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Abstract— Excitatory recurrent networks, while confirmed in
theory, have not been intensely studied by simulation focused on
synchronization properties. In our research, we validate on the
basis of complex network models, the refinement of degree and
link-level deepness, which embodies principles of topological
structural nature with emphasis on the relationship between
the topology and the dynamics of such complex networks.
Biologically plausible excitatory networks that are maintaining
this structure, develop a stable synchronized pattern of activity
depending on spontaneous activity and synaptic refractoriness.
We show that by fixed synaptic weights the synchronous bursts
of oscillatory activity are stable and involve the whole network.
As a result, by investigating conditions for synchronized oscilla-
tory activity in several types of networks, we found that ’small
world’ networks with a higher proportion of long connections
can sustain a higher degree of synchronization.

I. INTRODUCTION

Cultured networks of the neocortex show a similar de-
velopment as in the brain, whereas spontaneous large-scale
wave-like activity during early development can be ob-
served, using imaging techniques and electrophysiological
patch-clamp-measurements [1]. The synchronous activity ap-
pear in culture at the beginning of the second week and
eventually includes the entire neuronal population about
1 week later [2]. In standard culture conditions neurons
become electrically active spontaneous and independently.
Next neurons connect to each other, form synapses, and
begin to burst simultaneously, discharging collectively about
once per minute. Time histograms show that the portion of
synchronously firing neurons increases with time. Because
non-active neurons die before the end of the second week in
vitro [3], the participation in synchronous oscillatory activity
seems to play an important role in the early development of
the mammalian cortex. In [4] we have investigated conditions
and parameters for the emergence of oscillatory network
activity by accumulated activity of distinct single cells in
intrinsic driven networks. Tabak et al. [5] described a global
model to transform spontaneous activity in random connected
networks in episodic events of synchronized activity. This
behaviour is coherent with a locally connected network.
On the other hand, ’small world’ networks [6] contain a
majority of local connections between cells, but a few of
the connections are long distance connections.
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II. METHODS

Networks of neurons were modelled using the NEU-
RON environment [8]. Single neurons were represented as
electrical models with two compartments for the purpose
of decoupling synaptic integration and impulse generation
dynamics in different compartments [9] [10] [11]. The cell
model reflects electrical effects caused by neuron dimensions.
The dynamic of the membrane potentials Vm results from
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for the dendric and somatic compartment. The equations
describe the synaptic integration signal and action potential
generation of the neuron model, respectively. Em−Vm

Rm
is

the leaky current, IHH is a current resulting from active
Hodgkin-Huxley conductions (approximated by standard HH
equations [12] for squid axon) and

∑
k Isyn is the sum of

all k synaptic currents. Iζ is a discrete stochastic component,
which spontaneously elicits action potentials with highly
variable intervals between spikes, erratically but Poisson-
distributed [13]. Iζ is implemented as a current pulse, ac-
tivated at distinct time points driven by a Poisson-process.
The time of an action potential is determined as the first point
in the rising phase in the somatic compartment that exceeds
0 mV.

At the beginning of each simulation the neurons are
initialized first to a resting membrane potential of -65 mV.
In order to induce a spontaneous activity in the network,
single, i.e. non-repetitive action potentials are triggered by
pulsed driving currents, which are fed in the dendritic
compartment (Iζ , 0.1nA, lasting 10 ms). Triggering times
were selected randomly after a poisson distribution with the
average value λ, which describes the characteristic form of
the distribution of firing during the spontaneous activity [13],
and corresponds to the observed behavior of isolated neurons
in cultures [1].

Symbols and default parameter values used in simula-
tion. Number of neurons (n): 400; Current, duration (Iζ ):
0.1 nA,10ms; Mean of poisson distribution (λ): 0.001dt-
1ms-1; Somatic diameter (diamsoma):10µm; Somatic length
(Lsoma): 10µm; Dendritic diameter (diamdend): 5µm; Den-
dritic length (Ldend): 50µm; Connection length (l): 0.1 µm;
Number of postsynaptic cells (k): 4; Conductance veloc-
ity: 0.5mm/ms; Monoexponential rise/decay parameter (τg):
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3.0ms; Decay parameter for refractoriness (τm): 50.0ms;
Synaptic resource threshold (mthr): 0.8; Comsumption per
spike (mspk): 0.75; Reversal potential (E): 50.0mV; Initial
synaptic strengths (winit): 0.00165; Integration width (dt):
0.05ms.

Synapses: Synapses were simulated as an alpha-shaped
postsynaptic conductance with refractoriness (differential
short term depression effects): To implement refractoriness,
the postsynaptic membrane conductances are determined by
the amount of available transmitter and the synaptic currents
are defined by a system

τg
d

dt
a = −a (3)

τg
d

dt
g = −g + a (4)

τm
d

dt
m = 1 − m (5)

If an isolated presynaptic event arrives, a peak conductance
of magnitude strengths occurs at time τg after the event,
m ⇐ m − mspk and a ⇐ a + ew with synaptic strength
w, provided that m ≥ mthr, see Fig. 1a. The synaptic
current then amounts to Isyn = g(Vm−E). Synaptic latency
was adjusted via parameter τm to endure about 85ms. In
simulation, synaptic currents are calculated with initial values
a(0) = g(0) = 0, m(0) = 1. An example with a test
spiketrain is depicted in Fig. 1a. If m is below a critical
threshold mthr spikes are not transmitted.

Synchronisation analysis: Only perfect or nearly perfect
synchronization, when all neurons fire synchronously (e.g.
within a few milliseconds), can be easily detected visually
by a raster plot of neuron activity. A modified version of
the phase-locking-index by Davison et al. [14] is a mathe-
matical tool for the detection and quantification of network
synchrony. For each neuron k = (1, .., n) in the network,
for each spike i at time tki of this cell, we find the closest
spike j with the time tlj of cell l. The time lag for spike tki
in relation to spike tlj is defined as: lkl

i = tlj − tki The mean
distance for spikes from cell k to cell l is:

φkl =

√√√√ 1
sk

nk∑
i=1

(lkl
i )2 (6)

with sk as number of spikes of cell k. The synchronisation
index is now defined as:

σ =
1

n(n − 1)

n∑
k=1

∑
l=1|l �=k

φkl (7)

The effect of the synchronization index is illustrated in
Fig. 1c-d, by the example of an artificial spiketrain with
perfectly synchronous spikes. The synchrony was decreased
gradually by shifting the spikes from the ideal position. The
shifts were selected in such a way that a normal distribution
with the standard deviation results σ the spikes around the
ideal position. Figure 1d shows the synchronization index
for a test series with different standard deviations. It can
be recognized that the synchronization index is zero at a

perfect synchronization. The mean activity is calculated by
a convolution with a Gaussian (γ = 15ms).

a(t) =
1

s(t)

ns∑
i=1

exp(
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σ2
) (8)

with ns as number of spikes per neuron and t(i) as spike time
i. s(t) results from equivalent convolution of same number
of regular spikes:

s(t) =
ns∑
i=1

exp(
(t − tg(i))2

σ2
)ts(i) = tmin + i

tmax − tmin

ns − 1
(9)

III. HIERARCHICAL NETWORKS

At the opposite of completely regular networks, networks
with a completely random graph were studied first by Erdos
et. al [15]. The main results of the random graph theory
is to determine at what connection probability a particular
property of a graph will most likely arise. A remarkable
discovery of this type was that important properties of
random graphs can appear quite suddenly. It was shown that,
if the probability p is greater than a certain threshold , then
almost every random graph is connected. The logarithmic
increase in average path length with the size of the network
is a typical smallworld effect. Because it increases slowly
with the number of nodes, it allows the average path length
to be quite small even in a fairly large network. On the
other hand, in a completely random network, the probability
that two of the nodes are connected is no greater than the
probability that those of two randomly chosen nodes from the
network. This means that a large-scale random network does
not show clustering in general. For a large number of nodes,
the algorithm generates a homogeneous network, where the
connectivity approximately follows a Poisson distribution.

Watts and Strogatz examined structurally simple, circular
networks, in a sliding transition of regular, locally coupled
networks too purely randomly coupled networks adjusting
only one free parameter ρ. In Fig. 2 we reproduced their
experiments to show that even a very small portion of long
distance connections (ρ = 0.1) is sufficient to decrease the
path length (the average number of monosynaptic connec-
tions in the shortest way between two neurons) and conse-
quently drastically improves the signal propagation. While
path length grows linearly with increasing network size in
locally coupled networks, it grows only logarithmically as
a function of size in a network with ’small world’ topology
[16]. The effect of adding long distance connections was also
demonstrated by Netoff et. al [7] in ’small world’ networks
using different neuron models, to explain different behaviours
in the epileptical network synchronisation of CA1 and CA3-
regions in the hippocampus.

When using the Watts-Strogatz model [6], the probability
for rewiring a connection is assumed to be constant all
over the network. In other models with similar charac-
teristics (e.g. Barabasis ’scale free’-networks) [19] wiring
probability is reduced with increasing distance between the
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Fig. 1. Simplified alpha-model of synapse with refractoriness. (a) Con-
ductance of synapse g, transmitter m, transmitter threshold mthr and
transmitter consumption mspk per spike. Top panel: incoming spike train,
middle panel: transmitter m and threshold mthr. Bottom panel: resulting
synaptic conductance. (b) Raster plot for 100 neurons, each neuron showing
4 spikes. The spikes are normally distributed with respect to the time point of
the ideal synchronization (here: t = 1, 2, 3, 4 ms) with standard deviation γ
of 0.01 and 0.05. (c) Synchronization index for different standard deviations
(from 0.0 to 0.050 in 50 steps). The points referring to (b) are marked. The
synchronization index rises dependent on the standard deviation. When the
spike train is perfectly synchronized, σ = 0.

neurons according to a power-law distribution. The number
of connections in such ’scale free’ networks fits a negative
exponential distribution. During the rewiring procedure, few
nodes develop an exponentially large number of connections
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Fig. 2. Parameter ρ of the ”small world” networks. Left: Examples
of networks with 25 neurons; top right: Distribution of neuronal degrees
(Networks with 500 neurons); bottom right: Distribution of path length
between two nodes. (a) ρ = 0, each node is connected with 4 neighbors.
There are no long connections. The middle path length between two neurons
is relatively long and directly dependent on network size. (b) ρ = 0.1, a
small number of local connections is reconnected to other randomly chosen
nodes, creating long distance connections and consequently a ”small world”
network. In this network each node have a mean of 4 neighbors. The long
range connections create shortcuts, and the mean path length decreases
significantly. (c) ρ = 1, In this completely randomly connected network
each node has an average of 4 connections to other nodes, but the clusters
are distributed: only few neurons have many common neighbors, and pairs
of nodes are distant only a few grades from each other.

while the majority of nodes develops few connections. Al-
though the structural concepts of ’small world’ and ’scale
free’ networks probably may not completely correspond to
the neural networks in the brain, the demonstration of the
effectiveness of some few, but metabolic expensive long
range connections in growing networks may contribute to
the comprehension of the organization principles ruling CNS
wiring in general [17].

IV. NETWORK CONNECTIVITY:

For the network, we use the model of Watt and Strogatz
[6] with neurons evenly located on a circular line. Here the
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number of connections of a neuron, k, is called ’degree’ [16].
As the connections are bi-directional rewired, the incoming
degree (number of pre-synaptic neurons) equals the outgoing
(number of postsynaptic) degree. At first, the neurons are
only connected with the k neares neurons in the direct
neighbourhood. A randomly selected part (parameters ρ)
of these neurons that are involved in connections is then
disconnected and other likewise randomly selected neurons
is interconnected. By this ’rewiring’ procedure the number
of connections remains stable, independent of the selected ρ
value. The connections described in the original model are
non-weighted and non-directional. For simplicity reasons, we
replaced the non-directional graph edges by bi-directional
synaptic couplings with two separated synapses, thus mu-
tually connecting pairs of neurons. The weighting of the
connections corresponds to the synaptic strengths. The delay
time of the connections results from their euclidean length.
The used signal speed (conduction delay) was assumed to be
0.5m

s [18], which leads to synaptic delays for each pre-post-
pair. During the rewiring procedure, few nodes develop an
exponentially large number of connections while the majority
of nodes develops few connections.

V. RESULTS

First, we examined the effects of different parameters
that can affect the synchronous activity. On the basis of
empirically determined default values (selected operating
point, see Methods), the weight of the synaptic conductivity
w, synaptic refractory time τm and the proportion of long
distance connections ρ were purposefully varied (see Fig. 3).
A minimum synaptic weight, which represents a measure for
the connectivity, is necessary to synchronize network activity
(Fig. 3a). Under this value only isolated spontaneous activity
of single neurons or coincidentally synchronous events occur.
The synaptic refractory time parameter τm describes the
duration of the synaptic depression by the exhaustion of the
neurotransmitter. τm directly affects the time between the
bursts and therefore the oscillation period. Fig. 3b (2nd row)
shows that small, local excitation waves arise in the spike plot
for τm = 20ms. With a sufficiently large τm these excita-
tion waves synchronize and produce a synchronous network
activity. With further increasing of τm, the synchronization
index rises further, indicating a decreased network synchrony,
because with longer tm, more spontaneous spikes occur in
the interburst interval. This behavior reflects a correlation
between the length of the interburst intervals and the duration
of the synaptic refractory phase also found in biological
experiments [2].

The parameter ρ mirrors the proportion of long distance
connections in the Watt-Strogatz model (see methods), and
its variation affects the connecting structure of the network.
We could show that the proportion ρ of long distance
connections increases first the synchrony (Fig. 3c), without a
sufficient number of long distance connections no synchro-
nous firing is possible. However, increasing the proportion
of long distance connections present in the network, local

excitation waves does no longer occur, as the network
synchrony decreases again. As a result, the synchrony is
decreased again. The existence of an optimal relationship
between short and long connections, with which the signals
are best propagated, was already shown by Netoff et. al [7]
and could be confirmed here. With the parameters selected
here, the maximum synchrony occurs with ρ = 0.3 (example
net with ρ = 0.1 in Fig. 2b).
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Fig. 3. Conditions and parameters for the generation of synchronous
network activity. Each row represents a variation of one parameter close to
the operation point; other parameters are fixed (n = 500 ρ = 0.1 winit =
0.00165 τm = 50ms). Left hand panels: Each of the graphs represents the
progression of the synchronization index in function of a single parameter.
Right panels show spike plots illustrating the synchronization of network
activity in cross sections at the begin and end of the variation range. (a)
winit, initial synaptic weight for all connections; (b) τm, synaptic refractory
time, and (c) ρ ”small world” parameter = proportion of long-distance
connections in the network.

VI. RELATED WORK

Networks of coupled dynamical systems have received a
great deal of attention, mainly due to the fact that they can
exhibit many complex and interesting dynamical phenomena,
such as Turing patterns, auto- waves, spiral waves, and
spatiotemporal chaos. Also, these networks are important in
modeling many large-scale realworld systems. In the past
decade, special attention has been focused on the synchro-
nization of chaotic dynamical systems. These networks are
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usually described by systems of coupled ordinary differen-
tial equations or maps, with completely regular topological
structures such as chains, grids, lattices, and globally coupled
graphs. Two typical settings are the discrete-time coupled
map lattice [20] and the continuous-time cellular neural [21].
The main advantage of these simple architectures is that it
allows one to focus on the complexity caused by the nonlin-
ear dynamics of the nodes without worrying about additional
complexity in the network structure, and another appealing
feature is the ease of their implementation by integrated
circuits. The topology of a network often plays a crucial
role in determining its dynamical behaviors. For example,
although a strong enough diffusive coupling will result in
synchronization within an array of identical nodes [22],
it cannot explain why many realworld complex networks
exhibit a strong tendency toward synchronization even with a
relatively weak coupling. As an instance, it was observed that
the apparently independent routing messages from different
routers in the Internet can easily become synchronized, while
the tendency for routers towards synchronization may depend
heavily on the topology of the Internet [23]. One way to
break up the unwanted synchronization is for each router to
add a sufficiently large component randomly to the period
between two routing messages. However, the tendency to
synchronization in the Internet is so strong that changing
one deterministic protocol to correct the synchronization is
likely to generate another synchrony elsewhere at the same
time. This suggests that a more efficient solution requires
a better understanding of the nature of the synchronization
behavior in such complex networks as the Internet.

VII. CONCLUSION

We examined synchronization effects in probabilistic hi-
erarchical network topologies, Watts-Strogatz-’small world’
networks. Not only the ’small word’ network topologies
are considered biologically plausible, but they are also con-
sidered as fundamental structural principles in biological
neural networks [16]. We showed that in such networks
it comes to self-organizing processes in distinct parameter
ranges: Initially the activity in the network synchronizes in
dependence of the network architecture. This unique feature
may cause an initialization of the synaptic strengths in the
network and might prepare network properties for the later
requirements of information processing.
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