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Abstract— Knowledge of the secondary structure and solvent
accessibility of a protein plays a vital role in prediction of fold,
and eventually the tertiary structure of the protein. This paper
deals with prediction of relative solvent accessibility, given only
the amino-acid sequence. In this paper, we use an improved
support vector regression (SVR) and new kernels for real valued
prediction of solvent accessibility. In this regard, two main issues
are addressed. First we address the problem of ǫ selection, which
we found to be somewhat problematic in our earlier work (ǫ
is a parameter with significant influence on noise insensitivity
and generalization of SVRs). In particular, rather than employ
the standard trial and error based approach, we used an
improved tube shrinking method to find ǫ. Secondly, a novel
kernel combining solvation model, electrostatic charge model and
evolutionary information in the form of position specific scoring
matrix (PSSM) is given. A new dataset of 472 proteins with
less than 20% sequence identity is curated and used to evaluate
the result. To make a more objective comparison with earlier
methods, we use a standard dataset and show that the proposed
scheme is better than the ones normally used in literature. We
also report a lowest mean absolute error (MAE) so far of 0.12
on the standard dataset.

I. INTRODUCTION

Knowledge of the secondary structure and solvent accessi-

bility of a protein plays a vital role in predicting the tertiary

structure of the protein. The protein folding problem can

be defined as prediction of the complete three dimensional

structure of a protein given only the amino-acid sequence. The

folding free energy can be expressed as the summation of free

energies due to intra molecular interaction and the interaction

with the surrounding solvent molecules [24]. The problem of

predicting interaction with surrounding solvent molecule has

been shown to be more challenging. This essentially is to

predict accessible surface area of a given residue in the protein.

Most solvation models assume that the solvation energy of

the solute is the sum of individual solvation energies of the

residues. Hence it is important to know the solvation energy

of the residues in a given environment. Moreover, this would

also give an indication about the position of the residue with

respect to the core of protein which will enable the calculation

of accessible surface area of a residue [11], [24].

Unfortunately, calculating the solvation energy or accessible

surface area of the residue is a non-trivial task. Relative

Solvent Accessibility (RSA) helps us to express the accessible

surface area in relative terms. Most of the early attempts

at RSA prediction concentrated on predicting whether it is

buried or exposed to solvents. These methods employ a binary

classifier to predict whether the solvent is exposed or buried

based on threshold of RSA, eg. 9% or 16%. Second generation

included three states viz., buried, intermediate and exposed.

Polastri et. al. [26] use bidirectional recurrent neural net-

work for protein solvent accessibility prediction. Yuan et.

al. [36] use support vector machines (SVM) for two and

three state RSA prediction reporting accuracies in the range

of 70-73%. NETASA [1] was developed to predict the net

accessible surface area and report results of about 71% on

Manesh database. It uses a simple neural network architecture

similar to PHD [27] and JPRED [5]. Kim and Park [16]

use support vector machines (SVM) and 3D local descriptors.

They call their system PSIsvm. They use PSSM matrix from

PSI-BLAST and 3D local descriptors comprising of disulphide

bridges, hydrophobic interactions and remote hydrogen bonds

as features. They report accuracies of around 78-80% for

two stage solvent accessibility classification for 16% and

25% buried state. In 2004, Nguyen and Rajapakse [22], [23]

propose a two stage SVM approach which takes into account

contextual relationships in the neighborhood. They report

accuracies of over 90% using Manesh dataset. Sim et. al. [32]

report slight improvement in predictions using a fuzzy k-

nearest neighbor method. Recently, real value prediction has

been developed to predict solvent accessibility particularly

based on regression methods. RVP-net [2] was developed

which predicts real valued solvent accessibility. In their work,

they show the importance of real valued calculations over two

stage predictions. Feed-forward neural network with multi-

layer function mapping is employed. The network is trained

with 80,000 residues. Gianese et. al. [7] use probability

profiles of amino acids to predict RSA. Garg et. al. [6]

use evolutionary information and feed-forward neural network

and report improvement in accuracies by about a percent.

Support Vector Regression has been quite popular in all other

work which followed. Yuan and Bailey [35] demonstrate the

application of regression approaches in predicting accessible

surface area. They predict accessible surface area in squared

angstroms rather than RSA. Yuan and Huang [37] use support

vector regression and report the best possible mean absolute
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error of 17% on a database they create. Wagner et. al. [34]

compare neural network and support vector regression for real

valued RSA prediction. On a new dataset they report decrease

in error rate by at least three percent compared to earlier

proposed methods.

In this work, we employ a new variant of support vector

regressor for real valued RSA prediction. A major difficulty

with earlier methods employing support vector regressor is

choosing ǫ which is usually done by trial and error (Although

this fact is often skimmed over). The method described in this

paper uses an improved tube shrinking method developed by

Shilton et. al. [31] for automatically calculating ǫ. In [31], the

co-authors have given the theoretical foundation of adaptive

SVM and for the first time we use them to demonstrate its

usefulness in application scenario. We also propose a novel

kernel combining solvation model, electrostatic charge model

and evolutionary information in the form of position specific

scoring matrix (PSSM) and compare it with standard kernels.

A new dataset is curated from recent version of CATH to val-

idate the proposed technique. This dataset is “harder” than the

ones used earlier as the maximum pairwise sequence identity

is less than 20%. We use Manesh dataset [17] to compare our

method objectively with previously proposed techniques. This

dataset contains 215 non-homologous proteins with sequence

identity less than 25%. 30 sequences are used for training

and 185 proteins are used for testing. The proteins used for

training include 1aba, 1abr, 1bdo, 1beo, 1bib, 1bmf, 1bnc,

1btm, 1btn, 1cem, 1ceo, 1cew, 1cfy, 1chd, 1chk, 1cyx, 1dea,

1del, 1dkz, 1dos, 1fua, 1gai, 1gpl, 1gsa, 1gtm, 1hav, 2i1b,

2sns, 3grs, 3mdd. The same set is used by several authors

in literature [23], [22], [2], [1], [6] for comparison. Overall,

we try to show that the combination of the features used

and the kernel proposed performs better than the existing

techniques in literature. The paper is organized as follows:

Section II explains the dataset used, the features extracted and

the evaluation methods. Section III introduces ǫ support vector

regression followed by ν support vector regression and the

modified ν support vector regression. Kernels are discussed in

section IV. Results and discussions are presented in section V.

Conclusions are given in section VI

II. MATERIAL AND METHODS

We construct the dataset from CATH version 2.6.0 released

in April 2005 [25]. At the first stage, we select proteins with

sequence length greater than 40 and with resolution of at

least 2 Å. UniqueProt [21] with HSSP-value of 0 was used

to eliminate identical sequences. After doing this, we are

left with 472 proteins out of 10,000+ proteins with pairwise

sequence identity less than 20% (PSA472 dataset (available

on http://www.ee.unimelb.edu.au/ISSNIP/bioinf)). We get the

secondary structure definitions from DSSP [14] algorithm.

The 8 to 3 state reduction method used was H, G and I

to H, E and B to E and all others to C where H stands

for α Helix, E for β Strand and C for Coil. The solvent

accessibility values extracted from DSSP program have been

used. Relative Solvent Accessibility is defined as the ratio of

solvent exposed surface area observed in the given protein

(SA) to the maximum achievable solvent exposed surface area

for that particular amino-acid (MSA):

RSA =
SA

MSA
(1)

In a recent work, it was shown that the Empirical Atomic

Solvation model [11] is the most effective out of the five

implicit solvation models tested. This makes use of the atomic

solvation parameters from Ooi et. al. [24]. Hence we make use

of the free energy of hydration parameter from Ooi et. al. [24]

as our first feature (denoted xh). The values reflect the con-

tribution of each side chain to the thermodynamic parameters

of hydration which give an indication of hydrophobicity and

hydrophilicity.

Based on our earlier experiments, we make use

of Grantham Polarity [8] (scale was obtained from

http://au.expasy.org/tools/protscale.html) (xc) scale as

the input for the new kernels we propose to use. We also

extract probability of occurrence of amino acids in different

secondary structure states (α, β and C) using Chou-Fasman

method. The Chou-Fasman parameter for Helix(α) is given

by Pαi = fαi/〈fα〉 where 〈fα〉=Number of Residues in

Helix/Total Number of Residues and ‘i’ ranges over the set

of amino-acid residues. Similar conformational parameters

for strand Pβi and coil Pγi are calculated (xs). We then

extracted evolutionary information in the form of position

specific scoring matrix (PSSM) generated by PSI-BLAST [3]

using the non-redundant (NR) database. The low complexity

regions, coiled-coil regions and transmembrane helices were

filtered with pfilt [13]. We choose an E-value of 0.0001 and

10 iterations for PSI-BLAST. The BLOSUM62 matrix was

used for multiple sequence alignment. We used the following

function to scale the profile values from the range (-7,7) to

the range (0,1) [15], [12](which is better suited for Support

Vector Regression usage).

ĝ(x) =







0.0
0.5 + 0.1x
1.0

x ≤ −5
−5 < x < 5

x ≥ 5
(2)

where x is the value of the PSSM matrix. This results in a

set of 25 features for every amino-acid in the newly created

dataset. Instead of considering only one amino-acid, we use

a window of length L around the residue to capture the local

information. Another feature is added to every amino-acid to

indicate whether it is at the edge of the protein sequence or

in the middle. The final input to the support vector regressor

is of length 25L + 1.

For the evaluation of the proposed method, we use standard

Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE) values, namely:

RMSE =
√

1
N

∑

i

(yi − ŷi)2

MAE = 1
N

∑

i

|yi − ŷi|
(3)
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where yi denotes the observed values and ŷi denotes predicted

values.

III. SUPPORT VECTOR REGRESSION

Support Vector Machines [4] are a relatively new class of

learning machines that have evolved from the concepts of

structural risk minimization (SRM) and regularization theory.

The major difference between support vector machines and

many other neural network (NN) approaches is that instead of

tackling problems using empirical risk minimization (ERM),

SVMs use the concept of regularised ERM. This has enabled

people to use SVMs with potentially huge capacities on

smaller datasets without running into the usual difficulties of

overfittting and poor generalization performance. The basic

idea of SVM theory is to (implicitly) map the input data into

higher dimensional feature space where the problem can be

treated as a linear one. The SVM formulation is desirable

due to its mathematical tractability and good generalization

properties. In this section, we give standard ǫ-SV regression

followed by ν-SV and modified ν-SV regression.

A. ǫ SV Regression

Suppose we are given a training set:

Θ = (x1, z1), (x2, z2), ..., (xN , zN )
xi ∈ ℜdL

zi ∈ ℜ
(4)

which is assumed to have been generated based on some

unknown but well defined map ĝ : ℜdL → ℜ, so that

zi = ĝ (xi) + noise. We define (implicitly, as will be seen

shortly) a map ϕ : ℜdL → ℜdH . Using this map, the aim is

to find a non-linear approximation g to ĝ with the form:

g(x) = wT ϕ(x) + b (5)

which is a linear function of position in feature space (but

nonlinear in input space by virtue of the map ϕ). The usual

ǫ-SVR method of selecting w and b is to minimize the

regularized risk functional:

min
w,b,ξ,ξ∗

R(w, b, ξ, ξ∗) = 1
2w

T w + C
N

1T ξ + C
N

1T ξ∗

such that: (wT ϕ(x) + b) ≥ zi − ǫ − ξi

(wT ϕ(x) + b) ≤ zi + ǫ + ξi
∗

ξ, ξ∗ ≥ 0

(6)

where 1
2w

T w characterizes the complexity of the model and
1
N

1T ξ + 1
N

1T ξ∗ the empirical risk associated with it. The

constant C > 0 controls the trade-off between empirical

risk minimization (potential over-fitting) if C is large and

complexity minimization (potential under-fitting) if C is small.

The constant ǫ > 0 in eq. 6 is included to give the model a

degree of noise insensitivity (assuming that ǫ is well matched

to the noise present in the training data). Using lagrange

multiplier techniques, the dual form of eq. 6 is [30]:

min
α

L(α) = 1
2αT Gα − αT z + ǫ |α|

T
1

such that: − C
N

1 ≤ α ≤ C
N

1

1T α = 0

(7)

where Gi,j = K(xi,xj) and |α| is the elementwise mod (ie.

|α| ∈ ℜN , |α|i = |αi|). We also note that:

g (y) =
∑

i

αiK (xi,y) + b

B. ν − SV Regression

One difficulty with ǫ-SV is the selection of ǫ, which usually

requires a trial-and-error approach. To overcome this problem,

Scholkopf et. al. [28] introduced the ν-SVR formulation,

which includes an additional term in the primal problem

to trade-off the tube size (ǫ, no longer a constant) against

model complexity and empirical risk. From [28], the primal

formulation is:

min
w,b,ξ,ξ∗,ǫ

R = 1
2w

T w + Cνǫ + C
N

1T ξ + C
N

1T ξ∗

such that: (wT ϕ(x) + b) ≥ zi − ǫ − ξi

(wT ϕ(x) + b) ≤ zi + ǫ + ξi
∗

ξ, ξ∗ ≥ 0

ǫ ≥ 0

(8)

where ν > 0 is a constant. The associated dual is [28], [30]:

min
α

L(α) = 1
2αT Gα − αT z

such that: − C
N

1 ≤ α ≤ C
N

1

1T α = 0
1T |α| = Cν

(9)

where G is as before. The advantage of this form lies in the

properties of the constant ν. It can be shown [28] that:

•
NE

N
≤ ν, where NE is the number of error vectors

(|g (xi) − zi| > ǫ, αi = C) in the training set.

•
NS

N
≥ ν, where NS is the number of support vectors

(|g (xi) − zi| ≥ ǫ, αi > 0) in the training set.

The advantage here is that ν is connected directly to

the sparsity of the resulting regressor (where sparsity is the

proportion of zero multipliers αi = 0), which is in most cases

much easier to select.

C. Modified ν-SV Regression

In this section we describe Modified ν-SV Regression

developed by Shilton et. al. [31], [30]. In [31], the co-authors

have given the theoretical foundation of adaptive SVM and

for the first time we use this method to demonstrate its

usefulness in application scenario. One practical difficulty

with the standard ν-SV regressor is the complexity of the

constraint set, and in particular the presence of the constraint

1T |α| = Cν. We would like to remove this constraint without

losing the ability to automatically select ǫ based on another,

more useful parameter, ν. Consider the primal form of the

standard ν-SV regression in eq. 8. The term Cνǫ is effectively

a linear regularization term for the variable ǫ (in much the

same way that 1
2w

T w is a regularization term for the variable

w). Replacing this with a quadratic regularisation term Cν
2 ǫ2,

we get the new regularised risk functional:

min
w,b,ξ,ξ∗,ǫ

R = 1
2w

T w + Cν
2 ǫ2 + C

N
1T ξ + C

N
1T ξ∗

such that: (wT ϕ(x) + b) ≥ zi − ǫ − ξi

(wT ϕ(x) + b) ≤ zi + ǫ + ξi
∗

ξ, ξ∗ ≥ 0

(10)
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where, once again, ν > 0 is a constant. The associated dual

is [31], [30]:

min
α

L(α) = 1
2αT Hα − αT z

such that: − C
N

1 ≤ α ≤ C
N

1

1T α = 0

(11)

where H = G + 1
Cν

sgn (α) sgn (α)
T

, G is as before and

sgn (α) is the elementwise sigmoid (ie. sgn (α) ∈ ℜN ,

sgn (α)i = sgn (αi)). It may also be seen [31], [30] that:

ǫ = 1
Cν

1T |α| (12)

Considering eq. 11, it should be noted that:

• The hessian matrix H is positive semi-definite and the

constraints are linear. Hence there will be no global

minima.

• While the modified ν-SV regression method incorporates

tube-shrinking into its design, the constraint set of eq. 11

is no more complex than the standard ǫ-SVR dual given

by eq. 7.

It can also be shown [30], [31] that:

1
ν

NE

N
≤ ǫ ≤ 1

ν
NS

N
(13)

and hence ν is once again connected with the sparsity of the

regressor, simplifying its selection.

IV. KERNELS

The function K(xi,xj) = ϕ(xi)
T ϕ(xj) is called the kernel

function. It is not difficult to show that our approximation

function g(x) may be written in terms of the kernel function:

g(y) =
∑

i

αiK(xi,y) + b (14)

The feature map ϕ : ℜdL → ℜdH are hidden by the

kernel function. It is well known that for any function K :
ℜdL × ℜdL → ℜ satisfying Mercer’s condition [10], [29],

[20] there exists an associated set of feature map ϕ : ℜdL →
ℜdH (although calculating these maps may not be a trivial

exercise). Mercer’s condition states that K : ℜdL ×ℜdL → ℜ
must be a continuous, non-negative definite, symmetric kernel.

Indeed, we may start with such a kernel function and, with no

knowledge of ϕ at all, optimize and use an SV-regressor. This

is referred to as Kernel trick [29].

Instead of employing a standard kernel function, to effec-

tively make use of the features extracted we have constructed

the following new Mercer kernel using closure properties [33]:

k(x,y)=kh(xh,yh)kc(xc,yc)+ ks(xs,ys)+ ke(xe,ye) (15)

where x and y represent the input data with subscript ‘h’

denoting kernel for evaluating hydrophobic values, ‘c’ for

evaluating polarity values, ‘s’ for evaluating Chou-Fasman

secondary structure conformational parameters and ‘e’ for

evaluating evolutionary information extracted in the form of

PSSM matrix. The four sub-kernels are defined as follows:

Hydrophobicity and Polarity Sub-Kernel: The hydrophobic-

ity sub kernel kh is a simple dot product of the free energy

values within a window of length L. Jaramillo et. al. [11] use

a simple summation in their solvation model, to good effect.

This motivates us to use a similar model in our kernel function.

The polarity sub kernel kc is similar, but with Grantham

polarity scales. The two sub-kernels are represented as shown

in eq. 16. The values dh and dc help in capturing the local

correlation [29]. w is a triangular window with positive real

numbers which is used to emphasize the central residue.

kh(xh, yh) =

[

1
L

L
∑

i=1

w(i)xh(i)yh(i)

]dh

kc(xc, yc) =

[

1
L

L
∑

i=1

w(i)xc(i)yc(i)

]dc
(16)

Sub-Kernel to infer the Secondary Structure State: To obtain

this kernel, we sum the Pα, Pβ and Pc values over a window

of length L. The maximum value of the three is considered as

the output. Mathematically:

ks(xs, ys)=max

















1
L

L
∑

i=1

xsα(i)ysα(i),

1
L

L
∑

i=1

xsβ(i)ysβ(i),

1
L

L
∑

i=1

xsγ(i)ysγ(i)

















(17)

where the three terms in max represent the Chou-Fasman

parameters calculated for each state α, β and C. The idea here

is to pick up the most favorable secondary structure state in

the given window.

PSSM Sub-Kernel: We use a simple dot-product [18], [19]

to combine PSSM values of the two vectors. The values are

between 0 and 1 and to improve the local correlation we raise

the entire equation to power de. so:

ke(xe, ye) =









20
∑

j=1

L
∑

i=1

xe(i,j)ye(i,j)

20
∑

j=1

L
∑

i=1

xe(i,j)

20
∑

j=1

L
∑

i=1

ye(i,j)









de

(18)

All of the newly defined kernels are symmetric in nature.

The kernels kh and kc are dot-product kernels with element

scaling, and hence satisfy Mercer’s condition. ks is the maxi-

mum of three simple dot products and hence is a valid kernel.

ke can be written in the dot product form thusly:

ke(xe, ye) =







∑

i,j







xe(i, j)
∑

k,l

xe(k, l)
,

ye(i, j)
∑

k,l

ye(k, l)













de

(19)

and hence also satisfies Mercer’s condition.

We compare the proposed kernels with standard Radial

Basis Function (RBF) and Polynomial kernels defined as

follows:

• RBF: K(x, y) = exp
(

−‖x−y‖2

γ

)

, γ > 0.

• Polynomial: K(x, y) =
(

γxT y + r
)d

, γ > 0.
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TABLE I

COMPARISON WITH STANDARD KERNELS WITH PROPOSED KERNEL IN TERMS OF MAE AND SUPPORT VECTORS.

Support 0-5 5-10 10-15 15-20 20-25 Global
Vectors MAE

RBF(Gamma = 7) 3746 0.10 0.12 0.10 0.09 0.08 0.11
RBF (Gamma = 10) 3641 0.10 0.12 0.10 0.09 0.08 0.11
Proposed Kernel (Weighted) 4955 0.17 0.13 0.08 0.06 0.05 0.12
Proposed Kernel (Non - Weighted) 5161 0.20 0.14 0.09 0.09 0.06 0.14
Polynomial Kernel (d = 3) 5296 0.21 0.16 0.12 0.08 0.03 0.15

TABLE II

MAE VALUES FOR VARIOUS VALUES OF ν .

ν 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-100

0.01 0.46 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.01 0.13
0.05 0.39 0.34 0.29 0.24 0.19 0.15 0.10 0.05 0.02 0.05 0.18
0.1 0.34 0.29 0.25 0.20 0.15 0.11 0.07 0.03 0.04 0.08 0.21
0.2 0.29 0.26 0.21 0.17 0.13 0.09 0.06 0.05 0.07 0.10 0.22
0.3 0.27 0.24 0.20 0.16 0.12 0.08 0.06 0.05 0.08 0.11 0.23
0.4 0.26 0.23 0.20 0.16 0.11 0.08 0.07 0.06 0.08 0.11 0.23
0.5 0.25 0.23 0.19 0.15 0.11 0.08 0.07 0.06 0.08 0.11 0.23
1 0.27 0.24 0.20 0.16 0.12 0.08 0.06 0.05 0.07 0.11 0.23
2 0.25 0.23 0.19 0.15 0.11 0.08 0.07 0.06 0.08 0.11 0.23

Results are shown in table I. 0, 5, 10, etc. in table I

are solvent accessibility thresholds. Weighted indicates that

the three sub-kernels are weighted unequally (0.25, 0.25, 0.5
respectively in this experiment). Non-weighted means the

weights are equal to 1.

Calculating Free Parameters

To calculate the free parameters, we selected 20% of pro-

teins with minimum length of 55 and belonging to each class

(All α, All β, α + β, Few Secondary Structures) as defined

by CATH. This was divided into two sets of 15% and 5% as

training and testing sets respectively. As described earlier, the

new SVR formulation eliminates ǫ and introduces ν which is

a free parameter. For several values of ν we calculated MAE

and RMSE. We found that above a certain value (approx 0.5

for our problem) the effect of ν is negligible. Based on this we

choose ν = 2 for all our experiments. It may be seen that this

value should be increased for larger data sets. The MAE and

RMSE values for various values of ν are shown in table II.

The window length L was chosen experimentally by vari-

ation from L = 1 to L = 19. MAE for various values of

window length L is given in table III. From the table we
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Fig. 1. Plot of MAE vs regression bins for various values of ν

chose a constant window length of L = 11 for rest of our

experiments.

V. RESULTS AND DISCUSSION

3-fold cross-validation (CV) was carried out on PSA472

data set after dividing the data into three sets randomly. We

performed cross-validation using both RBF kernel and the

novel kernel presented here. We found that the number of

support vectors using RBF kernel was 30.81% and using the

proposed kernel was 38.62% of the total training vectors. The

results of the CV are as shown in table IV. The other major

result of this paper is the use of modified support vector

regression where the system automatically chooses the value

of ǫ. We have shown that a reasonably high value of ν (wherein

ν > 1), which is independent of the noise present in the

system, gives good results consistently.

Finally, we compared our method with the other real value

prediction methods in literature [23], [6], [1], [7]. Manesh

dataset [17] was used to make this objective comparison as

this was the commonly used dataset. Table V summarizes

classification results of several systems for different RSA

TABLE IV

MAE VALUES FOR 3 FOLD CROSS-VALIDATION

MAE RMSE

SA Bins RBF Proposed Kernel RBF Proposed Kernel
(Weighted) (Weighted)

0-5 0.12 0.15 0.14 0.19
5-10 0.12 0.14 0.14 0.17
10-15 0.10 0.09 0.12 0.11
15-20 0.08 0.08 0.10 0.09
20-25 0.07 0.07 0.09 0.08
25-30 0.07 0.06 0.08 0.08
30-35 0.07 0.08 0.09 0.10
35-40 0.09 0.10 0.12 0.13
40-45 0.13 0.12 0.15 0.15
45-50 0.17 0.17 0.19 0.19
50-100 0.26 0.29 0.29 0.32
Overall 0.13 0.15 0.15 0.19
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TABLE III

MAE VALUES FOR VARIOUS VALUES OF L

L 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-100

1 0.44 0.38 0.33 0.28 0.23 0.18 0.13 0.08 0.04 0.02 0.16
3 0.35 0.30 0.26 0.20 0.15 0.11 0.07 0.04 0.05 0.10 0.21
5 0.29 0.24 0.22 0.17 0.12 0.08 0.06 0.07 0.08 0.12 0.21
7 0.27 0.23 0.22 0.15 0.12 0.09 0.07 0.06 0.09 0.11 0.20
9 0.27 0.22 0.21 0.15 0.13 0.08 0.07 0.06 0.08 0.10 0.21
11 0.25 0.22 0.21 0.15 0.13 0.09 0.07 0.07 0.08 0.10 0.20
13 0.24 0.21 0.20 0.15 0.13 0.09 0.07 0.08 0.09 0.11 0.20
15 0.23 0.19 0.19 0.14 0.12 0.09 0.07 0.08 0.10 0.11 0.21
17 0.23 0.19 0.19 0.14 0.12 0.09 0.07 0.09 0.09 0.11 0.22
19 0.63 0.58 0.55 0.50 0.47 0.42 0.37 0.31 0.24 0.23 0.14

thresholds T . Threshold T is used to indicate whether a residue

is buried (≤ T ) or exposed (> T ). As it can be seen from

table V, the proposed method (ASVM) performs better than

all other methods for RSA thresholds > 20%. For other

thresholds, our method is the second best. The first eleven

columns of table V indicate two state classification (buried

or exposed). The 12th and the 13th columns indicate three

state classification (buried, intermediate and exposed). The

last column gives mean absolute error (MAE) for real valued

prediction. We report the best MAE to date (0.12) on Manesh

dataset.

Figure 2 shows the average mean absolute error obtained

for all the amino acids in Manesh dataset [17]. Hydrophobic

amino acids Valine (V), Isoleucine (I), Leucine (L) and Pheny-

lalanine (F) give the lowest mean absolute error. This indicates

the system’s sensitiveness to the hydrophobic residues. Fig-

ures 3 and 4 show the plot of observed and predicted relative

solvent accessibility values for proteins 1PDA and 1SLU from

Manesh dataset. 1PDA gives the lowest mean absolute error

of 0.09 and 1SLU gives the highest mean absolute error of

0.156. From the plots, it is clear that the values predicted

follows the observed values very closely. If we compare only

the recent SVR method [23] with our method, we report better

performance with single stage SVR against two-stage SVR.

This result is important as it emphasizes the fact that the

data representation used is contributing significantly. In [23],

authors choose ǫ = 0.001. Choosing this value can be a bit

tricky and our system is free from this parameter. The correct

value of noise insensitivity parameter, ǫ, is important to get

the best result from a support vector regressor. Other than data

representation, the improved performance of our single stage

SVR compared to the two-stage SVR [23] is due to automatic

calculation of ǫ.

VI. CONCLUSION

Real valued relative solvent accessibility prediction using

adaptive support vector regression is proposed. Novel kernels

are employed which combine secondary structure statistics,

solvation model, electrostatic model and evolutionary infor-

mation in the form of PSSM. A new variant of support

vector regression which is free from choosing ǫ, the noise

insensitivity parameter is presented for the first time in an

application scenario. A new dataset containing 472 proteins

has been curated (PSA472) from recent version of CATH with
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Fig. 2. Average MAE values for different amino acids in Manesh dataset
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Fig. 3. Predicted and Observed RSA for protein 1PDA in Manesh dataset.
1PDA gives the lowest MAE of 0.090

sequence identity less than 20% to validate our method. We

get overall mean absolute error of 0.13 and 0.15 on PSA472

dataset. The proposed method is compared with a few other

methods using Manesh dataset [17]. On this set we report

the lowest mean absolute error (0.12) to date. The usefulness

of the proposed technique is demonstrated by making use

of it in protein topology prediction with highly encouraging

results [9].
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