
 
Abstract—With the efforts to understand protein structure, 

many computational approaches have been made recently.  
Among them, the support vector machine (SVM) methods have 
been recently applied and showed successful performance 
compared with other machine learning schemes.  However, 
despite the high performance, the SVM approaches suffer from 
the problem of understandability since it is a black-box model.    
To overcome this limitation, this study attempted to combine the 
SVM with the association rule based classifier which can present 
the meaningful explanation about the prediction.  To perform this 
task, a new association rule based classifier (PCPAR) was devised 
based on the existing classifier, CPAR, to handle the sequential 
data.  PCPAR creates the patterns by merging the generated rules 
and then classifies the sequential data based on the pattern match.  
The experimental result presents the following: with sequential 
data, the PCPAR scheme shows better performance with respect 
to the accuracy and the number of generated patterns than CPAR 
method whether applied alone or combined with SVM.  The 
combined scheme of SVM_PCPAR generates more compact 
patterns than the combined scheme of SVM with decision tree, 
SVM_DT, with similar performance.  These patterns are easily 
understandable and biologically meaningful. 

Index Terms— support vector machine, association rule based 
classifier, decision tree, CPAR, PCPAR   

I. INTRODUCTION 
Over the past few decades, there were many approaches 

made to understand the protein structure.  Since the initial 
experimental approaches drew a lot of cost and time, they were 
replaced with computational prediction methods.  The progress 
of the machine learning technology provided various advanced 
tools for prediction.  Among the many machine learning 
approaches, the support vector machine methods are the most 
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recently applied in the structure prediction[1].  They show 
successful performance compared with other machine learning 
schemes[2-4].  However, despite the highly accurate 
prediction, the support vector machine approaches suffer from 
the problem of interpretability since they are a black-box 
model; the predictions made by SVM cannot be interpreted in a 
biologically meaningful way.   

To overcome this limitation, a few approaches have been 
made to extract the rules from SVM.  Núñez et al [5] introduced 
the SVM + Prototypes method.  The concept of this method is 
that based on the output of the decision function from SVM, the 
K-means clustering algorithm is applied to determine prototype 
vectors (centers of clusters).  By combining these prototype 
vectors with support vectors based on geometric methods, 
regions such as ellipsoids or hyper-rectangles are defined in the 
input space.  Since each region defines a rule, all the regions 
can be transferred to if-then rules.  However, this approach is 
known to have a scalability problem [6].  With the large 
number of patterns, if there is an overlap among different 
attributes, the explanation capability could suffer.             

Barakat and Diederich applied the “learning-based” rule 
extraction technique to understand the SVM prediction[6].  
Since SVM has a lack of interpretability, the authors combined 
it with a learning algorithm which has this capability by nature.  
They used the SVM as the first classifier to generate the 
patterns for the second learning algorithm.  Based on these 
patterns, the second learning algorithm learns what the SVM 
has learned and generates rules as output.  As a second learning 
algorithm, C5 decision tree algorithm is used to generate both 
the decision trees and rule sets.  However, Barakat and 
Diederich’s decision trees may generate the rules with much 
lower accuracy than that of SVM [7].  The reason is that some 
of the rules generated from their decision trees were based on 
the data set which has the same attributes used for training the 
SVM but with modified target (class) values by SVM. 

He et al introduced a new learning-based rule extraction 
algorithm called SVM_DT [7].  This algorithm combines the 
SVM with the decision tree according to the following four 
steps.  The first step is training the SVM.  Next, from the output 
of the SVM, a correctly predicted set is chosen as a new 
training set for decision tree.  Third, this new training data is 
applied for training a decision tree learning system and 
extracting the rule sets.  Finally, the generated rules are 
decoded into biologically meaningful rules.  This approach is 
performed well in terms of both the test accuracy of the rules 
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and the comprehensibility when it is applied to the problem of 
transmembrane segments prediction.  However, the decision 
tree based method searches for rules locally based on a heuristic 
by adding one capable attribute at a time according to the order 
of goodness.  This kind of attribute selection method may 
deteriorate the structure in which several attributes 
cooperatively decide the class.   

As an alternative rule mining approach, this paper introduces 
the association rule (AR) mining method into the SVM 
prediction.  This AR based method searches for all rules 
globally based on the cooperative prediction of several 
attributes and assesses each rule individually without 
considering the interaction with other rules [8].  The final rule 
set covers the training data in all possible ways hence the 
number of rules are usually large compared with DT method.  
The set with the large number of rules has the potential to find 
the true classification template from the training data if the 
over-fitting rules are pruned properly.   

The aim of this paper is to interpret the protein structure 
prediction of SVM based on the association rule mining 
method.  For this purpose, the transmembrane structure 
prediction is selected as a working domain, since the prediction 
consists of simple binary class decision of T (Transmembrane) 
or N (Not transmembrane).  Second, a few association rule 
(AR) mining algorithms are studied to select a suitable system 
for this domain.  Third, the selected AR mining algorithm is 
modified to adopt the system of this study and to improve the 
performance.  Fourth, the positive and the negative patterns are 
obtained respectively from the generated rules by AR mining 
method.  Finally, based on a new classification algorithm of 
this study, a test set is evaluated.       

II. METHODS 
A.  Prediction of transmembrane proteins 

Transmembrane (TM) proteins are the integral membrane 
proteins that can completely cross from the external to the 
internal surface of a biological membrane.  These TM proteins 
have important functions in biological systems such as ion 
channels or receptors.  Due to these essential roles in the 
cellular functions, the research of TM proteins has been 
appealing to many drug designers.   However, because of their 
hydrophobic properties, the conventional experimental 
approach such as X-ray crystallography or NMR (Nuclear 
Magnetic Resonance) cannot be easily applied to determine 
their 3D structures.  Therefore, computational or theoretical 
approaches have become important tools for identifying the 
structures and functions of TM proteins.   

Traditional methods of identifying the TM segments are 
mostly based on the hydrophobicity scales [9, 10].  Ever since 
these hydrophobicity based schemes were introduced, there 
have been many approaches to improve prediction, such as 
refining the hydrophobicity scale [11, 12], improving the 
hydrophobicity scales directly [13], analyzing the 
transmembrane database statistically [14, 15], or applying 
evolutionary information into neural network [16].   

In 2002, Chen et al. evaluated 27 advanced prediction 
schemes and many simple hydrophobicity based schemes using 
the high- and low- resolution data sets[17].  According to their 
analysis, there was no method which consistently showed the 
best performance.  Also, they stated that the simple 
hydrophobicity based schemes showed less accuracy than the 
advanced schemes which do not entirely depend on the 
hydrophobicity scales.    

The previous approach of this study was improving the 
performance of the prediction of transmembrane segments 
based on the support vector machine[18].  The position-specific 
scoring matrix (PSSM) was adopted as an optimal encoding 
scheme by testing different scoring matrices, such as 
hydrophobicity matrix, the combined orthogonal and 
Blosum62 matrix, and PSSM.  By optimizing the sliding 
window size and the SVM kernel parameters, this PSSM 
encoding scheme demonstrated the highest accuracy in terms of 
Q2 among the common prediction methods, and produced 
consistent results on the blind test data. 

B.  Support Vector Machine 
The realistic data have a complicated and nonlinear 

relationship between class and the parameters that describe the 
data.  The application of the SVM with a linear separation is of 
relatively little value.  However, the SVM can be generalized to 
complicated spaces by using a non-linear kernel.  The kernel is 
used to map the data in an arbitrary manner so that it can be 
resolved into separable classes.  Clearly, the choice of kernel is 
critical to the success of the SVM.  This study uses a radial 
basis kernel since it was optimal when used for secondary 
structure prediction[2, 3, 4].   
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Where x and y are two input vectors containing different feature 
values and  is the radial basis kernel parameter.   Based on the 
above radial basis kernel function, the final non-linear hyper 
plane decision function has the form 
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Where xi are the support vectors, SV is the number of support 
vectors, K(x, xi) is the kernel function, i are the Lagrange 
multipliers, b is the bias term.  The SVMlight software was used 
to implement the SVM (http://svmlight.joachims.org/).  
Calculations were carried out on a DELL 4CPU 1.9GHz Xeon 
using a hyper threading Linux kernel (version 2.4.18smp - Dell 
installed Red Hat 8.0).   

C. Association rule mining 
C.1. Basic Concepts 
A formal definition of association rule mining is as follows 

[19]:  Let I = {i1, i2, …, im} be a set of literals, or items.  Let X be 
an itemset which is a subset of I, X ⊆ I.  Let D = {t1, t2, …, tn}be 
a set of transactions called a transaction database. Each itemset 
X is related to a set of transactions t X = {t ∈ D | t ⊇X } where 
each transaction t contains the itemset X.   
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In a transaction database D, each itemset X has a support, 
supp(X) which is the ratio of transactions in D containing X.

              supp(X) = |X(t)| / |D|                                     (3)  

Where X(t) = {t in D | t contains X}.  A large or frequent itemset 
is defined as an itemset whose support is equal to, or greater 
than, the user-specified minimal support threshold.   

An association rule is an implication X Y, where itemsets 
X and Y are disjoint, X Y = φ .  In each association rule, there 
are two quality measures, support and confidence.  The support 
is the number of occurrences of each pattern and the confidence 
is the strength of implication.  These measures are defined 
formally as follows:  

the support of a rule X Y is the support of X Y
the confidence of a rule X Y, conf(X Y) is  

                            supp(X  Y) / supp(X).    

When a transaction database D is given, mining association 
rules is generating all association rules which have support and 
confidence values equal to, or greater than, the user-specified 
minimal support and confidence threshold respectively.  

C.2. Association rule mining algorithms  
Most of the traditional association rule mining algorithms are 

based on the support-confidence model such as above[20].  
This scheme measures the significance of an association rule 
based on two factors such as support and confidence [19].  
Apriori is a famous, and commonly-used algorithm for mining 
frequent itemset based on this model[21].  The 
support-confidence model is suitable for analyzing the market 
basket data.  However, in other applications such as 
bioinformatics or system traces, the number of occurrences 
may not be a good metric to measure the significance of a 
pattern [22].  In bioinformatics, researchers try to find 
statistically important sequential patterns from the sequential 
data.  Since the frequency of each symbols in a sequence may 
not evenly distributed (some symbols occur more often than 
other symbols), a pattern with common symbols occur more 
often than that with rare symbols. Therefore, the frequency 
(support) may not always indicate the importance of a pattern.  
Researchers should consider both the frequent patterns and the 
“surprising” patterns [22].  Sometimes a few numbers of 
“unexpected” rare patterns could provide more information 
than a large number of “expected” frequent patterns.  Wang and 
Yang adopted the information metric [23] to characterize these 
surprising patterns.  In their research, information is used to 
measure the degree of “surprise” when a pattern actually 
occurs.  Also, the information gain metric is devised to 
characterize the accumulated information of a pattern.   

Wang and Yang’s information model is formally defined 
such as follows [22].  

Let E = {e1, e2, ... } be a set of distinct events.  The event 

sequence is a sequence of events in E.  A periodic pattern is an 
ordered list of events occurring repeatedly in the event 
sequence.  The information contained by an event ei is defined 
as  

            )(Prlog)( || iEi eobeI −=                          (4) 

Where |E| and Prob(ei) are the number of events in E and the 
probability that ei occurs, respectively.  As can be noticed from 
the above equation, the frequent event contains less 
information than that of a rare event.  

  A pattern P of length m is a tuple of m events in the form of 
( p1, p2, ..., pm ) where pi E  {*}, (1  i m) and at least one 
position has to be filled with an event in E.  Where the symbol * 
is used to represent the “don’t care” position in a pattern.  In a 
random event sequence without any advanced knowledge of 
the correlation among the events, a pattern P will occur with a 
probability  

              Prob(P) = Prob(p1) x Prob(p2) x ... x Prob(pm)

The information contained by P is  

                 I(P) = - log|E| Prob(P) = I(p1) + I(p2) + ... I(pm)     
     
Given a pattern P = ( p1, p2, ..., pm ) and a segment S of m events 
s1, s2, ..., sm, we say that S supports P if , for each event pi in P, pi
= * or pi = si.  For example, the segment a, g, c, b supports the 
pattern (a, g, *, *) while the segment b, g, c, d does not.  The 
information gain of P in an event sequence D is defined as 

        )1)(()()( −= PSupportxPIPG                             (5) 

Where Support(P) is the number of segments that supports P.    
Besides the Wang and Yang’s approaches, FOIL(First Order 

Inductive Learner), PRM(Predictive Rule Mining) and 
CPAR(Classification based on Predictive Association Rules) 
also applied the information metric for the rule generation.  
FOIL [24] is a greedy algorithm that repeatedly searches for the 
attribute with the highest information gain.  Once this attribute 
is appended to a rule, all the examples which are not satisfying 
the rule are removed from both the positive and negative 
examples.  After the rule is added into a rule set, this process is 
repeated until all positive examples in the data set are covered.  
For selection of attributes, “FOIL Gain” is defined such as 
follows to measure the information gained from appending this 
attribute to the current rule.   
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Where |P| and |N| are positive and negative examples that 
satisfy the current rule.  After attribute p is added to the rule, 
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there are |P* | positive and |N* | negative examples satisfying 
the body of the new rule.   

The FOIL algorithm was later further improved by Yin and 
Han to achieve higher accuracy and efficiency[25].  This 
algorithm was then further improved by the same authors to 
produce CPAR [25].  In CPAR, not only the attribute with the 
best gain generates a rule, but also the additional attributes with 
similar best gain generate new rules.  To measure the accuracy 
of rules, CPAR adopts the Laplace accuracy.  It is defined as 
follows given a rule r:
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Where m is the number of classes, Ntotal is the total number of 
examples that satisfy the rule’s body, among which Nc
examples belong to the predicted class, c of the rule.  Since our 
AR based classifier is based on this CPAR algorithm, it will be 
described in detail in the next section.      

D. A New Rule Based Classifier: SVM_PCPAR   
D.1. PCPAR classifier 
The PCPAR(Pattern based Classification with Predictive 

Association Rules) is a modified version of CPAR 
(Classification based on Predictive Association Rules) [25].  
CPAR is an integrated system of association rule (AR) mining 
and classification.  CPAR adopts an information metric based 
algorithm which is more effective than support-confidence 
based counterpart in bioinformatics data mining.  This 
algorithm is suitable for capturing the rules from the general 
cases in which each itemset is related randomly to one another.  
When we handle the dataset in which some itemsets are related 
to each other with the sliding window scheme, we should take 
another step to embed this knowledge into the generated rule 
sets.  The PCPAR algorithm is devised based on this 
requirement.   

The rule generation part of PCPAR is the same as that of 
CPAR algorithm except the fact that in PCPAR each attribute 
window is able to participate in the AR training with different 
initial weight.  It is based on the idea that each window of 
feature values may not contribute equally to become a positive 
or negative class.  Some window might actively participate in 
decision making.  Others might help a little bit without strong 
confidence.  Since we use the SVM in the previous step, the 
prediction values obtained from SVM testing can be converted 
into the normalized weights representing the confidence of 
decision.  With the help of this weight information, each 
window can participate with different initial weight for 
training.    

The main differences of PCPAR and CPAR are in the post 
processing and the classification scheme.  CPAR algorithm 
does not have any post processing step after rule generation.  
The rule generator generates the rules regardless of the fact that 
some of the itemsets are related with sliding window.  The 
PCPAR algorithm incorporates the post processing step to 
create more general patterns by decoding and merging the 
rules.  For example, the following rules are the same even 

though the antecedents (rule body) display different feature 
values.  If we decode these rules, the antecedents of the 
following rules have the meaning of the amino acid ‘EE’ 
occurring position 5 and 6, 6 and 7, and 7 and 8 respectively.        

                  {87, 107}  {261},  
                  {107, 127}  {261},  
                  {127, 147}  {261} 

As can be observed from the above, the absolute location of 
each attribute is not important in the sliding window scheme.  
Rather we should focus on the pattern of the features.  With  the 
example above, by decoding and rule merging, we can find a 
pattern of ‘EE’ occurring somewhere in a window.  This pattern 
is simpler and also more general than the rules; even if the rules 
miss ‘EE’s occurring somewhere else like position 11 and 12 or 
12 and 13, the pattern covers all these cases.      

The classification scheme of CPAR is that it finds the best k 
(default = 5) rules for each class based on the subset concept.  
Once the average accuracy is obtained with k rules, the final 
class is determined as the class with the higher average 
accuracy value.  However, this classification algorithm is not 
very effective with highly imbalanced data.  In case of TM 
proteins of this study, 80% of data belong to the negative class 
(non-transmenbrane) and 20% belong to the positive class 
(transmembrane).  The Laplace accuracies of the negative class 
which takes major portion of the whole data are generally 
higher than those of the positive class.  If we apply the CPAR 
classification algorithm, most test data is classified as the 
negative class.         

The PCPAR classification is based on the patterns created 
from the post process (decode-merge process) after rule 
mining.  Each test data is checked against all the patterns of 
each class and the final class is determined based on the 
following cases (TABLE I).  For each test instance, there are 
four possible situations;  

1) it matches with the positive patterns only.   
2) it matches with the negative patterns only.  
3) it matches with both the positive and negative patterns. 
4) it matches with none of them.  
In the first and the second case, the final class is positive and 

negative class respectively.  In the third case, by comparing the 
normalized numbers of patterns matched, the class with bigger 
number of patterns is selected as a final class.  Finally, if no 
matched pattern is found with a test instance, the class is 
selected as a negative class by default.  

D.2. SVM_PCPAR model 
SVM_PCPAR model borrows the idea from the SVM_DT 

[7] for combining classifiers.  This algorithm combines the 
SVM with a new AR based classifier, PCPAR(Pattern based 
Classification with Predictive Association Rules) with the 
following process.  First, SVM is trained with the two highly 
performed encoding profiles including the orthogonal and 
Blosum62 combined matrix and PSSM.  Next, based on the 
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output of SVM, correctly predicted set is chosen as a new 
training set for AR mining.  These two steps are the pre-process 
for the AR mining.  The rationale of this pre-process is that 
since SVM usually has strong generalization ability, some 
noise or uncertain instances can be filtered out by this process 
[7].  Third, the new training data is applied to PCPAR to train 
and generate the rules.  Fourth, the generated rules are decoded 
and merged into the patterns.  Finally, based on these patterns, 
new data is predicted.  The pseudo-code of SVM_PCPAR 
model is presented in Fig. 1.  Detailed description of the above 
process is given as follows.  

Assume a training data set S = {(x1, y1), (x2, y2),…, (xm, ym)} 
is given, where xi is the feature vector and yi is the class label 
(target value) of the i-th training instance.  Initially, SVM 
performs N-fold cross validation test.  Where, the data set S is 
divided into N subsets with similar sizes.  N runs are performed 
each with a different test set (Te_svmi, i=1…N) and with the 
union of the other N-1 training set (Tr_svmi, i=1…N).   Next, 
by comparing the target values of test set (Te_svmi, i=1…N) 
with those of prediction result Pi_svm, correctly predicted 
instances are selected to form a new data set (Si_svm, i=1…N).  
Next, by applying the original test data Te_svmi, i=1…N as test 
data set (Te_ari,i=1…N) and the union of the other N-1 subsets 
Si_svm as the training set (Tr_ari,i=1…N), the AR mining 
system is trained to generate the rule sets.  Once the rule sets are 
generated, they are decoded into biologically meaningful rules 
based on the decode table which maps each residue and its 
location into the feature values.  The example of decoded rule 
bodies and the pattern sets generated by merging the same rules 
is presented in Fig. 2.  The same rules are identified by 
examining the decoded rule body.  For example, if a positive 
rule body is decoded into (V 3  I 6  I 8), it means that amino 
acids V, I, I occur at position 3, 6 and 8 in a slide window.  
Since the encoding profile of our AR based classifier is 
composed of the sliding windows of amino acid sequences, 
these positions could be any of (1, 4, 6), (2, 5, 7), (4, 7, 9), (5, 8, 
10), (6, 9, 11), (7, 10, 12), and (8, 11, 13) with the window size 
13.  The decoded rule body (V 3  I 6  I 8) can be merged with (V 
4  I 7  I 9) since these are the same.  Because of this reason, we 
should rely on the relative positional expression (pattern) rather 
than the absolute positional information.  If we use the previous 
example again, the positive rule body, (V 3  I 6  I 8) can be 
expressed as the positive pattern, ( V**I*I ).  It means that only 
if this pattern comes somewhere within a window, it becomes a 
positive class.  Here, the ‘*’ can be considered as a ‘don’t-care’ 
character.  Based on this kind of patterns defining positive and 
negative classes respectively, we can classify the test data using 
pattern match process.  The PCPAR classification algorithm 
performs this to determine the final class of the amino acid in 
the middle of a sliding window.                          

The advantage of SVM_PCPAR is that it adopts more 
optimal rule generation scheme in which the dependency of 
multiple attributes are embedded in the rule generation process.  
Moreover, by applying a more advanced rule decoding and 
merging process, compact and easily understandable patterns 

can be obtained.     Finally, with a new classification algorithm 
based on a pattern match process, a sequential test data can be 
classified effectively. 

E. Data sets 
This study adopted 165 low-resolution data set given by Rost 

et al [17].  According to the authors, the 165 protein set is 
expert-made set from the Swiss-Prot database which was 
originally collected by Möller et al [26].  This data set is applied 
to SVM classifier with the 7-fold cross validation test [27, 28].  
As a blind test set, 497 transmembrane proteins were obtained 
from the Swiss-Prot (release 45.5) and TrEMBL (release 28.5) 
database [29] with the feature keyword ‘transmem’ and by 
filtering out the proteins which have ‘possible’, ‘potential’, or 
‘probable’ transmembrane segments in their feature description 
and by removing the same sequences as the 165 data set.   

F. Encoding Schemes 
For SVM training, four different encoding schemes, 

including hydrophobicity matrix, orthogonal matrix, the 
combined orthogonal and Blosum62 matrix, and PSSM were 
tested with the 165 low-resolution data set by the 7-fold cross 
validation test [18].  Among the four different encoding 
schemes, the orthogonal and Blosum62 combined matrix and 
PSSM are selected for SVM training.     

For training the AR based classifier, the sequence encoding 
is adopted for simplicity of decoding.  This encoding consists 
of the sliding windows of 13 amino acids residues with the 
target value (class) of the 7th residue which resides in the 
middle of the window.  

TABLE I  
FOUR POSSIBLE CASES FROM THE PATTERN MATCH  

Number of + 
patterns  matched 

Number of - 
patterns matched Final Class 

n 0 + 

0 m - 

n m +  if (n/s > m/t),  else - 

0 0 - 
 n>0, m>0, s is the number of all patterns in the positive class and t is the 
number of all patterns in the negative class. 
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Input: training set S 
Output: pattern set P  

Process: 
   FOR each subset i of N     
              {Tr_svmi Te_svmi } 
                     =Create_cross_validation_data(S) 
    END FOR 
        
   FOR each subset i of N       
       Create prediction data  Pi_svm=SVM(Tr_svmi

, Te_svmi)
       SET new data set Si_svm=φ
       FOR each case of Pi_svmj  in the prediction data Pi_svm 
           IF  Pi_svmj  is correct 
               Create new data set  Si_svm= Si_svm ∪  Te_svmi

j
           END IF 
       END FOR 
    END FOR 

    FOR each subset i of N     
         SET new train data for AR mining Tr_ari =φ
         Create test data for AR mining 
               Te_ari = SequenceEncoding(Te_svmi)
         Create train data for AR mining  
               Tr_ari = SequenceEncoding( Tr_ari ∪ {Sj_svm,   
                                                           j=1...N,  j ≠ i} ) 
     END FOR 
       
     SET rule set and pattern set  R=φ , P=φ
    FOR each subset i of N     
          Create rule set Ri = AR (Tr_ari

, Te_ari)
          Create pattern set Pi = Decode_Merge(Ri)
          Calculate the accuracy of test set 
                Te_ari = AR_Classify(Te_ari, Pi)
          SET  P=P ∪ Pi

    END FOR

Fig. 1. Pseudo-code of SVM_PCPAR algorithm. 

G.  Prediction Accuracy  
To evaluate the performance of the prediction scheme, the 

most commonly used two-state overall percentage measure, Q2
is adopted.  In this study, Q2 measure counts the number of 
correctly predicted transmembrane residues out of all residues.  
This measure is defined as, 

         100×
residuesallofNumber

residuespredictedcorrectlyofNumber       

III. EXPERIMENTAL RESULTS

The average accuracies and the average numbers of rules or 
patterns for 7 fold test are compared in TABLE II and TABLE 
III.  In both tables, the first two columns are the results from 
two different AR based classifiers, CPAR and PCPAR without 
pre-processing.  The remaining columns are the results 
obtained by combining the SVM result with the AR based 
classifier with different schemes.  In OB_SEQ, the orthogonal 
and Blosum62 combined matrix encoding is applied for SVM 
and sequence encoding for AR based classifier.  In 
PSSM_SEQ, the PSSM is used for SVM and sequence 
encoding for AR based classifier.  The last two columns are the 
results obtained by applying different initial weights in each 
sliding window of sequence encoding.  As observed from these 
tables, the new PCPAR scheme performs better than CPAR 
method whether it is applied alone, or combined with SVM.  In 
both cases, the accuracy is improved a bit (less than 2%) when 
combined with SVM.  When compared among the combined 
schemes, OB_SEQ scheme shows better performance than 
PSSM_SEQ counterpart or weighted window scheme.  The 
weighted window scheme does not improve the result 
compared with un-weighted one.  This implies that it does not 
generate enough patterns from the training data to capture the 
relationship among the neighborhood residues.    

With respect to the number of rules or patterns, the PCPAR 
scheme generates about 50 ~ 60 % less patterns than CPAR 
rules whether applied alone or combined with SVM.  In both 
cases, fewer patterns are generated when combined with SVM.  
When compared among the combined schemes, OB_SEQ 
scheme generates fewer patterns than PSSM_SEQ scheme but 
still shows higher accuracy than PSSM_SEQ.   

In terms of understandability, the pattern based PCPAR 
scheme is easier to understand the biological meaning than the 
rule based CPAR counterpart.  For example, two rules in CPAR 
such as (A3 = V, A6 = I, A8 = I  positive class) and (A4 = V, 
A7 = I, A9 = I  positive class) can be expressed as (V**I*I 
positive class) in PCPAR.

In Fig. 3, the frequency of amino acids in the rule body is 
displayed when the rules are generated based on 165 TM 
proteins.  As can be seen, most non-polar amino acids such as 
A, I, L, M, F and V occur in the positive rule set only and most 
charged polar amino acids such as D, E, K and R occur in the 
negative rule set only.     

The performance of SVM_PCPAR is compared with 
SVM_DT in TABLE IV.  With respect to the accuracy, 
SVM_DT shows slightly better performance (0.8 %) than 
SVM_PCPAR.  However, considering the rules or patterns 
generated, SVM_PCPAR is more effective than SVM_DT with 
about 60% less patterns.  Moreover the patterns generated from 

Q2 =     (8)
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Positive Rules Decoded Positive 
Rule Body Positive Pattern 

(428)  {31 50 170}          {262}    0.97 
(429)  {150 231 250}   {262}  0.96 
(430)  {50 70 150}       {262}  0.96 
(431)  {30 50 130}       {262}  0.96 
(432)  {110 130 210}   {262}  0.95 
(433)  {130 150 230}   {262}  0.95 
(434)  {150 170 250}   {262}  0.95 
(435)  {80 130 170}     {262}  0.95 
(436)  {91 114 130}     {262}  0.95 
(437)  {60 110 150}     {262}  0.95 

   L   2   I   3   I   9  
   I   8   L  12   I  13  
   I    3   I   4   I   8  
   I   2   I   3   I   7  
   I   6   I   7   I  11  
   I   7   I   8   I  12  
   I   8   I   9   I  13  
  V   4   I   7   I   9  
  L   5   F   6   I   7  
  V   3   I   6   I   8  

*LI*****I****      0.92  
*******I***LI      0.92  
**II***I*****      0.94  

***V**I*I****      0.94  
   ****LFI******  0.91  
   ***FAI*******  0.91  
    ****II*F*****  0.92  
  *L**LLV******  0.91  
 L*L*L*I******  0.97  
 **I***L*V****  0.91  

Negative Rules Decoded Negative 
Rule Body Negative Pattern 

(1)  {132}           {261}     1.0 
(2)  {107 127}    {261}     1.0 
(3)  {127 147}    {261}     1.0 
(4)  {87 107}      {261}     1.0 
(5)  {67 87}        {261}     1.0 
(6)  {47 67}        {261}     1.0 
(7)  {147 167}    {261}     1.0 
(8)  {167 187}    {261}     1.0 
(9)  {81 122}      {261}     1.0 
(10) {132 191}   {261}     1.0 

    K   7 
       E   6   E   7 

   E   7   E   8 
   E   5   E   6 
   E   4   E   5 
   E   3   E   4 
   E   8   E   9 
   E   9   E  10 
   A   5   R   7 
   K   7   L  10 

******K******     0.99  
*****EE******    1.00  
  ****A*R****** 0.99  
    ******K**L***   

0.99  
     *****SR******  1.00  
******E*****A      1.00  
  *****GE******  1.00  

****E**K*****     1.00  
******R**A***  0.99  

******PE*****       0.99  
Fig. 2. Example of Decode_Merge process in SVM_PCPAR model.  The first column is the positive and 
negative rules with the Laplace accuracy, the second is the decoded rule bodies, and the third column is  
the created patterns from the rule merge process.  The Laplace accuracy values in the third column are the 
averaged values from the same rules.     

      
SVM_PCPAR are easier to understand the biological meaning 
than SVM_DT.  For example, a rule (A3 = I, A7 = L, A9 = V 
positive class) in SVM_DT is presented with a simpler form 
such as (I***L*V  positive class) in SVM_PCPAR based on 
the discovered patterns from the rules.    

To measure the quality of generated patterns from 
SVM_PCPAR, a blind test was performed based on the 497 TM 
protein set with known structure.  In TABLE V, the result is 
compared with that of SVM_CPAR.  As can be observed, 
SVM_PCPAR scheme showed better performance with respect 
to the accuracy and to the number of patterns. 

IV. CONCLUSION 
This study attempted to understand the protein structure 

prediction of SVM by combining the SVM with the AR mining 
method.  To achieve this goal, transmembrane structure 
prediction was selected as an initial working domain.  The new 
AR based classifier PCPAR was devised by modifying the 
existing classifier CPAR to adapt the sequential data encoding 
with the sliding window scheme.  The results show that this new 
AR based classifier performs well in terms of accuracy and of 
the number of rules.  This scheme can be applied in the problem 
of predicting protein solvent accessibility, identifying 
protein-protein interaction sites from primary structure, and 
predicting protein secondary structure.  Since all these problems 
adopt the encodings based on sequential information with the 
sliding window method, the performance improvement can be 
expected by applying this new scheme.  

In the future, for tuning up the current AR based classifier, the 
AR mining parameters will be optimized and different encoding 

schemes will be tested.   
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TABLE II  
ACCURACY COMPARISON OF CPAR AND PCPAR SCHEME (%) 

Without 
preprocess

Encoding
 (SEQ) 

Combined with 
SVM 

Encoding 
(OB_SEQ) 

Encoding 
(PSSM_SEQ) 

Encoding 
(OB_SEQ) 
w/ weight 

CPAR 81.0 SVM_CPAR 82.9 82.3 80.2 

PCPAR 84.1 SVM_PCPAR 85.6 85.0 82.0 

TABLE III  
COMPARISON OF NUMBER OF RULES OR PATTERNS GENERATED 

Without 
preprocess

Encoding
 (SEQ) 

Combined with 
SVM 

Encoding 
(OB_SEQ) 

Encoding 
(PSSM_SEQ) 

Encoding 
(OB_SEQ) 
w/ weight 

CPAR 1408 SVM_CPAR 1168 1359 289 

PCPAR 830 SVM_PCPAR 659 740 141 
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20 Amino Acids
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Fig. 3 Frequency of amino acids in the rule body of 165 TM proteins 

TABLE IV 
 COMPARISON OF SVM_PCPAR WITH SVM_DT 

Group SVM_DT 
(PSSM_SEQ) 

SVM_PCPAR 
(PSSM_SEQ) 

1 83.1 85.3 

2 80.7 81.8 

3 90.9 88.7 

4 88.8 87.1 

5 83.0 83.5 

6 85.7 84.7 

7 88.2 84.3 
Avg. accuracy 

(%) 85.8 85.0 

Avg. # of rules 
(patterns) about 2000 740 

TABLE V 
 RESULT OF THE BLIND TEST BASED ON 497 TM PROTEINS 

    Accuracy (%) Number of Rules or 
 Patterns 

SVM_CPAR 80.6 1302 

SVM_PCPAR 83.1 737 
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