there will be 120-150
samples if the observations during 30 seconds after the sub-
strate impulse are acquired. The corresponding measurements
of these samples may cost time and effort even though parallel
determination of intracellular metabolites are possible [19].

Here, in addition to what have been achieved in previous
literature, where the kinetic information about the interested
metabolic system was derived in terms of available extracel-
lular and intracellular metabolite concentrations [24] [25] [26]
[20] [27], this paper takes a step further and aims at estimating
the dynamics of metabolic intracellular concentrations with the
knowledge of extracellular concentrations and system kinetic
structures. By formulating the metabolic system as a discrete
state space model, Sequential Monte Carlo filter (SMC) is
applied to obtain the posterior distribution of intracellular
metabolite concentrations.

The paper is organized as follows: in Section II, the state
space model concept is presented and the application of the
SMC filter in deriving latent states in a state space model
is described. In Section III, an example system and its rel-
evant Michaelis-Menton kinetics parameters are listed. The
detailed SMC filter algorithm is also given. In Section IV, the
intracellular metabolite concentrations and the dynamic fluxes
estimated by SMC filter are illustrated and compared. The
underlying biological meaning is also discussed. In Section V,
conclusions and future work are outlined.

II. GENERAL STATE SPACE MODEL AND SEQUENTIAL

MONTE CARLO FILTER

A. State space model

A state space representation is a mathematical abstraction
of a physical system with a set of unobservable states and
observations. Typically, a state space model with additive noise
is in the following format:

xk = fk(xk−1) + rk (1)

yk = hk(xk) + wk (2)

where {xk ∈ Rnx , k ∈ N} is nx dimensional state sequence
and {yk ∈ Rny , k ∈ N} is ny dimensional observation
sequence, N is the set of natural numbers. {rk ∈ Rnx , k ∈ N}
and {wk ∈ Rny , k ∈ N} are i.i.d system state process noise
and system observation noise, respectively. fk : Rnx → Rnx

is the system transition function. hk : Rnx → Rny is the
system observation function. Here we denote by x0:n �
{x0, · · · ,xn} and y1:m � {y1, · · · ,ym}, the states and the
observations up to step n and m, respectively. In most cases,

the underlying question is about how to estimate the states
x0:n when only partial or inaccurate observations y1:m are
available [28].

From a Bayesian perspective, the main concern is then fo-
cused on the posterior distribution of the states: p(x0:n|y1:m).
Though Kalman filter (for linear state space model with
Gaussian noise) [29] and extended Kalman filter (for nonlinear
state space model with Gaussian noise) [30] have been exten-
sively adopted in various occasions, their online applications
are largely restricted by associated approximation nature and
the assumptions of Gaussian noise distribution. The SMC
method [31] [32] [33], also termed the particle filter [34],
which utilizes a random sample (particle) based representation
of the interested posterior distribution, has obtained various
applications in online Bayesian estimation.

B. Sequential Monte Carlo filter

From (1) and (2) and considering the initial condition of x:
p(x0) as p(x0|x−1), the state space model can be rewritten
from statistical point of view as,

p(xk|xk−1) ∝ prk
(xk − fk(xk−1)) (3)

p(yk|xk) ∝ pwk
(yk − hk(xk)) (4)

The Bayesian filtering distribution p(x0:n|y1:n) can then be
recursively derived as,

p(x0:n|y1:n) = p(x0:n−1|y1:n−1)
p(yn|xn)p(xn|xn−1)

p(yn|y1:n−1)
(5)

From (5), it can be derived that,

p(x0:n|y1:n) ∝ p(x0:n−1|y1:n−1)p(yn|xn)p(xn|xn−1) (6)

which implies that the posterior distribution p(x0:n|y1:n) can
be evaluated iteratively, even though its analytical form may be
unavailable in a nonlinear state space model. In such circum-
stance when direct sampling from the posterior distribution is
unobtainable, SMC filter provides an alternative approach for
approximating the aforementioned probability density.

SMC filter aims to represent a posterior distribution π(z) by
a number of samples zi drawn from an importance function
q(z) with their associated weights wi = π(zi)

q(zi) . From Monte
Carlo approximation [35], the expectation of a function f(z)
is then given by,

E[f(z)] ≈ ΣN
i=1f(zi)w̄i

Here N is the number of samples and w̄i = wi

ΣN
i=1wi is the

normalized weight of the ith sample. Under weak assumptions,
with enough samples, ΣN

i=1f(zi)w̄i converges to the expecta-
tion of f(z). Hence, a SMC filter [36] is applicable in deriving
p(x0:n|y1:n) from p(x0:n−1|y1:n−1) recursively as long as the
importance function can be written in the format given below,

q(x0:n|y1:n) = q(x0:n−1|y1:n−1)q(xn|x0:n−1,y1:n) (7)
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The weight wn is then given by,

wn = wn−1 p(yn|xn)p(xn|xn−1)
q(xn|x0:n−1,y1:n)

The basic bootstrap for a state space model is:
for k = 1, 2, · · ·

Sample xi
k, i = 1, · · · , N from the importance

function q(xk|x0:k−1,y1:k);

Calculate the temporary weight ui
k = p(yk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

0:k−1,y1:k)
;

Normalize the weight ui
k to get ū: ūi

k = ui
k

ΣN
i=1ui

k

;

Calculate weight wi
k: wi

k = wi
k−1ū

i
k;

Normalize the weight w̄i
k = wi

k

ΣN
i=1wi

k

;

The estimation of xk: x̂k = ΣN
i=1x

i
kw̄i

k

end

Here xi
k and wi

k represent the sample and the weight for the
ith sample in the kth sampling time.

III. SMC FILTER AND METABOLIC SYSTEM DYNAMICS

ANALYSIS

Stochastic methods have been applied in bioengineering
and bioinformatics for a long time. For example, evolutionary
algorithms have extensive application in gene sequencing,
protein structure and metabolic pathway optimization [37]
[38] [39]. Hidden Markov Model is also widely used in
protein modelling and protein sequence analysis [40] [41].
At the metabolic level, there have been various applications
of stochastic methods in (pseudo) steady state [8] [42] [43].
However, in a dynamic metabolic system, an appropriate
statistical method becomes crucial when considering the un-
derlying drawbacks of rapid sampling experiment under the
scenario of the intracellular metabolites with concentrations
below limit of detection. Moreover, dynamic flux information,
which is important for intended strain improvement can only
be obtained by dedicated mathematical approach instead of
current laboratory experiments. Hence, when the extracellular
data are available, the SMC method, which aims to estimate
the latent states by the updated posterior information derived
from available measurements, can be applied to estimate the
intracellular metabolite dynamics.

A. An example metabolic network and its dynamics

In this paper, an example system in Fig. 1 utilized in [44]
is used here in order to illustrate the applicability of the SMC
in metabolic dynamics analysis. For the sake of simplicity,
the fluxes associated with reactions ‘HK’, ‘6PF-1-K’, ’FBA’,
‘GPD’, ‘GPP’, ‘ENO’ and ‘PYK’ are represented by v1, v2,
v3, v4, v5, v6 and v7, respectively. And the concentrations of
Glucose, F6P, F1,6bP, DHAP, G3P, GAP, PEP, Glycerol and
Ethanol are denoted by c1, c2, c3, c4, c5, c6, c7, c8 and c9,
respectively. It is assumed that F2,6bP is involved with the
reaction 6PF-1-K and is fixed during the reactions. Hence, the
concentration of F2,6bP is represented by c10. The Michaelis-
Menton kinetics listed in [44] for reactions ‘HK’, ‘6PF-1-K’,

’FBA’,‘GPD’, ‘GPP’, ‘ENO’ and ‘PYK’ are adopted and listed
here:

v1 = vmax,1

c1
K1

(1 − c2
c1K1,1

)

1 + c1
K1

+ c2
K2

v2 = vmax,2c10

c2
K2

(1 + c2
K2

)(1 + L0
(1+

c2
K2

)n1
)

v3 = vmax,3

c3
K3

(1 − c4c6
c3K3,1

)

(1 + c3
K3

)(1 + c4
K4

+ c6
K6

)

v4 = vmax,4

c4
K4

(1 − c5
c4K4,1

)

1 + c4
K4

+ c5
K5

v5 = vmax,5

c5
K5

(1 − c8
c5K5,1

)

1 + c5
K5

+ c8
K8

v6 = vmax,6

c6
K6

(1 − c7
c6K6,1

)

1 + c6
K6

+ c7
K7

v7 = vmax,7

c7
K7

(1 + c7
K7

)n2−1

L1( 2
1+

c3
K3

)n2 + (1 + c7
K7

)nP Y K

The parameters associated with the seven Michaelis-Menton
equations are listed in Table I.

TABLE I

PARAMETERS USED IN THE MICHAELIS-MENTON EQUATIONS OF FIG. 1

Parameter Value Parameter Value

vmax,1 1.0 vmax,2 1.0
vmax,3 5.0 vmax,4 5.0
vmax,5 5.0 vmax,6 5.0
vmax,7 10.0 K1 1.0
K2 1.0/c10 K3 1.0
K4 1.0 K5 1.0
K6 1.0 K7 1.0
K8 1.0 K1,1 1.0
K3,1 0.1 K4,1 1.0
K5,1 1.0 K6,1 1.0
L0 10000 L1 100
n1 8 n2 4

With the mass balance of this dynamic metabolic system,
the metabolite concentrations and the associated fluxes in
Fig. 1 can be linked by a series of differential equations which
can be concisely written in a matrix format:

ċ = Sv (8)

where c =
[

c1 c2 c3 c4 c5 c6 c7 c8 c9

]T

(since c10 is assumed fixed in the model, it is not included in
the vector c) and v =

[
v1 v2 v3 v4 v5 v6 v7

]T
.

S is the stoichiometric matrix given by,
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Gluco se F6P F1,6bP

GAP

DHAP

PEP

G3P

Ethanol

Glycerol

HK 6PF-1-K
FB A

ENO

GPD

PYK

GPP

Fig. 1. A synthetic metabolic network system [44]. Abbreviations: F6P, fructose 6-phosphate; F1,6bP, fructose 1,6-bisphosphate; F2,6bP, fructose 2,6-
bisphosphate; GAP, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; DHAP, dihydroxyacetone phosphate; G3P, glycerol 3-phosphate. Here ‘HK’
represents the lumped reactions catalyzed by hexokinase and phosphofructoisomerase; ‘ENO’ represents the lumped reactions catalyzed by glyceraldehyde
dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase and enolase; ‘PYK’ represents the lumped reactions catalyzed by pyruvate kinase, pyruvate
decarboxylase and alcohol dehydrogenase. ‘GPD’ represents the two glycerol 3-phosphate dehydrogenase isoenzymes encoded by GPD1 and GPD2; ‘GPP’
represents the two glycerol 3-phosphatase isoenzymes encoded by GPP1 and GPP2.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 0.5 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0.5 0 0 −1 0
0 0 0 0 0 1 −1
0 0 0 0 1 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering the system observations and the unavoidable noise
with system measurements and uncertainties with the system,
a nonlinear state space model about the concentrations c can
be formed with the knowledge of Michaelis-Menton equations
involved with each reaction,

ċ = f(c) + ε

y = Hc + η (9)

with c ∈ Rnc , y ∈ Rny is the system measurement, nc

and ny are the dimension of metabolites and measurements,
respectively. Since there are three extracellular metabolites,
ny is 3 and nc is 9 in this case. H ∈ Rny×nc is the system
observation matrix. Here, H is in the format given below:

H =

⎡
⎣ 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎦

ε and η are the noise associated with metabolic reactions and
system measurements, respectively. Here

f(c) = Sv

However, due to limited experimental condition, only discrete
states are measurable. Hence, the approximated discrete state
space model is used here,

ck = Tf(ck−1) + ck−1 + Tεk

yk = Hck + ηk (10)

where T is the sampling time.

B. SMC filter for intracellular concentration estimation

It is assumed that the noise models εk and ηk in (10) are
truncated Gaussian noise with εk ∝ N̄ (0,Σc) and ηk ∝
N̄ (0,Σy), where Σc and Σy are covariance matrices associ-
ated with εk and ηk, respectively, 0 is the vector filled with
0 with appropriate sizes. For a truncated Gaussian N̄ (μ, β)
which only allows nonnegative samples, its probability density
format g(s) is,

g(s) =

{
1

Gc

√
2πβ

exp
(
− (s−μ)2

2β

)
s ≥ 0

0 s < 0

and Gc is in the following format,

Gc =
∫ +∞

0

1√
2πβ

exp
(
− (s − μ)2

2β

)
ds

Note that the assumption of noise models as truncated Gaus-
sian noise is reasonable since all metabolite concentrations
and measurements are nonnegative quantities. Though various
proposal distributions are applicable for the SMC filter, here
the prior distribution of ck: p(ck|ck−1) is adopted as the
proposal distribution, since it can be easily obtained from (10),

p(ck|ck−1) ∝ N̄ (Tf(ck−1) + ck−1, T
2Σc)

where N̄ (Tf(ck−1) + ck−1, T
2Σc) is a truncated Gaussian

distribution with mean Tf(ck−1) + ck−1 and covariance
T 2Σc. The importance weight w at step k is then given by,

wk = wk−1 p(yk|ck)p(ck|ck−1)
q(ck|c0:k−1,y1:k)

= wk−1p(yk|ck) (11)

However, in practical situations, it is often the case that a
few samples will dominate the weights after several iterations,
which greatly affects the diversity required by the SMC
algorithm. Hence, when the the sample variance reaches a
predefined threshold, resampling is necessary in a typical
sequential importance sampling algorithm in order to increase
sample diversity. The sample diversity is often measured by
sample size S [45], where the sample size at kth step, Sk is,

Sk =
1∑N

i=1 wk
i
2
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Fig. 2. The synthetic measurement data of the extracellular metabolites: Glucose, Glycerol and Ethanol
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Fig. 3. Comparison of the measurements and the SMC results of the extracellular metabolites: Glucose, Glycerol and Ethanol. The solid lines (–) represent
the estimates from SMC filter and the dotted lines (· · · ) represent the simulation data.

TABLE II

THE SMC FILTER ALGORITHM FOR DYNAMIC STATE ESTIMATION

k = 0;
Generate N random samples ci

k, i = 1, · · · , N ;
Set the initial weight wi

k = 1
N ;

for k = 1, · · · ,M
Generate the new samples ci

k, i = 1, · · · , N
from the proposal distribution p(ci

k|ci
k−1);

Update the weight wi
k = wi

k−1p(yk|xi
k);

Normalize the weight w̄i
k = wi

k∑ N
i=1 wi

k

;

Calculate the sample size S = 1∑ N
i=1 wi

k
2 ;

if sample size S is less than predefined threshold
Do resampling on the samples ci

k, i = 1, · · · , N ;
Set weight wi

k = 1
N ;

end
The estimated state is ĉk =

∑N
i=1 ci

kw̄i
k

end

The full algorithm for the SMC filter with resampling proce-
dure is shown in Table II.

IV. SIMULATION

A. Simulation procedure

In this simulation, the ode45 command in Matlab (The
MathWorks) is applied to the system in Fig. 1 described in
Section III in order to generate the simulation data. Firstly,
the substrate Glucose and the two products Glycerol and
Ethanol are fixed at 20.0, 0.0, 0.0 mM, respectively. The initial
concentrations for all other intracellular metabolites are set
to 1.0 mM. After the system reaches its steady state, the
concentrations for F6P, F1,6bP, DHAP, G3P, GAP and PEP
are 3.12, 1.48, 0.15, 0.07, 0.62 and 0.49 mM, respectively.
Then the Glucose concentration is increased to 40.0 mM in
order to simulate the pulse input experiment. Afterwards, the
simulation starts and lasts for 120 seconds. Note that the
simulation data is already corrupted with noise according to
(10). The metabolite F2,6bP is fixed at 1.0mM among the
simulation.

B. Data preparation and parameter setting

After the simulation data in 120 seconds are generated,
the extracellular measurements obtained are corrupted with
additive truncated Gaussian noise with mean 0 and standard
deviation 1.0, so as to generate the simulated measurement
data. The initial condition for extracellular metabolites are also
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Fig. 4. The measurement and simulation results comparison of the intracellular metabolites: F6P, F1,6bP, DHAP, GAP, G3P and PEP. The solid lines (-)
represent the estimates from SMC filter and the dotted lines (·) represent the noise-free simulated data.

corrupted with the same noise distribution. And the initial con-
dition for intracellular metabolites are assumed unknown and
set to reasonable random numbers. The synthetic measurement
data are shown in Fig. 2. Since the sampling frequency of a
rapid sampling experiment is usually around 4-5 samples per
second, here we assume the sampling time is 0.2s, hence, there
are five samples to be obtained every second. In reality, the true
values of Σc and Σy in (10) are unknown and are considered
as design parameters for the filter. Hence, the covariance
matrices Σc and Σy in the filter are assigned to diagonal
matrices with 0.4 and 2.0 on the diagonal, respectively. By
trial and error, the sample number is set as 2000. The threshold
for resampling is set as one third of the sampling number.

C. Simulation results

The original data and the estimated extracellular and intra-
cellular metabolite concentration data are shown in Fig. 3 and
Fig. 4, respectively.

From the result illustration in Fig. 3 and Fig. 4, it is clear
that the SMC filter approximates both the extracellular and
the intracellular metabolite concentration in most cases. The
comparison of the noisy measurements and the SMC results
of these three extracellular metabolites, Glucose, Glycerol
and Ethanol in Fig. 3 illustrates that the SMC algorithm can
reconstruct the original data of the extracellular measurements
even though there is large noise with these measurements.
Since the metabolite F1,6bP is a critical metabolite, it is

apparent that its estimation is more complicated than others.
However, the estimation of F1,6bP still follows the original
data trend reasonably well. An interesting finding is that the
metabolites on GAP, PEP side both stay at lower quantities,
however, the product Ethanol generated from PEP increases
greatly during the simulation. On the contrary, the DHAP
and G3P both increase gradually during the simulation, with
around the same speed as the product Glycerol produced by
G3P.

Besides the metabolite concentration estimation data, the
flux estimation data are also obtained simultaneously. Here, the
flux samples are derived by substituting the metabolite concen-
tration data in the Michaelis-Menton equations with metabolite
samples received during SMC filter. Then the weights for
metabolite samples are utilized as the weights for those flux
samples. The estimated fluxes HK, 6PF-1-K, FBA, GPD, GPP,
ENO and PYK are illustrated in Fig. 5. It seems that the
fluxes undergo various changes in the simulation. The four
fluxes, GPD, GPP, ENO and PYK, keep fluctuating around
nearly the same central value. The fluxes HK and 6PF-1-K,
on the contrary, experience big decrease from around 0.8 to
nearly 0.0, The flux FBA, which is affected by F1,6bP, DHAP
and GAP, keeps decreasing slowly. Although the flux FBA at
steady state is the same as HK and 6PF-1-K by stoichiometric
consideration, this study illustrates that its variation at transient
state undergoes the route very different from that of the fluxes
HK and 6PF-1-K.

392

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Sampling Time

H
K

HK

(a) HK

0 200 400 600
0

0.2

0.4

0.6

0.8

Sampling Time

6P
F

−1
−K

6PF−1−K

(b) 6PF-1-K

0 200 400 600
−3

−2

−1

0

1

2

3

Sampling Time

F
B

A

FBA

(c) FBA

0 200 400 600
−2.5

−2

−1.5

−1

−0.5

0

0.5

Sampling Time

G
P

D

GPD

(d) GPD

0 200 400 600
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Sampling Time

G
P

P
GPP

(e) GPP

0 200 400 600
−2

−1

0

1

2

3

Sampling Time

E
N

O

ENO

(f) ENO

0 200 400 600
0

0.5

1

1.5

2

2.5

3

3.5

Sampling Time

P
Y

K

PYK

(g) PYK

Fig. 5. The fluxes estimated by SMC filter.

V. CONCLUSIONS

The dynamics of a metabolic network before it reaches its
steady state has long been of vital importance to compre-
hensively investigate system properties. Rapid sampling and
quenching has become a critical technology in measuring the
fast metabolite concentration variations during the transient
state. However, the drawbacks of rapid sampling are obvious
when considering the instrument limitation and the effort
required for data analysis. In this paper, the dynamics of
a metabolic network is formulated as a state space model
with available knowledge of Michaelis-Menton equations. The
SMC approach, which intends to estimate the latent states from
available measurements is applied to the metabolic system
dynamics analysis. It is illustrated that SMC approach is able
to estimate the dynamic intracellular metabolite concentration

data with the prior knowledge of noisy extracellular metabolite
data. Meanwhile, the algorithm can also reconstruct the orig-
inal measurements from their noisy counterparts. Moreover,
the dynamic fluxes are also obtained simultaneously during
the estimation of metabolite states. Their formats among the
simulation period show that the stoichiometric balances are
no longer applicable in transient states. Though only a simple
example is utilized in this paper, the proposed approach can be
applied to more complex metabolic network as long as system
observability is satisfied.
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