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Abstract— In this work, the problem of metabolic flux estima-
tion is formulated as a problem of parameter estimation from
incomplete labelling data. The expectation/conditional maximi-
sation (ECM) algorithm is used to determined a maximum-
likelihood (ML) estimate because of its simplicity and stable
convergence. We propose to simplify a nonlinear inverse prob-
lem, generally numerically solved by an iterative optimisation
algorithm, to a linear regression problem which is arrived at
from a linear-in-the-parameter formulation during a partial
optimisation process of the ECM algorithm. Three linear least
square algorithms, the ordinary least squares (LS), the total least
squares (TLS) and the constrained least squares (CLS), have been
tested to solve the linear regression in this step. Using simulations,
resulting parameter estimates and errors in flux estimation are
compared and evaluated. The performance of the algorithms are
investigated under two scenarios; when the labelling data are
corrupted by a wide range of noise and when the labelling data
are incompletely observed. Results suggest that the estimates from
the ECM algorithm using CLS produce results superior to other
combinations and have potential to be refined to improve its
performance in metabolic flux estimation.

I. INTRODUCTION

Metabolic fluxes through metabolic networks are crucial
for cell function and a knowledge of these fluxes is essen-
tial for understanding and manipulating metabolic phenotypes
[8]. Metabolic flux estimation based on data from 13C-tracer
experiments has rigorously been studied in the last decades to
quantify the intracellular metabolic fluxes since they can rarely
be measured directly [7], [12].

The most informative data about the fluxes can be ob-
tained by conducting isotopomer tracer experiments. From
the measurements of the 13C enrichments of the intracellular
metabolites, the information about the fluxes of the alternative
pathways producing a metabolite can be obtained [13].

Based on the isotope balance equations, if the information of
the variances of process and measurement noises is provided,
the flux estimation can be formulated as a nonlinear least

squares problem where the current fluxes are processed to
attempt to minimise the (weighted) deviation between mea-
sured data and simulated measurements [6], [12]. To estimate
the unknown fluxes and the error variances simultaneously, the
maximum-likelihood (ML) method is applicable. However, the
main difficulty of the ML approach is the high computational
complexity caused by optimisation of the likelihood function,
especially in an incomplete data situation and a slow conver-
gence speed that makes inference of larger systems infeasible.

To overcome this difficulty, a metabolic flux estimation
approach based on the Expectation/Conditional Maximisation
(ECM) algorithm [5] has been derived to simplify the ML
estimation. The basic idea is as follows: by imputing the
missing data from the conditional expectations of the labelling
data obtained from the E-step, a linear-in-the-parameter model
can be formulated in the conditional maximisation step. The
unknown fluxes in the next iteration are then easily solved
using a standard linear least square technique. In this paper we
examine the feasibility of the developed method by simulating
and estimating the intracellular fluxes in the central metabolic
pathway of Corynebacterium glutamicum.

II. PROBLEM FORMULATION

A. Metabolic Flux Estimation

The purpose of metabolic flux estimation is to obtain an
estimate θ̂, which is as close as possible to the ’true’ flux
distribution, given the pathway structure of the model. In
isotopic steady state, the vector representation of metabolite
atom specific activities, combined with atom mapping matri-
ces, enables the equations governing the isotopic steady state
to be written in the following form [11], [15]:

Aθx = u (1)

where Aθ ∈ R
n×n is the flux matrix which is a function

of the metabolic fluxes θ ∈ R
l, x ∈ R

n is the vector of
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positional enrichments of the intracellular metabolites and u
is the vector of measured quantities, e.g. the uptake rates and
the extracellular fluxes. The subscript θ will be used for any
variable which is dependent on the metabolic flux. If Aθ is
assumed to be nonsingular, the positional enrichment vector x
can be obtained by inverting Aθ:

x = Aθ
−1u (2)

Note that in certain pathological situations, the network
structure can become disconnected when fluxes vanish, i.e. the
forward and backward rates of a particular reaction are equal,
and the matrix Aθ consequently becomes singular. To prevent
the singularity of Aθ, the net fluxes should be bounded by
non-zero lower bounds [11].

In the presence of internal uncertainty, e.g. the simplification
of the proposed structure with main fluxes represented to the
true network structure, a noise term is added to (2):

x = A−1
θ u + w

= mθ + w (3)

where mθ = A−1
θ u and w is the modelling error which

is assumed to be normally distributed with zero mean and
covariance matrix Qw = σ2

wI where I is the identity matrix
with corresponding dimension and σw > 0. We now consider
two scenarios regarding the availability of the measurements:

1) Complete Data Case: It can be shown that if all posi-
tional enrichments of the intracellular metabolites are available
(1) can be written as a linear-in-the-flux model [14]:

Axθ = u (4)

where Ax ∈ R
n×l is the metabolite matrix which is a function

of the positional enrichments (or higher representation level,
e.g. the isotopomer distributions) and u is as defined in (2).
Formulating the system equation as (4) enables linear least
squares techniques to be applied:

• Ordinary linear least squares (LS)
If we assume all the errors are in the extracellular fluxes
u, (4) is replaced by

Axθ = u + ε. (5)

The unknown fluxes can be estimated by minimising the
sum of the squares of the residuals, i.e.

min
θ
‖Axθ − u‖2. (6)

If rank(Ax) = min(n, l), the unique least squares solu-
tion θLS is given by the pseudoinverse of Ax, θ̂LS =
(AT A)−1AT u = A†u [1]. However, if the system
is rank-deficient, i.e. rank(Ax) < min(n, l), a unique
solution which minimises ‖θ‖2 is calculated instead using
the singular value decomposition (SVD) [1].

• Total least squares (TLS)
In the classical least squares approach, the matrix Axis
assumed to be free of error, which is not strictly correct

for metabolic system equation as the positional enrich-
ments x are normally corrupted by noise, i.e.

(Ax + E)θ = u + ε (7)

To take errors in Ax into account, the problem should
be tackled as a total least squares (TLS) problem where
perturbations are allowed in Ax. The total least squares
solution of (7) is the minimum norm of

min
E,ε
‖(E ε)‖F subject to (u + ε) ∈ range(A + E)

(8)

Here ‖·‖F denotes the Frobenius norm, E and ε are the
errors of Ax and ũ, respectively.
Making use of SVD and the reduced-rank approximation
theorem, if σ̂l > σl+1 where l = dimθ, σ̂n and σn are
respectively the nth singular values of the matrix Ax, and
the augmented matrix (Ax u), a unique minimum norm
solution of the TLS exists as follows [9]:

θ̂TLS = (AT
x Ax − σ2

l+1I)
−1AT

x u (9)

2) Incomplete Data Case: With current technology some
components of the positional enrichments of the intermediate
metabolites cannot be measured, i.e. some components of x
are missing [13]. While measuring only the output y ∈ R

m,
the measurement equation can be written as

y = Cx + v (10)

where C ∈ R
m×n is the output matrix which is a constant

matrix of a linear combination of states x, v represents the
measurement error and is assumed to be an additive zero-mean
homogeneous Gaussian distributed process with an m × m
covariance matrix Qv = σ2

vI and σv > 0. Therefore, the
problem is how to estimate the unobserved fluxes indirectly
through the observed variables. The Maximum-Likelihood
(ML) criterion serves as a benchmark to choose the parameter
values for which the observed data is most likely to occur.

Given the pdf of the measurements y for a given unknown
parameters Ψ = (θ, σw, σv)T

p(y|Ψ) =
exp {− 1

2 (y − gθ)T R−1(y − gθ)}√
2πm det |R|

(11)

with the mean gθ, and covariance R given by

gθ = CA−1
θ b = Cmθ (12)

R = CQwCT + Qv (13)

The unknown parameters Ψ ={θ, qw, qv}T are estimated by
maximising the likelihood function over the parameter space
Ω, i.e.

θ̂ML = arg max
Ψ∈Ω
{− log(det |R|)− (y − gθ)T R−1(y − gθ)}.

(14)
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If the covariance matrices Qw and Qv are known, (14) can
be cast as a weighted nonlinear least square problem and hence
can be solved by a nonlinear least squares algorithm, e.g. the
Levenberg-Marquardt and the sequential quadratic program-
ming as applied in [3], [12]. A drawback of the ML estimation
(14) is that it specifies a complicated nonlinear optimisation
problem in several variables and the estimation often becomes
considerably hard with high computational effort. An EM
algorithm which will be described in the next section has been
developed to simplify the direct ML estimation.

III. EM ALGORITHM APPLIED TO METABOLIC FLUX

ESTIMATION

Each iteration of the EM algorithm consists of two steps:
The E (expectation) step and the M (Maximisation) step. Let
the vector y = (y1, ..., ym)T denote the observed incomplete
data and the latent/unobserved data be x = (x1, ..., xn)T . The
E step consists of computing the expectation of the complete-
data log-likelihood log p(x,y|Ψ) with respect to p(x|y, Ψ̂

k
)

where Ψ̂k denotes the estimated parameters at the kth iteration,
i.e.

Q(Ψ; Ψ̂
k
) = E[log p(x,y|Ψ)|y, Ψ̂

k
]

=
∫
x

log p(x,y|Ψ)p(x|y, Ψ̂
k
)dx (15)

In the M step, Q(Ψ; Ψ̂
k
) is maximised with respect to Ψ,

over the parameter space Ω. This leads to a new parameter
estimate Ψ̂k+1:

Ψ̂k+1 = arg max
Ψ∈Ω

Q(Ψ; Ψ̂
k
) (16)

The algorithm is iterated until ‖Ψk+1 − Ψk‖ or
‖Q(Ψk+1; Ψk)−Q(Ψk;Ψk)‖ is sufficiently small.

A. The E Step of the Algorithm

In metabolic flux estimation based on tracer experiments, not
only are some positional enrichments not available but also the
available measurements are noisy, which therefore establishes
the incomplete data. Here we use the complete positional
enrichment x as the latent data because it is unknown if
measurements include noise.

To evaluate (15), we first derive the joint probability density
function p(x,y|Ψ) from

p(x,y|Ψ) = p(y|x,Ψ) · p(x|Ψ)

=
1√

2π(n+m) det |QwQv|
· exp{−1

2
(x−mθ)T Q−1

w (x−mθ)

−1
2
(y −Cx)T Q−1

v (y −Cx)}
(17)

Substituting (17) into (15) and applying the expectation to
each term with respect to x given y and θk yields:

Q(Ψ; Ψ̂
k
)=−n + m

2
log(2π)− 1

2
log(det |QwQv|)

−1
2
(E[x]−mθ)T Q−1

w (E[x]−mθ)

−1
2
tr(Q−1

w (E[xxT ]− E[x]ET [x]))

−1
2
(y −CE[x])T Q−1

v (y −CE[x])

−1
2
tr(Q−1

v C(E[xxT ]− E[x]ET [x])CT )

(18)

where tr(X) =
∑

i Xii is the trace operator of a square
matrix X and all expectations are with respect to x, given y
and θk.

The conditional autocorrelation matrix E[xxT |y,Ψk] and
the conditional vector E[x|y,Ψk] can be obtained from the
conditional mean and covariance of p(x|y,Ψk) (22):

E[xxT |y,Ψk] = Pk + x̂kx̂kT

(19)

E[x|y,Ψk] = x̂k (20)

x̂k and Pk denote the conditional mean and covariance of
p(x|y,Ψk).

The conditional pdf p(x|y,Ψk) is derived by the rule of
conditional probability, i.e.

p(x|y,Ψk) =
p(x,y|Ψk)

p(y|Ψk)
(21)

p(x,y|Ψk) is already derived in (17). If p(x,y|Ψk) is
Gaussian, it can then be expressed in the following form:

p(x|y,Ψk) =
exp {− 1

2 (x− x̂k)T Pk−1
(x− x̂k)}√

2πm det |Pk|
(22)

Here x̂k and Pk denote the conditional mean and covariance
of x, respectively, and are given by:

x̂k = Pk(CT Qk−1

v y + Qk−1

w mk
θ) (23)

Pk = (CT Qk−1

v C + Qk−1

w )−1 (24)

Substituting (19) and (20) into (18) and multiplying (18)
by 2 yields another form of the conditional expectation of the
complete-data log likelihood

Q(Ψ; Ψ̂
k
)=C0 − log(det |Qw|)− log(det |Qv|)
−(x̂k −mθ)T Q−1

w (x̂k −mθ)− tr(Q−1
w Pk)

−(y −Cx̂k)T Q−1
v (y −Cx̂k)

−tr(Q−1
v CPkCT )

(25)

where C0 is a constant term.
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B. The M Step of the Algorithm

The M step determines new parameter values that maximises
Q(Ψ; Ψ̂

k
) with respect to Ψ; that is

Q(Ψk+1; Ψ̂k) ≥ Q(Ψ; Ψ̂k) (26)

with parameters to be identified Ψ = (θ, σw, σv)T . As can be
seen from (25), there is only one flux-dependent term, i.e.
(x̂k −mθ)T Q−1

w (x̂k −mθ). The Q-function Q(Ψ; Ψ̂
k
) is a

quadratic function of the conditional mean mθ and the optimal
value of mθ given θk is obviously the expected mean x̂k.
Given mk+1

θ , θk+1 can be obtained by taking the inverse
function of the optimal mθ, i.e. θ = F−1(mθ). However, the
inverse function F−1(mθ) is nonlinear with respect to θ due
to the inverse of the matrix Aθ. Therefore the M-step has no
closed form solution and a numerical optimisation procedure
is usually required.

Alternatively, in this work we will avoid the use of iterative
optimisation for the M-step. Instead of finding F−1(mθ),
we exploit the GEM framework [4] and the relationship of
equations (1) and (4). Rather than solving for the optimal θ,
we find an appropriate value and associated parameters σv and
σw such that

Q(Ψk+1; Ψ̂k) ≥ Q(Ψk+(S−1)/S ; Ψ̂k) ≥ · · · ≥ Q(Ψk; Ψ̂k)
(27)

The value of Ψ on the sth CM-step of the (k + 1)th iteration
is denoted by Ψk+s/S where S is the number of CM steps of
the ECM algorithm. It can be shown that the ECM algorithm
possesses the convergence properties of the GEM algorithm
[4].

The appropriate framework is motivated by the fact that
x̂ = mθ, i.e. Q is optimum, implying that Ax̂θ = u and
therefore, the appropriate solution can be obtained using the
various least squares solutions. Once θk+1 is obtained the
noise variances can be calculated by the optimisation of the
Q-function over σw and σv.

The concept of partial optimisation of the expected
complete-data log-likelihood over each parameter with all
other parameters held fixed is introduced by [5] and is known
as the Expectation/Conditional Maximisation (ECM) algorithm
which is a class of the Generalised Expectation Maximisation
(GEM) algorithm for which the M-step requires Ψk+1 to be
chosen such that the Q-function increases rather than maximise
it over all Ψ ∈ Ω [4].

The pseudo-code for the ECM algorithm applied to flux
estimation is as follows:

1) Generate an initial estimate {θk, σk
v , σk

w}
2) CM1 - Identification of θk+1:

Given current θk, calculate Ak
θ and x̂k from the isotopic

balance equations and (23), respectively. Formulate the
vector ũ and the matrix Ak

x of (5) by treating the
conditional estimate x̂k as a set of complete positional
enrichments. θk+1 is hence obtained using a linear least
squares technique.

3) CM2 - Identification of σk+1
v :

The measurement noise variance σ2
v at the (k + 1)th

iteration has a closed form:

σ2k+1

v =
1
m

(y −Cx̂k+1/3)T (y −Cx̂k+1/3)

+tr(CPk+1/3CT )
(28)

where x̂k+1/3 and Pk+1/3 (using (24)) are calculated
from Ψk+1/3 = {θk+1, σk

v , σk
w} and m is the number of

measured positional enrichments.
4) CM3 - Identification of σ2k+1

w :
The process noise variance σ2

w at the (k + 1)th iteration
also has a closed form:

σ2k+1

w =
1
n

(x̂k+2/3 −Ak+1
θ b)T (x̂k+2/3 −Ak+1

θ b)

+tr(Pk+2/3)
(29)

where x̂k+2/3 and Pk+2/3 are calculated from
Ψk+2/3 = {θk+1, σk+1

v , σk
w} step and n is the number

of positional enrichments of all intermediate metabolites
in the pathway.

5) If ‖Ψk+1−Ψk‖
‖Ψk‖ < τ1 or ‖Q(Ψk+1;Ψk)−Q(Ψk;Ψk)‖

‖Q(Ψk;Ψk)‖ < τ2,

where τ1 and τ2 are preselected thresholds, then accept
Ψk+1 as the estimated parameter Ψ̂ and exit, otherwise
return to step 2.

C. Reduction of solution space using the free fluxes

It is known that the EM algorithm sometimes is very slow
to converge and the rate of convergence is linear and depends
on the proportion of information in the observed data [4]. To
improve the convergence speed, the concept of the free fluxes
[12] is applied to reduce the solution space. The assumptions
on the model stoichiometry, the flux directions and flux mea-
surements provide additional linear equality constraints of a
form Aeqθ = beq to the flux estimation problem in CM1
step, resulting in a reduction of the search space.

By applying standard techniques of linear algebra to the
linear constraint equation, we can find a set of fluxes, known
as free fluxes , whose values are sufficient to fix the whole
flux distribution [2], [11]. The dimension of the free fluxes
φ is r = dim (θ)− rank (Aeq). Given the free fluxes φ, the
solution space of the equality constraints is parameterised by

θ = Γ · φ + θ0 (30)

where θ0 is the vector of fixed solution derived from the flux
measurements, Γ is the vector space spanned by the null space
of Aeq.

In practice, the complete flux distributions can be simply
computed by using a matrix inversion. By adding the constraint
of free fluxes Nf · θ = nf to the linear equality constraint of
the system stoichiometry and measured fluxes, the complete
flux distributions is given in a form:

θ = Ã−1
eq · b̃eq (31)

where Ãeq =
(
Aeq

Nf

)
and b̃ =

(
beq

nf

)
.
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To apply the free fluxes to the ECM algorithm, the parameter
Ψ becomes {φ, σv, σw} and the linear parametrisation (30)
is added to each of the CM steps to map from the searched
parameter φ to the actually required parameter θ.

IV. COMPUTATIONAL EXPERIMENTS

We tested the developed ECM algorithm to estimate the
intracellular fluxes of the model of central carbon metabolism
of lysine-producing Corynebacterium glutamicum on glucose
containing glycolysis, pentose phosphate pathway and citric
acid cycle. The reaction equations and carbon mappings pre-
sented in [12] were used.

A. Flux model

Fig. 1. Metabolic model for the central metabolism of L-lysine-producing
Corynebacterium glutamicum (adapted from [12]). Thin arrows represent the
reactions in the pathway. Shaded arrows indicate the withdrawal of precursors
for biosynthesis. V12 and V16 are scrambling reactions. Abbreviations: GLU
, glucose; LYS, lysine; G6P, glucose 6-phosphate; F6P, fructose 6-phosphate;
GAP, glyceraldehyde 3-phosphate; PYR, pyruvate; P5P, pentose 5-phosphate;
E4P, erythrose 4-phosphate; S7P, sedoheptulose; OAA, oxaloacetate; ICI,
isocitrate; AKG, α-ketaglutarate;FUM, fumarate; GlyOx, glyoxalase; CO2,
CO2.

The metabolic network for lysine-producing C. glutamicum
on glucose is shown in Fig. 1. The network consisted of
15 metabolites (excluding 10 biomass metabolites) and 30
reactions of which 7 were bidirectional and of which 14 (1
substrate uptake (V1) + 11 biomass effluxes (V18-V28) + 2
product formulation of lysine (V29-V30)) were assumed to be
measurable. Table I summarises the stoichiometric reactions

,the corresponding carbon atom transitions and assumptions on
the reaction directionality which were used in this metabolic
model. The number of net fluxes for modelling purposes was
32 of which 2 reactions came from the scrambling reactions
(V12 and V16). The scrambling reaction V i consists of two
parallel reactions which are referred to as V i1 and V i2.

TABLE I

THE CENTRAL METABOLIC NETWORK IN C. glutamicum WITH THE

STOICHIOMETRIC REACTIONS AND THE CORRESPONDING CARBON ATOM

TRANSITIONS. BIDIRECTIONAL REACTIONS ARE INDICATED BY DOUBLE

HEADED ARROWS. COMPLETE SCRAMBLING WAS ASSUMED FOR THE

FUMARASE REACTIONS V121 AND V122 AND LYCINE PRODUCTOIN VIA

THE SUCCINYL-DIAMINOPIMELATE DEHYDROGENASE PATHWAY (V161

AND V162).

Glycolysis
V1 :GLU + GAP → G6P + PYR ABCDEF +abc → ABCDEF + abc
V2 :G6P ↔ F6P ABCDEF ↔ ABCDEF
V3 :F6P ↔ GAP + GAP ABCDEF ↔ CBA + DEF
V4 :GAP ↔ PYR ABC ↔ ABC
Pentose phosphate pathway
V5 :G6P → CO2 + P5P ABCDEF ↔ A + BCDEF
V6 :P5P + P5P ↔ S7P + GAP ABCDE + abcde ↔ ABabcde + CDE
V7 :GAP + S7P ↔ E4P + F6P ABC + abcdefg ↔ defg + abcABC
V8 :P5P + E4P → GAP + F6P ABCDE + abcd → CDE + ABabcd
Tricarboxylic acid cycle
and glyoxylate cycle
V9 :PYR + OAA → ICI + CO2 abc + ABCD → DCBAcb + a
V10 :ICI → AKG + CO2 ABCDEF → ABCEF + D
V11 :AKG → FUM + CO2 ABCDE ↔ BCDE + A
V121:FUM ↔ OAA ABCD ↔ ABCD
V122:FUM ↔ OAA ABCD ↔ DCBA
V13 :ICI → GlyOx + FUM ABCDEF → AB + CDEF
V14 :GlyOx + PYR → OAA + CO2 AB + abc → ABba + c
Anaplerotic pathway
V15 :PYR + CO2 ↔ OAA ABC + a ↔ ABCa
Lycine production
V161:OAA + PYR → LYS + CO2 ABCD + abc → ABCDcb + a
V162:OAA + PYR → LYS + CO2 ABCD + abc → abcDCB + A
V17 :OAA + PYR → LYS + CO2 ABCD + abc → ABCDcb + a

The forward and reverse reactions were considered sep-
arately, resulting in 64 fluxes from 32 reactions. The
equality constraints due to the measured extracellular
fluxes, the metabolite balances, assumptions on directions
of fluxes and scrambling reactions resulted in 10 de-
grees of freedom for the natural fluxes. We have chosen:
{−→v5 ,−→v13,

−→v17,
←−v8,
←−v2 ,←−v4 ,←−v6,

←−v7,
←−v12

2,←−v15} as the free fluxes.
The right and left arrows represents the forward and reverse
reactions, respectively.

A set of ’true’ measured positional enrichment data was
generated using the network model in Fig. 1 and a set of free
fluxes of {65.3, 1.2, 4.7, 11, 313.2, 14.6, 84.2, 5.7, 1.6, 30.4}.
The only carbon source GLU was assumed to be labelled at
the first carbon atom. The measured biomass fluxes and true
fluxes were set such that their values are deemed representative
of those found in the literature [12].

Two scenarios are considered to evaluate and compare the
performance of the ECM algorithm using different linear least
squares algorithms.

1) Noisy complete data: In this experiment we evaluate and
compare the performance of the ECM algorithm using different
LS algorithms over a wide range of noise environments. The
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labelling data were perturbed by uniformly distributed noise
with variances of 5%, 10%, 15% and 20% of the true labelling
data. we assume that the positional enrichment was available
for every metabolite in the network.

In the CM1 step three linear least squares algorithms, i.e. the
ordinary least squares (LS), the total least squares (TLS) and
the constrained least squares (CLS) were tested. The solutions
of LS and TLS were calculated by the pseudoinverse based
on SVD and (9), respectively. If the LS or TLS resulted in
a negative flux which is biologically infeasible, it would be
replaced by a uniformly random number ranging between 0
and 0.001, provided the Q function was not decreased by
the new flux value. If the Q function was decreased, another
random number was re-selected. For the CLS algorithm, rather
than randomly imputing the infeasible solutions by a positive
value, the solution space was constrained to non-negative
solutions. The CLS algorithm was handled by the MATLAB

function LSQNONNEG from the Optimisation Toolbox.
The algorithm was terminated if the thresholds (τ1,τ2) =

10−6 were reached or the maximum number of iteration of 30
was arrived. Each experiment was run through 50 Monte Carlo
trials. The flux estimates are usually given in terms of net and
exchange fluxes to enable a rapid interpretation of degree of
reversibility by the users. The relations between the forward
and backward fluxes and the net and exchanges fluxes are:

vnet
i = −→v i −←−v i (32)

vxch
i = min(−→v i,

←−v i) (33)

To measure the closeness of the estimated fluxes to the
true fluxes, the Normalised Mean-Square Error (NMSE) was
adopted and defined by

NMSE =
1
l

l∑
i=1

(
θi − θ̂i

θi
)2 (34)

where l is the number of identified fluxes, θi is the true value
of flux i and θ̂i is the average estimated flux i in l simulations.

Fig. 2 shows that all the NMSE values of the ECM algorithm
using LS and CLS were smaller than that of the ECM algo-
rithm using TLS. For low noise level at 5%, the ECM using
CLS produced results that were the closest to the true values.
The results of Fig. 2 also show the performance difference
between the ECM algorithm using LS and CLS decrease with
increasing noise level.

2) Incomplete data: This experiment considers errors when
labelling data are not fully observed. Generally, the labelling
patterns of molecules in central metabolism are not usually
measured directly, but rather they are measured from the corre-
sponding amino acids. The precursors in Fig. 1 which usually
can be derived from the amino acids are: GAP, PYR, CO2,
P5P, E4P, OAA, AKG and LYS [3]. G6P and F6P can also be
derived from the NMR spectra of glucan, glycogen, trehalose
and chitin [10]. Therefore, we assumed that labelling data
corresponding to these metabolites were available, resulting
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Fig. 2. NMSE performance comparison of the ECM algorithm using LS, TLS
and CLS with measurement error (%) added to the true labelling data. The
NMSE performance was calculated from the estimates of individual forward
and backward fluxes.

in 43 available labelling measurements. The proportion of
missing data is around 30%.

The ECM algorithm combining with LS, TLS and CLS
were applied using the generated measurements shown in
Table III. By starting from 50 different initial values of the
free fluxes, the estimate which gave the closest simulated
enrichments to the measurements was selected as the best
estimated flux distribution. The best estimates obtained from
the tested algorithms are quantitatively compared in Table II.
The estimates obtained for product formation and biomass
effluxes are omitted from Table II for the sake of brevity. As
can be seen in Table II, all three ECM algorithms provided
good estimation results.

To compare the overall estimation performance among all
tested algorithms, the NMSE values of the estimated natural
fluxes (i.e. the individual forward and backward fluxes) were
calculated as presented in Fig. 3 (a). In overall, CLS produced
the smallest NMSE value of 0.0307, which is only slightly
smaller than the resulting NMSE of LS (0.0340) but greatly
is smaller than that of TLS (0.1190). The high value of
NMSE obtained from the TLS method was caused by a poor
estimation performance on the exchange fluxes as evident in
Fig. 3 (b). From Fig. 3 (b), we also see that the best estimated
net fluxes was achieved from the LS method. The inferior
performance of the CLS method in net flux estimation is
mainly due to its poor estimation on the net fluxes vnet

13 and
vnet
14 which yielded approximately 50 % estimation error (see

Table II).
The simulated labelling data from the ECM algorithm using

CLS were calculated and are shown with their corresponding
measured data in Table III. It can be seen that the estimated
labelling data are in good agreement with the measurements.

Furthermore, we evaluate each algorithm performance in
terms of convergence speed. In Fig. 4 we plot the time-
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TABLE II

ESTIMATED VALUES OF THE NET AND EXCHANGE FLUXES WHEN

LS, TLS AND CLS ARE USED IN THE CM1 STEP.

Flux True net flux LS TLS CLS
V1 100.00 100.00 100.00 100.00
V2 32.50 33.15 33.33 32.72
V3 71.01 71.22 71.28 71.08
V4 159.72 159.93 159.99 159.79
V5 65.30 64.66 64.47 65.09
V6 20.40 20.19 20.12 20.33
V7 20.40 20.19 20.13 20.33
V8 18.60 18.39 18.33 18.53
V9 62.33 62.54 62.61 62.40

V10 61.13 61.43 61.81 61.76
V11 52.93 53.23 53.61 53.56
V12 54.13 54.35 54.41 54.20
V13 1.20 1.12 0.80 0.64
V14 1.20 1.12 0.80 0.64
V15 43.69 44.40 45.10 44.67
V16 6.80 7.42 7.81 7.22
V17 4.70 3.46 2.68 3.86

Flux True exch. flux LS TLS CLS
V2 313.20 315.06 317.66 314.55
V4 14.60 12.97 21.16 13.74
V6 84.20 80.33 76.53 82.79
V7 5.70 12.73 16.65 9.34
V8 11.00 6.76 4.77 8.72

V12 3.20 4.54 7.99 6.22
V15 30.40 30.85 32.81 30.83

dependent Q function of the three algorithms against the itera-
tion number. In terms of number of iterations, CLS converged
at iteration 11, followed by LS and TLS at iterations 12 and 13,
respectively. The average calculation time per experiment of
LS, TLS and CLS were 95, 143 and 96 seconds, respectively
(data not shown). In comparison to the nonlinear least squares
algorithm using the MATLAB function LSQNONLIN with the
maximum iteration of 30 and the termination tolerances on
the function value and parameters of 10−6, the nonlinear least
squares took around 600 seconds per simulation. Therefore,
the ECM could lead to an over six fold speed up in the flux
estimation.

V. CONCLUSION

In this study we propose an ECM algorithm to estimate
metabolic fluxes from incomplete labelling data. The main
focus of the report is to provide a general understanding of the
algorithm and to show how this algorithm can be applied to
metabolic flux estimation. The main advantage of the proposed
method is that the ML estimation problem is simplified by the
formulation of a linear-in-the-parameter model in the CM step,
resulting in efficiency with the computational effort and speed-
up in the estimation process.

For the network studied here, the results from computational
experiments show that the ECM algorithms using LS and CLS
perform well for both complete and incomplete data cases.
In the incomplete data case, the ECM algorithm using CLS
produced results superior to the combination of ECM and LS
and TLS algorithms in terms of overall estimation accuracy.
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Fig. 3. Comparison of NMSE performance of the ECM algorithm using LS,
TLS and CLS when 30 % of labelling data are missing. (a) NMSE calculated
from the estimated natural fluxes. (b) NMSE calculated from the estimated
net and exchange fluxes.

Fig. 4. Convergence of the ECM algorithms combining with LS, TLS and
CLS.
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TABLE III

MEASURED AND ESTIMATED POSITIONAL ENRICHMENTS

RESULTING FORM THE BEST FIT DISTRIBUTION SHOWN IN

TABLE II BY THE ECM ALGORITHM USING CLS.

Carbon atom Measured(%) Simulated (%) Error
G6p-1 73.841 73.783 0.057
G6p-2 0.531 0.569 -0.038
G6p-3 2.015 2.156 -0.141
G6p-4 0.282 0.318 -0.036
G6p-5 0.097 0.107 -0.010
G6p-6 6.514 6.905 -0.392
F6p-1 65.489 65.449 0.040
F6p-2 0.701 0.750 -0.049
F6p-3 2.658 2.842 -0.183
F6p-4 0.372 0.419 -0.047
F6p-5 0.128 0.141 -0.013
F6p-6 8.593 9.101 -0.507
Gap-1 1.207 1.283 -0.076
Gap-2 0.416 0.433 -0.017
Gap-3 27.888 27.876 0.012
Pyr-1 2.034 2.131 -0.097
Pyr-2 1.752 1.801 -0.049
Pyr-3 27.130 27.104 0.026
Co2-1 21.973 21.929 0.044
P5p-1 12.371 12.304 0.067
P5p-2 1.779 1.904 -0.124
P5p-3 0.827 0.877 -0.050
P5p-4 0.285 0.296 -0.011
P5p-5 19.104 19.054 0.050
S7p-1 - 16.715 -
S7p-2 - 1.808 -
S7p-3 - 11.518 -
S7p-4 - 1.923 -
S7p-5 - 0.868 -
S7p-6 - 0.293 -
S7p-7 - 18.853 -
E4p-1 2.050 2.131 -0.082
E4p-2 0.687 0.766 -0.079
E4p-3 0.237 0.258 -0.022
E4p-4 15.870 16.637 -0.767
Oaa-1 6.772 6.904 -0.132
Oaa-2 9.411 9.502 -0.091
Oaa-3 22.782 22.756 0.026
Oaa-4 17.290 17.281 0.009
Ici-1 - 17.281 -
Ici-2 - 22.756 -
Ici-3 - 9.502 -
Ici-4 - 6.904 -
Ici-5 - 27.103 -
Ici-6 - 1.801 -

Akg-1 17.290 17.280 0.009
Akg-2 22.781 22.755 0.027
Akg-3 9.411 9.502 -0.091
Akg-4 27.129 27.102 0.026
Akg-5 1.752 1.801 -0.049
Fum-1 - 21.518 -
Fum-2 - 10.156 -
Fum-3 - 25.973 -
Fum-4 - 2.860 -

GlyOx-1 - 17.275 -
GlyOx-2 - 22.748 -

Lys-1 5.011 5.020 -0.009
Lys-2 6.565 6.462 0.102
Lys-3 24.396 24.470 -0.074
Lys-4 17.289 17.280 0.009
Lys-5 25.513 25.386 0.127
Lys-6 4.598 4.840 -0.242

Moreover, the ECM based approach is indeed resulting in a
fast convergence.

Despite its overall excellent estimation performance and
speed, it is evident that the algorithm produce an inferior
performance to some fluxes. As a consequence, the method
could probably be refined to further improve its performance
and statistical analyses in terms of, for example the sensitivity
to a particular measurement.
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