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Abstract— We address the problem of estimating the structure
of networks described as a system of differential equations.
In each experiment, the network’s steady state is measured
as an output depending on a controllable input. Due to the
high cost of experiments, it is crucial to actively design the
inputs for accurate estimation. Although standard active learning
methods are designed to minimize the entropy of parameter
distributions, it is very unstable to estimate the entropy of
network structure. Therefore, we propose the two step algorithm
as follows: first, the most uncertain link is chosen, and then
the input is designed so as to minimize the variance of system
equation parameter instead of network structure. Our method
is tested in simulation experiments of gene networks following
Yeung et al., PNAS (2002). We show that our algorithm gives
stable and computationally effective solution.

I. INTRODUCTION

Learning and inference on networks are important issues in
various fields such as biological data analysis[1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12]. We discuss the problem
of estimating a network structure based on identification of
dynamical systems. We focus especially on the estimation
of gene regulatory networks from microarray experiments.
Experiments involved in the gene network identification are
very time and cost consuming, while we need a number of
experiments for an accurate estimate of network architecture.
Thus, it is important to develop an efficient strategy for the
design of experiments to achieve higher accuracy in a smaller
number of experiments.

Active learning is a useful method of providing an ef-
fective design for statistical inference. It aims at optimizing
controllable variables to maximize the usefulness of the next
samples in learning. Active learning methodology has been
successfully used for neural networks[13], [14], [15], in which
the purpose is to design an input point xnew to obtain a new
pair of training sample (xnew , ynew), which is expected to
be the most effective for reducing the generalization error.
In statistical literatures, active learning is called optimal ex-
perimental design[16], and has been used mainly for linear
regression and simple nonlinear regression models.

The purpose of this paper is to propose a method of
active learning for network estimation, which is motivated
by inference of a gene regulatory network. Our method is
based on statistical modeling of Gardner’s method[17], which
is based on the system identification assuming the model of a
linear differential equation for the gene network. The method

perturbs the system by providing an extraneous control input
in each experiment, and observes the steady state of the system
after convergence. The pairs of the control input and the
steady state are used for training samples. Our active learning
methods, thus, aims at providing effective control inputs in
the sequential experiments repeating the process of design,
experiment, and estimation.

In traditional active learning [13], the principle of choosing
the input is to minimize the sum of uncertainty of all pa-
rameters. Typically, the uncertainty is measured by entropy.
However, in network estimation with a small number of
examples, it is not a good idea because of several reasons.
One reason is that the entropy estimation from small samples
is inaccurate for network structure as shown later. Another
reason is that the traditional approach attempts to reduce
the uncertainty uniformly over all parameters by just one
input, which is very difficult in general. In practice it is
effective to focus on the most uncertain parameters and reduce
their uncertainty. We propose a new method to identify the
parameters of high uncertainty and select a new input that is
optimal for them. We use the entropy estimation of network
structure just for focusing, and we minimize the entropy of
system equation parameters instead. Our method was tested
in numerical experiments using standard simulation models
of gene networks[18], and we obtained promising results for
applications toward real biological systems.

II. DYNAMICAL MODEL AND NETWORK ESTIMATION
PROBLEM

We briefly review the problem of estimating a network
based on a linear system model[17], [19] (Figure 1). In
fact, the network dynamics is highly nonlinear, but a linear
approximation around the stationary point is often used in
practice. To be specific, we will describe the problem based
on the gene network, but it is applicable for other types of
networks such as biochemical networks[19].

Suppose we have n species of genes, we approximate
dynamic interaction between genes by a linear differential
equation,

dx(t)
dt

= Ax(t) + u(t) + ξ(t), (1)

where x(t) ∈ R
n is the concentration of the mRNAs that

reflect the expression levels of the genes, u(t) ∈ R
n is an

external input, and ξ(t) ∈ R
n is a noise. The n×n transition
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Fig. 1. Schematic figure of dynamical system of gene networks.
Left: example of three gene network. Right: dynamics (outputs are
measured after they converged to the steady states)

matrix A representing interactions between the genes is deter-
mined from gene network as follows: Let V = {1, . . . , n} be a
set of nodes representing genes. Any directed graph over V can
be represented by n × n binary matrix G called connectivity
matrix, where Gai = 1 when there is an edge from node i
to node a, and Gai = 0 otherwise. A transition matrix A
associated with G is an n × n matrix such that Aai = 0 for
Gai = 0. The set of transition matrices associated with G is
denoted by MG.

Assume that the network is at a stationary state. To get
information about the network, external inputs are raised from
zero to specific values uν and kept constant for a while.
Then, the network moves to another stationary state (Figure 1).
After convergence, mRNA conservations are measured as xν .
Repeating the experiment N -times, we have the following
linear equations,

Axν + uν ≈ 0 (ν = 1, . . . , N). (2)

because the network is at the steady state (dx(t)/dt ≈ 0). Our
goal is to estimate the gene network G from XN and UN

as accurately as possible, where we introduced the notation
XN = (x1, . . . , xN )�, UN = (u1, . . . , uN )�. Especially, we
design UN by an active learning scheme.

III. ACTIVE LEARNING FRAMEWORK FOR NETWORK
ESTIMATION

In this section, we describe an active learning framework
that we apply to network estimation. In the subsections below,
first we introduce an entropy minimization criterion as an
ideal but intractable one. Instead of the entropy criterion,
we introduce a variance criterion which corresponds to the
entropy of system parameter Aai. We also propose a method to
focus on a specific link to make the active learning effectively.
Overall form of the algorithm will be summarized in Fig.3.

A. Entropy minimization

When we have already had N pairs of samples UN and
XN , the basic procedure of active learning is designing a new
input u. One of the reasonable criteria is to choose u that is
expected to minimize an uncertainty of the target variable G.
Using entropy as a measure of uncertainty, we can define a
naive form of cost function,

F0(u) =
∫

H(G; XN , UN , x, u)p(x | XN , UN , u)dx (3)

which should be minimized with respect to u, where H(G; Z)
denotes the entropy of G with Z fixed, H(G; Z) =
−∑

G p(G | Z) log p(G | Z). This criterion is equivalent to
maximize the expected mutual information between G and a
new pair of sample (u, x).

To define the entropy precisely, let us define the generative
model of the network. Elements of graph G are generated
independently from binomial distribution, Gai = 0 in prob-
ability p0 and Gai = 1 otherwise. Next, each element Aai

is generated from Gaussian distribution depending on Gai ∈
{0, 1},

p(Aai | Gai = g) = exp
{−A2

ai/(2τ2
g )

}
/
√

2πτ2
g ,

where τ2
0 , τ2

1 are underlying parameters (τ2
0 � τ2

1 ). Since the
active learning algorithm does not rely on the detailed form
of the generative model, we can modify the model depending
on specific knowledge of target problems.

Next, we model the relation Eq. (2) statistically by

Xν + BUν ∼ N(0, σ2In), (4)

where σ2 is an underlying parameter representing noise level,
and B = A−1 under the assumption that A is invertible (in
order to deal with the case that this assumption is violated,
we take generalized inverse and further apply a regularization
technique in estimation). Although it may seem to be natural
that the left hand side of Eq. (2) is modeled by Gaussian
distribution without introducing B, we would face difficulty
in dealing with the distribution of x given A and u. The
formulation Eq. (4) makes it much easier.

Here we approximate F0(u) by assuming that conditional
distributions given pairs of samples depend on the samples
only through the estimation of A, i.e., in Eq. (3),

p(G | XN , UN , x, u) ≈ p(G | Â(XN , UN , x, u)), (5)

and
p(x | XN , UN , u) ≈ p(x | Â(XN , UN ), u), (6)

where Â(XN , UN , x, u) is A estimated by using
XN , UN , x, u. This assumption means that the posterior
distribution of A given samples, when we regard A as a
random variable, is peaky enough and is replaced by the
plugin estimation. The asymptotic statistics theory tells us that
this assumption is true as the number of samples increases.

Under the assumption, the entropy can be factorized into
sum of piecewise functions,

F0(u) ≈
∑
a,i

Fa,i(u)

=
∑
a,i

∫
H(Gai; Âai(XN , UN , x, u))

×p(x | Â(XN , UN ), u)dx, (7)

which reduces computational complexity significantly. The
entropy H(Gai; Aai) is given from the generative model by

H(Gai; Aai) = −q0 log q0 − (1 − q0) log(1 − q0), (8)
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where q0 = p(Gai = 0 | Aai) can be computed from p0 and
p(Aai | Gai = g) by Bayes rule.

However, F0(u) is still not tractable in practice because the
distributions appearing in F0(u) have very complicated forms,
and further they depend largely on unknown parameters whose
estimation is unreliable when the number of observations is
small and the model assumption is violated. Therefore, we ap-
ply some approximations and derive a variance minimization
criterion that is easy to compute and is robust against deviation
of parameter estimation. Before explaining the approximation,
we introduce focusing technique below.

B. Focusing

We can see that the minimization of F0(u) attempts to re-
duce the uncertainty averaged over all links in the network. In
this paper, we focus on a single link in one active learning step,
i.e., we optimize only one term Fai(u) of Eq. (7) by choosing
the most uncertain link (a, i) in G. This focusing technique
improves performance significantly in network estimation as
shown later.

Intuitively, the focusing technique is justified as follows.
In the sequential design of active learning, a single input is
chosen so that it reduces the uncertainty as much as possible.
However, the power of single input is not enough strong to
reduce the uncertainty for all links of the network, and the
effect of active learning may become unclear in particular
when the estimation of entropy is unreliable. For example,
suppose there are 4 links and u1 reduces the entropy by 0.1
for all samples and u2 reduces the entropy by 0.3 for just one
link. Although the entropy criterion without focusing chooses
u1, u2 is more preferable when there are noise ≈ 0.1 in the
estimation of entropy values.

The basic idea to choose a link (a, i) is that Aai locates
close to the classification boundary between Gai = 1 and
0. However, exploration is important in active learning to
prevent repeated choice of very similar data points. We use
probabilistic choice of a link: First calculate the entropy
H(Gai; Aai) for all (a, i) pairs by Eq. (8), and define a
probability on all the links by softmax function

Qai =
exp βH(Gai; Aai)∑
b,j exp βH(Gai; Abj)

, (9)

where we took β = 1 in the simulation, and then generate
(a, i) following the probability Qai.

In order to calculate the entropy value for the choice of
uncertain link, we need parameter values τ2

0 , τ2
1 and p0. A set

of components of current estimate Â can be regarded as n2

independent samples from Gaussian mixtures of N(0, τ2
0 ) and

N(0, τ2
1 ) with mixing proportion p0 and 1− p0. We apply the

EM algorithm to estimate those parameters. When n is large,
the number of samples increases, which is generally good for
estimation. However, the quality of estimation of Â becomes
worse for large n, thus there is a trade-off.

Even when the quality of estimation of τ0, τ1 and p0 is not
so good, the focusing is rather robust. One reason is that it is
not so important which component is selected in focusing. We
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Fig. 2. Entropy function H(Gai; Aai) as a function of Aai. Left:
τ0 = 0.1, τ1 = 2, p0 = 0.5, Right: τ0 = 0.2, τ1 = 2, p0 = 0.5. The
form of function is sensitive against the change of τ0.

need information for all components at the end. Therefore the
active learning will work if we select columns sequentially
(note that only the choice of column make sense for the
design). Entropy criterion using τ0 and p0 only determines
roughly priority of the sequence, which will improve the
performance slightly.

C. Variance minimization as an approximation of entropy
minimization

The entropy minimization is difficult to implement directly.
One reason is that the expected value of entropy is not
analytically computable. Another reason lies in the shape of
the entropy function. Let us consider the form of H(Gai; Aai)
as a function of Aai. Since p(Aai | Gai = 0) is a peaky
Gaussian and p(Aai | Gai = 1) is a broader Gaussian, the
form of function H is like mixture of two peaky Gaussian
distributions with peaks around the Bayes optimal decision
boundary {Aai | p(Gai = 0 | Aai) = p(Gai = 1 | Aai)}
(Fig.2).

The problem is that the two peaks depend on unknown
parameters τ2

0 , τ2
1 , p0 which are difficult to estimate from small

samples, while Fai(u) is very sensitive against the change of
the peaks. Therefore, it is necessary to replace Fai(u) by a
qualitatively equivalent but more robust method.

In this paper, we use the criterion minimizing the variance
of Âai(XN , UN , x, u) instead of Fai(u). It is qualitatively
justified as follows: The variance represents uncertainty of Âai

while Fai represents the uncertainty of Gai. If the true value of
Aai is not close to peaks of H function (decision boundary),
the uncertainty of Gai decreases when the uncertainty of Âai

is reduced (Mathematically, it can be seen from the fact that
H is a locally convex function of Âai). Therefore, in this case
the entropy criterion can be replaced by the variance criterion.
On the other hand, when the true Aai is close to the peaks,
as the uncertainty of Aai is reduced, we are certain that Aai

is on the boundary, which means Gai’s uncertainty increases
(i.e., the uncertainty of Gai cannot be essentially reduced in
this case). Thus in this case, the variance criterion contradicts
the entropy criterion. However, since the estimation of peaks
is unreliable and peaks are located in a very narrow region,
we assume that this case is negligible.

a) Derivation of the cost function: Although we can use
any kind of estimator as Â, it is preferable from computational
viewpoint that the estimator is written in an analytic form in
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order to evaluate the variance of Â(XN , UN , x, u). In this
paper, we use the ridge regression as an estimator of B, and Â
is obtained by its inverse. Hereafter, we just write Â(x, u) =
Â(XN , UN , x, u) and Â = Â(XN , UN) and so on, unless
confusing. We derive an asymptotic variance of Â, i.e.,

Ex| bA,u[(Âai(x, u) − Âai)2].

The ridge regression estimation B̂ is given by

B̂ = −ΣXUΣ−1
UU , (10)

where

ΣXU = (XN)�UN , ΣUU = (UN )�UN + λIn,

λ > 0 is a regularization constant. If λ → 0, B̂ becomes
the maximum likelihood solution that is an ordinary linear
regression from u to x for Eq. (4). Â is given by B̂−1 under
the invertibility assumption of B̂.

By the argument of the asymptotic expansion theory in
statistics, we have an approximation

Ex| bA,u[(B̂(x, u) − B̂)jb(B̂(x, u) − B̂)kc]

≈ σ2δjk(ΣUU + uu�)−1
bc . (11)

The cost function to choose u is defined by
Ex| bA,u[(Â(x, u)ai − Âai)2]. Given that the perturbation
caused by (x, u) is small, we can use an approximation

Â(x, u) − Â = B̂−1(x, u) − B̂−1

≈ B̂−1(B̂(x, u) − B̂)B̂−1,

and from Eq. (11) we get

Ex| bA,u[{(Â(B̂(x, u) − B̂)Â)ai}2]

≈ σ2(ÂÂ�)aa(Â�(ΣUU + uu�)−1Â)ii. (12)

With the equation

(ΣUU + uu�)−1 = Σ−1
UU − Σ−1

UUuu�Σ−1
UU

1 + u�Σ−1
UUu

,

we obtain the objective function of active learning,

F1(u) = min
‖u‖=1

−
(
a�

i Σ−1
UUu

)2

1 + u�Σ−1
UUu

, (13)

where ai is the i-th column of Â, i.e., Â = (a1, . . . , an).
Interestingly, the cost function only depends on i not a, thus
the effect of active learning covers all components of the
column i rather than a single component.

The closed form of criterion F1(u) is a computational
advantage of our approach against direct Bayesian framework,
in which Monte Carlo or another kind of computer intensive
methods are necessary.

1) Start-up samples: Generate random Uν , and get
Xν by experiments (ν = 1, . . . , Ninit)

2) Estimation: Estimate B̂ (, Â, and Ĝ) from the
sample set (Eq. (10))

3) Focusing: Choose an uncertain link (sec.III-B)
4) Active learning: Choose u (sec.III-D)
5) Experiment: Get x from u
6) Add (u, x) to the sample set and goto step 2

Fig. 3. Active learning algorithm (with focusing)
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Fig. 4. Experimental results for linear model (n = 20). Left: ROC
curves (solid:active with focusing, dotted:active without focusing,
dashed:passive). Middle & Right:scatter plots of ErrorG & ErrorA

(horizontal:passive, vertical:active with focusing).

D. Choice of u

We assume the input u has an unit length vector ‖u‖ = 1,
because the cost function F1(u) decreases as ‖u‖ becomes
large. In our modeling, the amplitude of u does not have an
important role compared to its direction.

Exploration is important also in the case of choosing u
to avoid concentration of sample points. For that purpose,
one method is to choose u from random samples: First,
generate Ntrial samples randomly from uniform distribution
from {‖u‖ = 1}, then choose u that minimizes F1(u). Ntrial

should not be too large for exploration while it should not be
too small for effective active learning.

In Fig.3, the overall form of the active learning algorithm
is summarized.
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Fig. 5. Experimental results for linear model (n = 40). Left: ROC
curves (solid:active with focusing, dotted:active without focusing,
dashed:passive). Middle & Right:scatter plots of ErrorG & ErrorA

(horizontal:passive, vertical:active with focusing).

IV. EXPERIMENTAL RESULTS

A. Linear Network

We performed experiments in standard numerical experi-
ment settings described in [18]. First, we examined a simple
linear gene network setting, which is a little more realistic
than the generative model we have assumed. The dynamics is
just the same as Eq. (1), and transition matrix A is separated
into two parts, A = −Λ+ W , where Λ is a constant diagonal
matrix that determines the rate of self-degradation, and W
represents the interaction between genes and is determined
row by row as follows: First we choose a random integer k,
0 ≤ k ≤ kmax from power law distribution, p(k) ∝ (k+1)−η,
where kmax < n is a cutoff and η is a parameter and set to
0.5 in this experiment. We then choose k components and
assign them a nonzero value from uniform distribution on
[−1, 0)∪ (0, 1]. The chosen components form entries of graph
edges (Gai = 1) and other components are 0. Λ is set to
Λ = kmaxI in this experiment.

We performed experiments with the network size n =20
and 40 and various total numbers of training data. Noise term
ξ(t) in Eq. (1) is a white noise with standard deviation 0.1.
Cutoff parameter kmax is set to 5 and 10 for n = 20, 40
respectively. For each input, we simulated the differential
equation from random initial points and stopped at t = 30.0
at which x converges to a steady state in most cases. In

N P/A ErrorG ErrorA ρG ρA

25 P 84.58 (45.03) 4.0e4 (2.8e5)
A-nof 40.72 (7.43) 230.20 (81.23) 0.58 0.15

A 39.65 (7.44) 175.31 (62.49) 0.57 0.11
30 P 47.58 (17.08) 506.11 (976.49)

A-nof 38.08 (7.59) 115.40 (36.87) 0.84 0.38
A 35.65 (7.33) 70.63 (15.02) 0.79 0.23

35 P 37.76 (7.97) 126.81 (61.83)
A-nof 35.89 (7.48) 71.07 (16.61) 0.96 0.63

A 31.13 (7.01) 41.12 (8.52) 0.83 0.37

TABLE I
AVERAGE VALUES (AND S.D.) OF ErrorG, ErrorA AND AVERAGE

ERROR RATIO ρG, ρA FOR LINEAR MODEL. NETWORK SIZE

n = 20. A-nof STANDS FOR ACTIVE LEARNING WITHOUT

FOCUSING

N P/A ErrorG ErrorA ρG ρA

50 P 334.19 (160.84) 1.4e6 (8.8e6)
A-nof 163.97 (21.66) 5.7e3 (1.8e3) 0.58 0.16

A 158.39 (19.65) 4.3e3 (845.61) 0.56 0.12
60 P 180.49 (37.99) 7.1e3 (4.2e3)

A-nof 155.96 (19.00) 2.5e3 (401.27) 0.88 0.43
A 154.11 (17.98) 1.7e3 (191.07) 0.87 0.30

70 P 157.42 (18.70) 2.4e3 (540.72)
A-nof 154.07 (18.03) 1.5e3 (196.33) 0.98 0.64

A 152.63 (17.89) 1.0e3 (82.65) 0.97 0.44

TABLE II
AVERAGE VALUES (AND S.D.) OF ErrorG, ErrorA AND AVERAGE

ERROR RATIO ρG, ρA FOR LINEAR MODEL. NETWORK SIZE

n = 40. A-nof STANDS FOR ACTIVE LEARNING WITHOUT

FOCUSING

active learning, we prepared 10 and 20 passive samples for
n = 20, 40 respectively as start-up data. This number is
equal to a half of the network size and the covariance matrix
becomes singular, thus it is the case the regularization is
essentially necessary. We mean passive samples by pairs of
random inputs and their outputs. In this paper, a random
input is generated from the uniform distribution on the sphere
{‖u‖ = 1}. In order to investigate the effect of focusing, we
also performed active learning without focusing, where the
cost function F1(u) is summed up for all i. For each setting
of parameters, we performed Nexp = 100 simulations with
different true graphs. When we generate new input u, we
compare Ntrial = 20n samples and choose the sample that
minimizes the cost function.

b) Performance measure: Due to the linear equation
setting, the optimal A is given by A = W − Λ. Therefore
we can evaluate the error of A as well as G. Let Â and Ĝ
denote the estimated value of G and A in each simulation, and
A∗ and G∗ be their true values. In order to estimate Ĝ, we
set a threshold t and Ĝai = 1 when |Âai| > t and Ĝai = 0
otherwise. For evaluation of performance, it is useful to show
ROC curves for G. We define the true positive rate by the
frequency of G∗

ai = 1 components that are correctly estimated
(Ĝai = 1 and sgn[Âai] = sgn[A∗

ai]), and the false positive rate
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by the frequency of G∗
ai = 0 components that are correctly

estimated (Ĝai = 0). By changing the threshold t, we have a
number of pairs of false and true positive rates. We get ROC
curve by the scatter plot of the pairs. Note that the value of y
axis (false positive) is not necessarily equal to 1.0 even when
the value of x axis (true positive) is 1.0, because the error is
defined with the sign of Âai taken into account.

Additionally we evaluated the performance for Bayes opti-
mal decision rule. The Bayes decision boundary is obtained
by solving {Aai | p(Gai = 0 | Aai) = p(Gai = 1 | Aai)},
which is given by

tBayes =

√
2 {log (τ2

1 /τ2
0 ) + log (p0/(1 − p0))}
1/τ2

0 − 1/τ2
1

,

where values of τ2
0 , τ2

1 , p0 are estimated by the EM algorithm.
We define the error index as follows: For A, we simply define
the squared error by

ErrorA =
∑
a,i

(Âai − A∗
ai)

2.

However, the situation is not so simple about the graph G.
If the link is correctly recovered (Ĝai = G∗

ai = 1) but
the effect of interaction (strengthen or weaken) is opposite
(sgn[Âai] 
= sgn[A∗

ai]), it should not be evaluated as the correct
one. Therefore, we define the error measure for G by

ErrorG =
∑
a,i

(Ĝaisgn[Âai] − G∗
aisgn[A∗

ai])
2.

c) Results: In figure 4 and 5, ROC curves and scatter
plots of ErrorG and ErrorA are presented for the case of
n =20 and 40 respectively. In the ROC curves, the average
curves with the same t are shown. The figures show that active
learning is effective in estimating the graphs and the transition
matrix A. It is interesting to see that the active learning is more
effective for smaller number of samples. In passive learning,
estimation of A seems unstable giving large estimation error
particularly for small sample size, while the active learning
gives reasonable estimators.

The average errors and standard deviation over 100 sim-
ulations are shown in Tables I (n = 20) and II (n = 40).
Index ρG for comparison between passive and active errors
is defined by ratio of the errors averaged over all graphs Gi

(i = 1, . . . , Nexp),

ρG =
1

Nexp

Nexp∑
i=1

1 + ErrorGi(active)
1 + ErrorGi(passive)

,

which indicates how much the error is reduced by active
learning, i.e, the smaller ρG indicates the effectiveness of
active learning. Index ρA for the errors of A is similarly
defined,

ρA =
1

Nexp

Nexp∑
i=1

ErrorAi(active)
ErrorAi(passive)

.

In this experiment, we see a clear effect of focusing. In
particular ErrorA significantly decreases.
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Fig. 6. Experimental results for nonlinear model (n = 20). Left: ROC
curves (solid:active, dotted:active without focusing, dashed:passive).
Right: scatter plots of ErrorG (horizontal:passive, vertical:active).

B. Nonlinear gene network

Next, we examined a nonlinear network setting, which is
more realistic and the linear model assumption is not satisfied
any more. The graph G is generated randomly in the same way
as in the linear case, and then links are classified into positive
link or negative link with probability 1/2. The dynamical
system of this setting is given by

dxi(t)
dt

= −λixi(t)+

αi +
∑

j∈Ai
xj(t)γij

1 +
∑

j∈Ai
xj(t)γij +

∑
j∈Ri

xj(t)βij
+ ξi(t), (14)

where Ai and Ri denote sets of positive and negative links
connected to node i respectively, γij , βij correspond to their
strength, λi is a self-degradation factor, and αi is the synthesis
rate of the i-th node, ξi(t) is noise. In this setting, we observe
the behavior around the steady state. First, we measure the
steady state x(∞) by updating the differential equation for a
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Fig. 7. Experimental results for nonlinear model (n = 40). Left: ROC
curves (solid:active, dotted:active without focusing, dashed:passive).
Right: scatter plots of ErrorG (horizontal:passive, vertical:active).

sufficiently long time. Then for each input u, we start from
an initial state that is slightly perturbed with u, i.e., x(0) =
x(∞)+εu and measure x(T ) where T is some transient time
before x is completely converged to the steady state. In this
paper, we set T = 2.0, ε = 0.1, std(ξi(t)) = 0.01, and other
parameters are set to constants: λi = 1.0, αi = 0.01, βij =
γij = 1.0.

d) Results: In this setting, since the optimal A is not
tractable, we only evaluate the performance for the graph G
(We can calculate ErrorG because we know sgn[Aai]). In
Figures 6(n = 20) and 7(n = 40), ROC curves and scatter
plots of ErrorG are presented. The average errors and standard
deviation over 100 simulations are shown in Tables III(n = 20)
and IV(n = 40). Although in general active learning scheme
is considered to fail when the model assumption is violated, in
this case active learning outperforms passive learning just as
in the linear case. In this case, active learning without focusing
also provided good results, because the parameter estimation
of Gaussian mixture is pretty hard in the nonlinear setting.

N P/A ErrorG ρG

25 P 153.43 (50.32)
A-nof 92.59 (42.12) 0.65

A 94.41 (49.51) 0.68
30 P 131.04 (46.36)

A-nof 80.26 (27.69) 0.68
A 79.92 (30.62) 0.69

35 P 114.01 (38.66)
A-nof 72.31 (21.09) 0.68

A 71.18 (22.65) 0.67
50 P 83.08 (33.50)

A-nof 64.75 (18.01) 0.85
A 62.35 (18.58) 0.81

TABLE III
AVERAGE VALUES (AND S.D.) OF ErrorG AND AVERAGE ERROR

RATIO ρG FOR NONLINEAR MODEL. NETWORK SIZE n = 20.
A-nof STANDS FOR ACTIVE LEARNING WITHOUT FOCUSING

N P/A ErrorG ρG

50 P 488.39 (191.85)
A-nof 324.04 (215.41) 0.76

A 374.49 (276.82) 0.87
60 P 421.73 (176.75)

A-nof 259.91 (83.47) 0.69
A 257.44 (110.86) 0.71

70 P 420.17 (169.02)
A-nof 229.12 (64.69) 0.61

A 236.55 (104.68) 0.62
100 P 278.25 (102.56)

A-nof 201.19 (53.85) 0.77
A 188.87 (49.78) 0.72

TABLE IV
AVERAGE VALUES (AND S.D.) OF ErrorG AND AVERAGE ERROR

RATIO ρG FOR NONLINEAR MODEL. NETWORK SIZE n = 40.
A-nof STANDS FOR ACTIVE LEARNING WITHOUT FOCUSING

However, we can observe the effect of focusing when the
number of samples is large.

V. CONCLUSION

We have proposed to apply an active learning framework
to the network estimation problem, and have shown through
some numerical experiments that the variance minimization
criterion and focusing technique is effective for this problem.
Main advantage of our approach is small computation cost
and the robustness against parameter estimation. In future
works, we would like to apply the method to real gene or
biochemical networks. In such a real situation, we might need
more constraint about the problem, for example, sparsity of
network link.
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