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Abstract – We used a computational approach to examine three questions
at the intersection of developmental biology and evolution: 1) What is the
space available for evolutionary exploration for genetic regulatory networks
(GRNs) able to solve developmental patterning problems? 2) If different
GRNs exist that can solve a particular pattern, are there differences between
them that might lead to the selection of one over another? 3) What are
the possibilities for co-opting GRN subcircuits or even entire GRNs evolved
to solve one pattern for use in the solution of another pattern? We used a
Monte Carlo strategy to search for simulated GRNs composed of nodes (pro-
teins) and edges (regulatory interactions between proteins) capable of solv-
ing one of three striped cellular patterning problems. These GRNs were sub-
jected to a knockout procedure akin to gene knock-outs in genetic research.
Knockout was continued until all network components of the reduced GRN
were shown to be essential for function. This GRN was termed irreducible.
We found many different unique irreducible GRNs that were able to solve
each patterning problem. Thus, the space for evolutionary exploration for
pattern-forming GRNs is large. Irreducible GRNs that solve a particular pat-
tern differed widely in their robustness—the ability to solve a target pattern
under different initial conditions. These differences may offer a target for
selection to winnow out less robust GRNs from the set of unique GRNs. Fi-
nally, subgraph isomorphism analysis revealed great potential for co-option
during evolution. Some irreducible GRNs appear in their entirety within
larger GRNs that solve different patterning problems. In this case, the sub-
GRN is a module. At much higher frequency, subcycles are shared widely
among irreducible GRNs, including those that solve different patterns.

Keywords – Genetic regulatory network, GRN, subgraph isomorphism, co-
option, evolutionary dynamics, modularity, development, pattern formation,
subcircuit, self-organization.

I. INTRODUCTION

Genetic regulatory networks (GRNs) that control develop-
ment are being deciphered through experimental approaches
propelled by advances in genomics and systems biology [3].
These GRNs for development are complex and robust, gener-
ating reproducible outputs over a broad range of initial condi-
tions [5]. Common themes in network architecture and regula-
tory logic are beginning to emerge (see [4]; [2]; [3]), including
the use of evolutionarily conserved regulatory modules (ker-

nels) and the existence of smaller regulatory circuits that have
been repeatedly co-opted for different ends in development [3].

Since evolution is not a directed process, existing GRNs
may not be the only ones capable of controlling a particular
aspect of development. Instead, GRNs in nature may represent
the one solution that was stumbled upon in the evolutionary
history of a lineage. Once the solution was “discovered,” it
may have been frozen in place. The high degree of conser-
vation of many GRN architectural elements in animal devel-
opment suggests this possibility—but only if there are other
solutions open for random evolutionary processes to discover.

We are interested in learning the dimensions of the develop-
mental GRN solution space for evolutionary exploration. We
approached this question by searching for GRNs that would
solve three different patterns that resemble the striped pat-
terns of pair-rule gene expression seen in the development of
Drosophila and other insects (see Fig. 1). Building on our ear-
lier work [10], we used a Monte Carlo strategy to identify net-
works that solve the three striped patterns. A genetic knockout
algorithm, similar in logic to the use of targeted gene knock-
outs to understand biological GRNs, was employed to remove
network components one-by-one until an irreducible network
capable of solving the pattern was discovered.

Our results suggest that the solution space for evolutionary
exploration is large and highly interrelated. They also show
that although many different irreducible GRNs can solve a spe-
cific developmental patterning problem, there are significant
differences in the robustness of the networks. These robust-
ness differences may generate a strong selective pressure ca-
pable of winnowing out less robust GRNs. Finally, we show
that there are many possibilities for evolutionary co-option of
GRN subcircuits or even entire GRNs to solve new patterning
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problems.

Fig. 1. A striped gene expression patterns in early Drosophila development.
Odd-skipped (green) and even-skipped (red) expression domains at cleavage

cycle 14. Left panel shows the nearly complete embryo; right panel is a closer
view where each point is a cell nucleus. Image courtesy of Dr. J. Reinitz. Mt.

Sinai School of Medicine.

II. APPROACH

GRNs can be described as a graph, where each node rep-
resents a protein’s expression level and each edge represents
a regulatory interaction between proteins. A protein is influ-
enced when its production or degradation is controlled as a
function of another protein’s expression levels. In our model,
the activity of a protein is directly related to its concentra-
tion. Since production and degradation are defined as rates
of change, the GRN is naturally modeled as a set of coupled
differential equations. Fig. 2(a) shows an example of a 3 pro-
tein, 4 edge GRN represented as a graph and Fig. 2(f) shows
the same GRN as a set of coupled differential equations.

Table I illustrates the edges that represent protein interac-
tions considered in this study. An in-edge j for protein P0

contributes to the rate of change of P0 as a weighted expres-
sion of one or two other proteins P1,P2 present in the same cell
or in neighboring cells, where ωj is the strength of the influ-

ence of j (0.0≤ ωj ≤ 1.0). Limiting functions f(x) = x2

(1+x2) ,

g(x) = 1− f(x), and h(x) = 2
(1+e−x) − 1 are employed to

model saturation effects in protein production and degradation.
Within an individual cell, protein expression can be con-

trolled by a single protein (the direct control edges C -F, H,
I ) or some function of multiple proteins (the combinatorial
control edge G ). Over the sheet of cells, proteins influence
each other through both long-range and short-range signaling.
Edges A and B implement long-range signaling through dif-
fusion under different boundary conditions. Edges J -P imple-
ment short-range signaling, where a cell can sense protein ex-
pression levels in directly neighboring cells across contacting
membranes as in [6]. Edges J and K signal with all neigh-
bors using n(σ), which returns the set of directly neighboring
cells. Edges M -P enable a cell to signal to a specific geo-
metric neighbor cell using nS , nW , nN , nE , which return the
cell directly neighboring to the south, west, north and east
respectively. Such directional signalling is used in the em-
bryo to build internal segment borders [5] and relies on mor-
phogenic gradients that establish anterior-posterior and dorsal-
ventral axes.

(a) GRN Graph (b) Target Pattern

(c) Output Expression (d) k-means Clustering

(e) GRN inter-cell communication

(f) Coupled differential equations
dP0(σ)

dt = ω0(g(P2(σ))−P0(σ))
dP1(σ)

dt = ω1(f(P0(nW (σ)))−P1(σ))−ω2f(P2(σ))
dP2(σ)

dt = ω3(f(P1(nW (σ))−P2(σ))

Fig. 2. Example of an irreducible GRN (a) found by our system for solving
the 2-skip-1 target pattern (b). The letters on the edges of (a) indicate edge

types shown in Table I. The output protein expression levels are shown in (c).
Panel (d) shows the result of k-means clustering of the output expressions

levels from (c). The GRN mapped onto a strip of cells (e) and the its coupled
differential equations are also shown (f).

There are depep2p(e−p) possible GRNs with p proteins and
e edges (e ≥ p and d edge types). Fig. 2(a) shows an example
GRN with 3 proteins and 4 edges discovered by the Knockout
search method described in the following section. To deter-
mine the coupled differential equations of a GRN, the equa-
tions of each edge are composed, as illustrated in Fig. 2(f).
To solve a GRN implemented in a sheet of q cells, each cell’s
protein values are first set from a uniform random distribution
[0.0,1.0], then the p× q differential equations are numerically
solved using the the Runge-Kutta method with dt = 0.05 un-
til a fixed point is achieved (where the average update error
≤ 10−8 per cell). Fig. 2(c) illustrates the output expression
pattern formed when the differential equations in Fig. 2(f) are
solved over a sheet of 15× 15 cells. In this panel, the color of
each cell is determined by mapping P0 to the red level, P1 to
green and P2 to blue.

In this work we study the space of GRNs that can solve a
small set of striped patterning problems similar to the patterns
observed in early Drosophila development. Fig. 1 shows an ex-
ample from Drosophila development and Fig. 2(b) shows one
of our model target patterns, referred to as a 2-skip-1. Other
patterns we studied are 1-skip-1 and 2-skip-2.
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TABLE I

THE POSSIBLE EDGES FOR A GRN

Label Description Definition

A P0 Diffusion with zero
boundary conditions

dP0(σ)
dt

= ωj
∂2P1(σ)
∂x2

= ∇P1(σ)

B P0 Diffusion with fixed
boundary conditions

dP0(σ)
dt

= ωj
∂2P1(σ)
∂x2

= ∇P1(σ)

C P0 direct expression by
P1

dP0(σ)
dt

= ωjf(P1(σ))

D P0 direct degradation by
P1

dP0(σ)
dt

= −ωjf(P1(σ))

E P0 driven to same asP1
dP0(σ)
dt

= ωj(f(P1(σ)) −P0(σ))

F P0 driven to opposite of
P1

dP0(σ)
dt

= ωj(g(P1(σ)) −P0(σ))

G P0 driven to difference in
values betweenP1 andP2

dP0(σ)
dt

= ωj(h(P1(σ) −P2(σ)) −P0(σ))

H P0 autocatalysis and recip-
rocal control byP1

dP0(σ)
dt

= ωj(f(
P0(σ)2

P1(σ) +ψj))

I P0 quadratic degradation
byP1

dP0(σ)
dt

= ωj(g(P1(σ)2) −ψj)

J P0 driven to same as cell
neighbors values ofP1

dP0(σ)
dt

= ωj(f(
�ρ∈n(σ) P1(ρ)

6 ) −P0(σ))

K P0 driven to opposite of
cell neighbors values ofP1

dP0(σ)
dt

= ωj(g(
�ρ∈n(σ) P1(ρ)

6 ) −P0(σ))

L P0 driven to difference in
opposing cell neighbor val-
ues ofP1

dP0(σ)
dt

= ωj(f(
�ρ∈n(σ) P1(ρ)−P1(op(σ,ρ))

6 )−
P0(σ))

M :P P0 driven to same
as geometric neigh-
bor value of P1 ; with
i ∈ N,W,S,E

dP0(σ)
dt

= ωj(f(P1(ni(σ))) −P0(σ))

To quantify how well a GRN solves a particular target pat-
tern, the protein expression levels that result from solving the
coupled differential equations must be mapped to distinct cell
types using a combinatorial code. Such codes partition the p-
dimensional protein spectrum into distinct regions, each corre-
sponding to a cell type [11]. In this work, k-means clustering
is used to identify the combinatorial code which best partitions
the cells into k-types. An example is given in Fig. 2(d), with
k = 2 since there are two types in the target pattern. Two clus-
ters are found defining the combinatorial code: type 1 (red) is
P0 high and P1 low, and type two (green) is P0 low and P1

high. Each cell’s assigned type is compared with the type as-
signed in the target pattern and a tally is made of misplaced
cells. If the target pattern has alternative rotations (or phases),
all rotations are tried and the best match is used as the error.
Comparing Fig. 2(b) with Fig. 2(d) gives an error of 2 cells or
0.89%. To give an accurate evaluation, the GRN is solved 5
times under different random initial protein conditions and the
mean error returned.

A. Irreducible GRNs

An irreducible GRN is one where the removal of any one
component (protein or edge) results in loss of function. In this
study, this is the inability of the GRN to accurately produce the
target pattern. To identify irreducible GRNs a Knockout proce-
dure, similar to those used in a genetic approach to the analysis
of biological GRNs, was employed to reduce GRNs found by
a Monte Carlo search of the GRN space (see [10] for details).
This procedure starts with a GRN that accurately solves one of
the target striped patterns and identifies the smallest possible
sub-graph of the original GRN that still adequately solves that
same target pattern.

Fig. 3. An example tree created by running the Knockout method show in
Table II on a 2-Skip-1 GRN discovered by Monte Carlo Search. Each GRN
explored is shown with an example expression pattern. Nodes with light red

backgrounds represent failure, where the pattern error exceeds the 10%
threshold.

Consider the knockout tree in Fig. 3. The parent GRN has
5 nodes and 12 edges representing the proteins and the inter-
actions among them respectively. The knockout procedure is a
two step process. First, the proteins are removed (knocked-out)
one-by-one, then the edges are knocked-out one-by-one. At
every node in the knockout tree, every component of the par-
ent GRN is knocked-out one by one, and each resulting child
GRN is measured for its fitness with respect to the target pat-
tern. If a child GRN’s error is less than or equal to the threshold
value, then it becomes the parent GRN and is submitted to an-
other round of the knockout procedure. The threshold value is
the acceptable error that produces imperfect but clearly recog-
nizable target patterns. In this study, the threshold was set to
10% misplaced cells. Only the first successful child GRN is
pursued for further knockout because the order of deletion of
components is irrelevant. Knockouts are repeated until none
of the child GRNs meets the threshold criteria. In this case
the parent GRN is considered to be the irreducible GRN. The
irreducible GRN in this example has 3 proteins and 4 edges.
During the knockout of this GRN, which produces a 2-skip-1
pattern, we noted that one of the failure GRNs accurately pro-
duced a 1-skip-1 pattern. This indicates a close relationship
among GRNs for similar stripped patterns.

The knockout algorithm can be formally defined as a form
of greedy depth-first search algorithm and is given in Table II.
Two sub-routines are called: Solve(P,E) which initializes the
proteins and then uses the Runge-Kutta method until a fixed
point, and Error(T, S) which matches the target pattern T
against the clustered protein expression pattern. The input to
this algorithm is a GRN found by the Monte Carlo search to
solve a particular pattern. The algorithm terminates when the
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TABLE II

ALGORITHM DEFINING THE KNOCKOUT PROCEDURE

Algorithm Knockout(P,E,T )
Input:P = {p1,p2, . . . ,pk}, GRN proteins

E = {e1,e2, . . . ,eq}, GRN edges
T = Target cell pattern

Output: ( ˜P , ˜E), ˜P ⊆ P, ˜E ⊆ E (a Knocked-Out GRN)
Begin

//Protein Knockout
for each pi ∈ P

P ′← P −{pi}
̂E←{ej ∈ E|ej connects to pi}
E′← E− ̂E
if Error(T,Solve(P ′,E′))≤ 10%
then return Knockout(P ′,E′,T )

//Edge Knockout
for each ei ∈ E

E′← E−{ei}
̂P ←{pj ∈ P |pj is isolated w.r.t E′ }
P ′← P − ̂P
if Error(T,Solve(P ′,E′))≤ 10%
then return Knockout(P ′,E′,T )

return (P,E)
End.

attempt to delete each protein and each edge fails to produce
the solution pattern. The output is an irreducible GRN that
solves the target pattern T .
B. Co-option among Irreducible GRNs

Co-option is the use of an element of one GRN by an-
other GRN, often for a distinct function. This work considers
two kinds of co-optable network elements: modules and sub-
circuits. We define a module as a fully functional GRN that
appears as part of another larger GRN. A sub-circuit is defined
as a GRN cycle that occurs in two or more GRNs. In contrast to
modules, sub-circuits may or may not function as independent
GRNs.
B.1 Modules: Subgraph Isomorphic GRNs

Modules are discovered by computing subgraph isomor-
phisms between all pairs of GRN graphs. A graph G1 is a
subgraph of G2 if under some one-to-one mapping between
the nodes of G1 and a subset of the nodes of G2, the in and out
edges of all nodes in G1 are always a subset of those of G2.
This problem is known to be P-space Complete in general. In
this study, we are interested in determining subgraph isomor-
phism between directed graphs with distinct edge labels, which
is known to be NP-Complete. The relatively small size of the
irreducible GRN graphs (see Fig. 6 for some examples) makes
it feasible to use an exact algorithm, whose performance was
greatly improved through the use of edge-hashing [9]. All ir-
reducible GRN graphs were compared with all other GRNs for
all three patterns.

B.2 Subcircuits: Common Sub-cycles between GRNs

Subcircuits are computed by extracting all cycles from the
GRN graphs and performing pairwise comparisons over all cy-
cles. A cycle in a GRN graph of p proteins and e edges is
a feedback loop comprising of between 2 and e edges and is
characterized by the order of the edge types involved. To de-
termine common cycles between graph G1 and G2, we first
extract all cycles from each graph, then identify an intersection
under all possible rotations of each cycle. The complexity of
this computation is O(p2e3), which is feasible for the small
GRN graphs studied here.

III. RESULTS
This computational study first discovered a distinct set of

irreducible GRNs for each of the target pattern and consid-
ered their distribution with respect to size (number of nodes
and edges). Next, the robustness of the irreducible GRNs was
measured and analyzed with respect to network architecture.
Finally, the common subgraphs and sub-cycles were identified.

Fig. 4. The distribution of unique irreducible GRN’s for the three target
patterns. The scale maps each color to the count of GRNs.

A. Identification of Irreducible GRNs
An extensive Monte Carlo search of the GRN space was

performed using 30 high performance workstations running in
parallel for 10 days. This identified over 1000 GRNs with
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errors below the 10% threshold over one of the three target
patterns. A random subset of GRNs was selected for each
target pattern to provide an approximately uniform distribu-
tion of GRNs over the space of network sizes 2 ≤ p ≤ 8
and p ≤ e ≤ 13. Each GRN solution was then processed by
the Knockout procedure shown in Table II to identify its irre-
ducible GRN. Finally, isomorphic GRNs were eliminated from
the set of irreducible GRNs using an edge hashing scheme [9].
This produced a total of 13 1-skip-1 GRNs, 16 2-skip-1 GRNs
and 7 2-skip-2 GRNs. The distribution of irreducible GRNs is
shown in Fig. 4.

1-skip-1
σ ε̄ p e

2 2
2 2
2 3
2 3
3 3
3 3
2 5
2 3
3 3
3 3
3 3
3 3
2 4

2-skip-1
σ ε̄ p e

5 6
3 7
4 5
5 6
4 5
3 4
3 5
3 5
6 9
4 5
4 5
3 4
3 4
3 4
4 6
2 4

2-skip-2
σ ε̄ p e

5 5
5 5
3 3
6 6
4 4
3 3
2 6

Fig. 5. The robustness of all identified irreducible GRN solutions for the 3
striped patterns. In each table, σ is the standard deviation of error, ε̄ is the

average error, p is the number of proteins and e number of edges. The rows
are sorted by σ so the most robust network is the at the top and the least

robust network at the bottom. The key for the colors used to represent σ and ε̄
is on the right.

B. Robustness of Irreducible GRNs

Robustness measures the ability of a GRN to consistently
produce a high quality pattern under varying initial concentra-
tions of proteins and varying strengths of the interactions be-
tween them (ωj in Table I). All the irreducible GRNs demon-
strate robustness under varying initial concentrations.

To measure the robustness of the GRNs under varying edge
strengths, we employed the same methodology used by von
Dassow et. al [5] where they evaluated the robustness of a sin-
gle network that creates segment polarity in Drosophila. The
robustness of each irreducible GRN was determined by setting
each edge strength ωj , (1 ≤ j ≤ e) in turn to a uniform ran-
dom number in the range 0.1 ≤ ωj ≤ 1.0 and then computing
the error of the resulting pattern with respect to its target pat-
tern. The process was repeated 40 times for each GRN, then
the mean and standard deviation was computed. The results
are illustrated in Fig. 5. The standard deviation of the pattern
error quantifies the robustness of each individual pattern with
low standard deviation implying high robustness. Examples of
GRNs with high, median and low robustness for each target
pattern are shown in Fig. 6.

Pattern Robustness
Highest Median Lowest

1-skip-1

2-skip-1

2-skip-2
Fig. 6. Examples of irreducible GRNs discovered for the three target

patterns. Edges are color coded based on whether they implement within-cell
control (purple) or between cell signalling (red).

B.1 Modules: Subgraph Isomorphic GRNs

The results showing the sub-graph isomorphic relation be-
tween each pair of GRNs are given in Fig. 7. Each circle in
the figure represents a unique GRN, with the clockwise order
of each pattern corresponding to the order of robustness shown
in Fig. 5. Our results show that modules among irreducible
GRNs are rare. There are 630 possible uses of the GRNs as
modules, but only 9 (1.4%) are employed. Significantly, there
are no modules shared among GRNs that solve the same target
pattern. This result supports the effectiveness of the knockout
procedure for the discovery of irreducible GRNs.

There is a partial ordering relationship among the GRNs
solving the three striped patterns. The 1-skip-1 GRNs can be
used as modules within GRNs that solve the 2-skip-1 and 2-
skip-2 patterns. The 2-skip-2 GRNs also appear as modules
within the 2-skip-1 GRNs. We never detected a case in which a
2-skip-1 GRN was used as a module within the other pattern’s
GRN. This suggests that the 2-skip-1 pattern is more difficult
to solve, perhaps because of its asymmetry.
B.2 Subcircuits: Common Sub-cycles between GRNs

The results showing the common sub-cycle relation be-
tween each pair of GRNs is shown in Fig. 8. A sub-cycle is
feedback loop which occurs in two or more GRNs. A sub-
cycle, which functions as a subcircuit in biological GRNs, may
or may not operate as an independent pattern solving GRN.
There are many more subcircuits among the GRNs than mod-
ules. Studies identified 56 (9%) out of a potential 630 pairs
of GRNs that could share a subcircuit. An analysis of these
56 common subcircuits yields ten unique subcircuits, six 2-
edge cycles and four 3-edge cycles. In contrast to modules, we
found subcircuits that were shared between GRNs that solve
the same pattern. The 2-skip-1 GRNs had 28 shared subcir-
cuits, the 1-skip-1 GRNs had 14, while the 2-skip-2 GRNs
shared none.

IV. DISCUSSION
Three questions drove this work: What is the space avail-

able for evolutionary exploration for GRNs able to solve devel-
opmental patterning problems? If different GRNs exist that can
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Fig. 7. Subgraph isomorphism (module) results. Each node in the circle
represents a single irreducible GRN. Red is 1-skip-1, green is 2-skip-1 and

blue is 2-skip-2. The node labels correspond to those in Fig. 5. An edge from
GRN i to j means that i is a sub-graph of j.

solve a particular pattern, are there differences between them
that might lead to the selection of one over another? What are
the possibilities for co-opting GRN subcircuits or even entire
GRNs evolved to solve one pattern for use in the solution of
another pattern?

Our approach was to model GRNs composed of nodes (pro-
teins) connected by a variety of edge types (regulatory interac-
tions between proteins) that simulate many of the regulatory
interactions that occur within and between embryonic cells. In
our model, the same GRN that allows for intra- and intercellu-
lar interactions operates in every cell. Regulatory interactions
can occur via diffusion, direct cell-cell contact signaling, or a
combination of the two. Many of the interactions are direc-
tional, such that signaling occurs only in a “north-to-south”
or an “east-to-west” direction. These directional interactions
correspond well with the polarity of dorsal-ventral, anterior-
posterior and medial-lateral signaling that occurs in biological
development.

We searched for all GRNs within the range of 2 protein-2
edge to 8 protein-13 edge GRNs that could solve one of three
cellular patterning problems. GRNs of a given complexity
(number of proteins and number of edges) were subjected to
a mutational knockout analysis similar to the approach of tar-
geted gene disruption used in biological research to assess gene
function. Proteins and the connections between them (edges)
were removed to learn if they were extraneous or essential for
GRN function. Knockout of extraneous components was con-
tinued until a GRN was discovered in which every component
was essential for network function. This GRN was considered
to be irreducible.

Fig. 8. Graph sub-cycle (subcircuit) results. Each node in the circle
represents a single irreducible GRN. Red is 1-skip-1, green is 2-skip-1 and
blue is 2-skip-2. The node labels correspond to those in Fig. 5. Two GRNs

are connected if they share a common cycle.

A. The GRN Space Available for Evolutionary Exploration
The space available for evolutionary exploration is the num-

ber of irreducible GRNs that can solve a given patterning prob-
lem. The evolutionary space is large for all three patterns we
investigated. There were 16 unique, irreducible GRNs that
solved the 1-skip-1 pattern, 13 for the 2-skip-1 pattern and
7 for the 2-skip-2 pattern (Fig. 5). The complexity of GRNs
required to solve each pattern, the distribution of GRN com-
plexity, and the density (number of unique, irreducible GRNs
of the same number of proteins and edges) were different for
the three patterns (Fig. 4). Some general trends included: 1)
Lower network complexity was required for the 1-skip-1 pat-
tern than for the other patterns; 2) There was a significantly
broader distribution of network complexity for solutions of the
2-skip-1 and 2-skip-2 patterns; and 3) The evolutionary solu-
tion space of 2-skip-2 pattern was roughly half that of other
patterns.
B. Selection for Robustness

Given that there are many possible GRNs open for discov-
ery, are there differences between GRNs that would favor the
ultimate selection of one? One feature of GRN operation that
may provide a selective advantage is robustness in the face of
varying initial conditions. We examined the robustness of each
irreducible GRN over randomly generated and widely varying
protein and edge-strength values. Large differences were seen
in the robustness of GRN function (Fig. 5). For irreducible
GRNs that solve 2-skip-1 and 2-skip-2 patterns, there is a trend
for networks of intermediate complexity to be more robust than
those at either extreme of complexity. In addition, it appears
that GRN graphs with low degree and sparse cycles had higher
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robustness. However, the most significant conclusion drawn
from this part of the investigation is that although many GRNs
are available for discovery, there are sharp differences between
them. Only a small set of GRNs initially discovered by evolu-
tion is likely to remain after long-term selection.

C. There Are Many Opportunities for Co-Option

An important aspect of GRN architecture and its evolution
is suggested from analysis of GRNs that control animal devel-
opment. This feature is the existence of subcircuits and mod-
ules that appear frequently in GRNs employed in the develop-
ment of divergent lineages, such as Drosophila, sea urchin, and
the chordate Ciona [1]. The appearance of these simpler sub-
elements opens the possibility for evolution by co-option of
existing network modules. By combining previously evolved
network features, new patterning problems can be solved.

We examined whether and to what extent the irreducible
GRNs discovered here shared architectural features. Such
shared features, especially if they appear frequently, may illu-
minate potential evolutionary trajectories through co-option in
the evolution of pattern forming GRNs. We discovered exten-
sive overlap in many architectural features in GRNs that solved
the three different target patterns.

Network elements have been referred to by a variety of
terms that include kernels, subcircuits, switches, and modules
[3]. We searched for sharing of two types of network elements:
modules and subcircuits. In this work, modules were defined as
an element within a larger GRN that is capable of operating on
its own to solve a pattern. A subcircuit is a conserved network
feedback loop that may or may not operate as an independent
GRN.

Four different modules exist within irreducible GRNs that
solve the 2-skip-1 and 2-skip-2 patterns (Fig. 7). These mod-
ules are independent GRNs that solve the 1-skip-1 or 2-skip-
2 patterns. In contrast, sharing of subcircuits is more exten-
sive and complex (Fig. 8). Subcircuits are shared both within
GRNs that solve a single patterning problem (e.g., see the ex-
tensive subcircuit sharing in many 2-skip-1 GRNs) and be-
tween GRNs that solve two different patterning problems (e.g.,
the extensive subcircuit sharing between the 1-skip-1 and 2-
skip-1 GRNs.). In addition, some subcircuits that appear in
the 1-skip-1 GRNs are used to solve more complex patterns.
For example, a subcircuit within the 2-protein, 2 -edge 1-skip-
1 GRN appears in 5 different GRNs able to solve the 2-skip-1
pattern.

The significance of these findings is that the possibilities for
evolutionary co-option at the module and subcircuit levels are
vast. Modules evolved for one purpose can be further evolved
by the addition of a new protein or new interaction between
existing proteins to form a new module for another purpose.
Subcircuits utilized within one module can be duplicated and
utilized by another module. Interestingly, subcircuits do not
have to be independently functional to expand the potential of
the evolutionary search space. The result of this co-option is
often the creation of an expanded GRN capable of solving a

completely different patterning problem. The GRN evolved by
co-option is a mixture of the old and the new.

Although the focus of this work was on the evolutionary tra-
jectories open for pattern formation during development, the
conclusions concerning the wide space of GRNs available to
evolution and the abundant opportunities for co-option to in-
crease complexity are likely to apply equally well to other fun-
damental biological processes.
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