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Abstract—This paper presents a parametric model to esti-
mate the DNA-protein binding time using the DNA and protein
structures and details of the binding site. To understand the
stochastic behavior of biological systems, we propose an “in silico”
stochastic event based simulation that determines the temporal
dynamics of different molecules. This paper presents a parametric
model to determine the execution time of one biological function
(i.e. simulation event): protein-DNA binding by abstracting the
function as a stochastic process of microlevel biological events
using probability measure. This probability is coarse grained to
estimate the stochastic behavior of the biological function. Our
model considers the structural configurations of the DNA, proteins
and the actual binding mechanism. We use a collision theory based
approach to transform the thermal and concentration gradients of
this biological process into the probability measure of DNA-protein
binding event. This information theoretic approach significantly
removes the complexity of the classical protein sliding along the
DNA model, improves the speed of computation and can bypass the
speed-stability paradox. This model can produce acceptable esti-
mates of DNA-protein binding time to be used by our event-based
stochastic system simulator where the higher order (more than
second order statistics) uncertainties can be ignored. The results
show good correspondence with available experimental estimates.
The model depends very little on experimentally generated rate
constants.

[. INTRODUCTION

The system simulation of biological processes is important
to understand their dynamics. Recent molecular level mea-
surements of biological processes have identified a stochastic
resonance [6] specially for protein creation and other signaling
pathways. The stochastic simulation models [7], [8], [9], [10],
[11] using the approximate Master equation are based on rate
equations. Due to the large number of proteins in a cell,
these models lead to combinatorial explosion in the number of
reactions, and hence not suitable for complex signaling pathway
problems. Our goal is to build a stochastic discrete event
based framework [5] for biological systems to overcome the
computational complexity of current mesoscale and stochastic
simulation methods. This flexible simulation framework can
also be extended to a genome scale simulation.

We consider a biological system as a collection of biological
processes, each comprising a number of functions, and a func-
tion is modeled as an event with relevant boundary conditions.
These event models are used to develop a stochastic discrete-
event simulation. The event modeling uses an abstraction of the
biological function as a series of microevents. The measure of
the uncertainty of the microevents is used to create the stochastic
behavior of the event and the statistics are obtained by using
applied probability theory. The description of the simulation
method can be found in [5] and the abstraction mechanisms
in [13], [14], [15], [16]. Here, we extend the event modeling

approach to compute the execution time of another complex
biological function: ‘DNA-protein’ binding.

We consider the binding for both bacterial and eukaryotic
transcription factors (TFs) to the DNA assuming that the
structure, location on chromatin and other details of target
sites on the DNA are known from experiments. The classical
protein-DNA sliding model considers the energetics of protein-
DNA interactions [4]. In contrast to the existing thermodynamic
and diffusion based models, our approach closely follows the
biological process divided into discrete microevents. The main
idea is that for bacterial cells, the TF (with matching motif)
randomly collides with the DNA and, only when it hits the
binding site with enough kinetic energy to overcome the energy
barrier of the site, can the binding occur. Based on our research
focus, we abstract the first micro biological event ’collision of
the TF to the DNA surface’ by using the collision theory model
for non-spherical collision objects. The information measure
we compute from this abstraction is the probability of DNA-
protein collision. The next microlevel biological event is the
binding of a TF to the DNA based on the description of the
protein and DNA structures on the chromatin as encountered
in the biological process. This method bypasses the speed-
stability paradox of protein-DNA interactions to allow for a
computationally efficient model for our stochastic simulator
(note that the Gillespie simulator uses a simple rate constant
to approximate the protein-DNA binding time). The TF sliding
mechanism due to thermal gradient, for searching the binding
region is also incorporated in our model and we show that not
all DNA-TF collisions result in sliding. For eukaryotic cells,
the protein-DNA binding mechanism is achieved in two steps
1) diffusion of the TF to the nucleus of the cell and 2) random
collisions of the TF with the DNA (we assume that the TF never
comes out of the nucleus) for the binding. Our model computes
the entire DNA-protein binding time for bacterial cells, and
DNA-protein binding time once the protein has entered the
nucleus for eukaryotic cells. The average time for diffusion of
protein molecules to the nucleus can be easily computed from
standard diffusion models.

II. DNA-PROTEIN BINDING MODEL

We partition this problem into 2 biological microevents: 1)
Collision of the protein molecule to a binding site (+B) on the
DNA surface: i.e., we assume that the TF can slide a distance
of B (in either direction) on the DNA before binding, and 2) a
protein colliding with DNA at the binding site (+=B) will bind
only if it hits it with enough kinetic energy to overcome the
energy barrier of the site.
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Fig. 1.
DNA

Schematic diagram of protein molecule and TF binding region of the

Fig. 2. DNA packing through nucleosomes
A. Modeling the first microevent: Calculating p,

In this section we abstract the first microevent by computing
the probability of collision of the protein (TF) with the binding
site (=5) on the DNA (denoted by p,,). From the principles of
collision theory for hard spheres, we model the protein molecule
as a rigid sphere with diameter d and the TF binding region
of the DNA as a solid cylinder with diameter D and length
L + 2B(Fig 1). Note that the 2B factor is incorporated as the
TF can slide in either direction on the DNA.

We define our coordinate system such that the DNA is
stationary with respect to the protein molecule, such that the
latter moves towards the DNA with a relative velocity U. The
protein molecule moves through space to sweep out a collision
cross section, C. The number of collisions during a time period
At is determined when a protein molecule will be inside the
space created by the motion of the collision cross section over
this time period due to the motion of the protein molecule.
Calculating the average surface area of collision of a
sphere and cylinder: The spherical protein molecule during

Direction of motion

Horizontal cylinder

Cylinder at an arbitrary angle

Vertical cylinder

Fig. 3. Collision of spherical protein and cylindrical DNA transcription factor
binding region.

its motion can encounter the DNA binding sites in three

different configurations (1) horizontal cylinder, (2) vertical
cylinder, and (3) cylinder at an arbitrary angle, 6, with the
direction of motion of the protein (Fig 3). The cross-sectional
area of collision, C, is given by:

w%, for §=0°
C=4q (L+2B+d)(D +d), for 6= 90°
(D+d)(L+2B+d)sinf, otherwise

Thus for any arbitrary 8 (0° < 8 < 90°), we can express the
cross-sectional area of collision as a function of 6 as follows:
C)=(D+d)(L+2B+d)sind

Note that the border conditions (# = 0°,90%) constitute a
set of measure zero, and the whole calculation can be limited
to the case where 0° < 6 < 90°. We assume an uniform
density for the occurrence of the different 6’s in the range
0° < 6 < 90° ie. having density (W%?Z). It is to be noted
that ideally 6 can take any value in 0° < 6 < 360°, but our
working range of 0°...90° suffices for all these cases. Thus the
average cross-sectional area, Cy,g4, can be expressed by:

Cavg = JiF 2C(0)d0 = 2(D + d)(L + 2B + d).

This cross-section Cy,g, moves in the cytoplasmic space
(nucleus for eukaryotes) to create the collision volume for a
particular binding site.

Probability of protein-DNA binding in eukaryotic cells:
Fig 2 illustrates how DNA is packed along different cylindrical
nucleosomes. Thus, L in C,,, denotes the length of the
TF binding region, and D the diameter of the DNA strand
(assumed cylindrical in shape) on a nucleosome cylinder. As
single or multiple motifs [12] can be present for a gene in
the promoter region, the value of L is adjusted to reflect those
conditions. Now, we can have three cases based on where the
TF binding region is located on the DNA: 1) Case I: The
region entirely lies within the DNA portion on a nucleosome
cylinder; 2) Case II: The region lies entirely within the DNA
portion that is outside the nucleosome cylinders; 3) Case III:
The region is shared between the DNA on a nucleosome
cylinder and that outside it.

Case I: Let the probability that the protein molecule hits the
correct nucleosome cylinder given it collided with the DNA
with sufficient energy be pf. We have:

length of that nucleosome cylinder

C

pn =

length of all nucleosomes + length of all stretches
ln

Niln + Y22 0

where, /,, denotes the length of a nucleosome cylinder (assumed
fixed for all the cylinders), I’ denotes the length of the i*"
stretch of DNA, i.e., the length of DNA present in between the
it" and (i + 1)*" nucleosome cylinders. N; and N, are the
number of nucleosome cylinders and that of stretches of DNA
respectively. Now, the probability of hitting the DNA portion of
the nucleosome cylinder, p; can be estimated from the surface
area of the nucleosome cylinder and that of the DNA present
in the cylinder as follows:

7Dy

Pa= D1, + wd, L,
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where, [; is the length of the DNA present inside the cylinder
and d,, is the diameter of the nucleosome cylinder. Because the
DNA is known to make 1.65 turns in a nucleosome cylinder, we
have fd = 1.65. And, p} designates the probability of colliding
with the TF binding region (+15) in the DNA, given that the
protein molecule already collided with the DNA with enough

energy and also hit the correct nucleosome cylinder. We have:

. _ length of TF binding region in the DNA + 2B
Pr= total DNA length in that particular nucleosome

Also, the particular motif of the colliding protein molecule is of
interest to us, as it should come in proximity of the TF binding
region (£B) of the DNA for a binding to occur. So, we need to
calculate the probability of identifying the motif of the colliding
protein molecule, p,, as follows:

length of the motif region of the protein

Pm = total length of amino acid chain of the protein
Thus, the total probability of collision of the TF to the DNA

binding site (+B) is given by:
Pn = DPm ><p]c—,, Xp; X Pd

Now, because the DNA is wrapped around a particular nucle-
osome cylinder, some part of it will not be available for the
TF to bind to. Thus Cy,4 as calculated above is not entirely
available to the TF to bind to. We approximate this case
through a difficulty parameter «, which denotes the percent-
age availability in average collision cross-sectional area. This
parameter represents approximately the percentage of the time
the hidden DNA surface is made visible for reaction through
Histone remodeling (we are currently working on a separate
model of Histone remodeling to compute this parameter). Thus
the effective cross-sectional area, C, available for TF binding
can be calculated as follows: Cery = a X Cuuyg

Case II: In this case, the probability of hitting the correct stretch
of DNA in between the nucleosome cylinders is designated by
p;, as follows:

I
B Nily, +Zivzl lls
where we assume that the TF binding site is located in the i‘"
stretch of DNA. Similarly, let p} designate the probability of

colliding with the TF binding region (£B5) in the DNA similarly
as before. We have:

s _ TF binding region length on DNA + 2B
7™ total DNA length in that particular stretch

and, the total probability of collision of the TF to the DNA
binding site denoted by p,, is given by:

Dh

b

Pn = Pm X Dj X D}

In this case, the entire TF binding region in the DNA is available
for the binding process to occur, and we have: C.r5 = Coyg

Case IlI: Because the TF binding region (+B) is shared
between a nucleosome cylinder and an adjoining stretch, the
probability calculations become complex for this case. We
approximate the calculations in the following way. Suppose the
TF binding site (£B) is shared between the i** nucleosome
cylinder and the j** stretch of DNA. Because the cylinder and

the stretch has to be side by side, we must have either j = ¢, or
i = j + 1 depending on whether the first part of the TF binding
site is in the cylinder or in the stretch respectively. Let p$, and
p;, denote the probabilities of hitting the TF binding portion
in the cylinder, and that in the stretch respectively. In this case
however, p} and p} computations should change as follows:

length of TF binding region portion in nucleosome + B

total length of DNA in that particular nucleosome
length of TF binding region portion in the stretch + B

by = total length of DNA in that particular stretch

And hence we have:

Dy = Pm X D X P} X Pd; Dy = Pm X Ph X D}; P = Dy + Doy

Thus total probability of collision of the TF to the DNA
binding site (+B) is p,. Also, the average cross-sectional area
calculations become a little different in this case. We break
up Cuug into Cyyg, and Coyg, based on Ly and Lg, where,
L, is the length of the TF binding region in the nucleosome
cylinder and L, denotes that in the adjoining stretch. We assume
for simplicity that the TF binding region is shared between
one stretch and one nucleosome cylinder only, because this
region is generally quite small in length compared to the length
of DNA packed inside a nucleosome cylinder. However, if
the region extended to more than one nucleosome cylinder or
stretch, we can handle that case in a similar fashion. Thus
the effective cross-sectional area of binding is represented as:
Cepp = ax Cavgy + Caug,

Thus the total probability of collision to one specific TF binding
region, p,, can be calculated easily for each of the three cases
discussed above. But we need to know how exactly the DNA
is packed in the nucleosome cylinders to determine p,, and the
effective surface area C.sy required for binding. In particular,
we assume that the DNA packing in nucleosome cylinders is
fixed and hence we can find where the TF binding region is
located as described in Cases I, II or III.

Approximate mechanism of finding where the TF binding
region is located: Nucleosomes have 1.65 turns of DNA and
a diameter, d,,, of 11 nm. Thus the length of DNA inside a
nucleosome cylinder can be approximated as (1.65 X 7 X d, ),
where (7d,,) is the circumference of the nucleosome cylinder.
We assume that all the nucleosome cylinders have identical
shape and number of turns of DNA in them. Also, we assume
that all the stretches of DNA between nucleosome cylinders are
equal in length. Thus, we can approximate the length of DNA
in a stretch as (w), where, Tp is the total
length of the DNA and N is the number of nucleosome cylinders
present. The denominator in the above expression is (N — 1)
because we assume that there can only be (N — 1) stretches
of DNA present in between the [NV nucleosome cylinders. Also
from the complete genomic sequence we can find out the exact
position of the TF binding region along with its length. Thus
we can approximately estimate whether the TF binding region
corresponds to Case I, II or III.

Protein-DNA binding probability for bacterial cells: The
bacterial genome is supercoiled with a general organization as
depicted in Fig. 4. Each domain consists of a loop of DNA,
the ends of which are secured in some way. Hence, the total
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Bacterial DNA has independently coiled domains

Loop consists
of duplex DNA

Loops secured at -
base by unknown mechanism

Fig. 4. Bacterial Genome Structure.

probability of collision in this case is simply approximated as:

length of TF binding region + 2B

= X - whi =
Pr = Pm > Puwi WAETE Pu total length of the DNA

Also, because the entire surface area of the DNA is available
for binding, the effective cross-sectional area of binding is given

by: Ceff = Cavg

B. Modeling the second microevent: Calculating py

Let p, denote the probability that the TF collides with the
DNA with enough kinetic energy such that it can bind to the
DNA. Thus, py is the information domain abstraction (in terms
of probability) of the second microevent. In time At¢, the TF

sweeps out a volume AV given by:

AV = C.p UAL

Let the total volume of the cell be V' (for a prokaryotic cell, we
do not have a nucleus, and hence V' denotes the total volume
of the cell; for eukaryotic cells, however, V' will denote the
volume of the nucleus as we assumed the movement of the TF
is confined within the nucleus at this stage). We next assume
that the colliding protein molecule must have free energy F 4.t
or greater to bind to the specific DNA TF binding region. This
kinetic energy will be required for the rotational motion of the
protein molecule such that all the binding points in the protein
molecule come close to those in the DNA for the binding
to take place successfully. The kinetic energy of approach of
the protein towards the DNA with a relative velocity U is
= the reduced mass,
mp = mass (in gm) of the protein molecule and mp = mass
(in gm) of the DNA. U reflects the cumulative effects of all
the force fields on the mass of the protein and we approximate
this complex dynamic process by a statistical distribution to
capture the uncertainty represented by the Maxwell-Boltzmann
distribution of molecular velocities for a species of mass m

mp.mp
mp+mp

2
E = mP2DU , where mpp =

given by:
7’"LU2
U,T)dU = 4 3263k 24U
FO.T)AU = (52
where kg = Boltzmann’s constant = 1.381 x 10723

kgm?/s?/K/molecule and T is the absolute temperature (=
273 K). We also assume that as the kinetic energy, F, increases
above E 4., the number of collisions that result in binding also

increases. Thus following the concept shown in [13] we get:

oy = CeprAt | 8kpT e—k‘iAqgt
\%4 T™mpp

C. The total binding probability considering all different TF
binding regions of the specific protein molecule

Ideally, for any protein molecule, we can have more than
one TF binding regions on the DNA. Let G be the number
of different TF binding regions on the DNA for the specific
TF that is colliding with the DNA. Also, let pi denote the
total probability of binding (combining the first and second
microevents) for the i*"* TF binding region (1 < i < G). Note
that the probabilities of the first and second microevents as
calculated above will depend on the specific binding site ¢ on
the DNA under consideration. We denote these two probabilities
as p, and p} for the i* site that can be calculated similarly as
shown above. In general, all the binding sites corresponding to
a particular TF are identical making p%, = pJ and p{ = pi,
i #j,1<14,j <. Hence,

pi=pl, x pj

Thus if p denotes the actual probability of binding of the protein
with any of these G different regions, we have:

G G _
p=> i [I a-#)

=1 j=Li#j
This is because, the probability of binding to the first TF binding
region is given by p} H?:g(l — pl); that for the second region
is [p?(1 —p))(1—p3)(1 —p})...(1 —p&)]; and so on. The total
probability, p, is the sum of all these individual cases. Thus, p
gives us the information domain measure of the complete DNA-
protein binding event in terms of probability for any specific TF.

III. TIME TAKEN FOR PROTEIN-DNA BINDING

We next estimate the time taken to complete the binding with
total binding probability p. Let At = 7 = an infinitely small
time step. The protein molecules try to bind to the DNA through
collisions. If the first collision fails to produce a successful
binding, they collide again after 7 time units and so on. Note
that now we can have a TF-DNA binding in two ways: (a)
the TF directly collides and binds to the DNA binding site or
(b) the TF collides at a distance (< B bps) and slides on the
DNA to bind to the site. The average binding time computation
requires a probability assignment to these two events. Let per
denote the probability that the binding occurs due to collision
only (point (a) above). Hence, binding occurs with collision and
sliding with probability (1 — per). Note that per = 1 simplifies
to the case where the protein does not slide along the DNA at
all, and per = 0 boils down to the model in [4] (where they
assume that the TF slides along the DNA at every round). In [4],
the authors derived the 1-d diffusion time, 714 (along the DNA)
using the mean first passage time (MFPT) from site 0 to B as
follows:

0.2

702 f
B) ~ B%eitsD? ()1 14+ —— )72
ma(B) = BT () (1t 5T )
where, v is the effective attempt frequency for hopping to a
neighboring site and o is the roughness of the DNA landscape
in units of kpT. Note that 714 considers the different energy
barriers on the DNA that the TF has to overcome while sliding
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whereas F,.: is required for the actual binding to the cognate
site. Thus the total probability of binding is:

= p'n,ofslidi'n,g(l - p) + p(l - p’nofsl’i,d’i,ng);
and, Pno—sliding = |p|B:O

DPvinding

where, ppo—siiding denotes the probability of binding when the

sliding along the DNA is not considered altogether. Hence, the
average time for protein-DNA binding model is given by:

Tl = DPbinding (per X T+ (1 - per) (T + T1d

(1 - pbinding)pbinding X 2(}767' X T+ (1 - PET') (T + T1d

(1 = Dhinding)*Pbinding X 3(per x T + (1 — per)(1 + 114)) + ...

) +
) +

(per x 74 (1 — per)(T 4+ 114))

=T = 7
Prinding
T, = (2 - Pbmdmg)(per X T+ (1 — per)(T + Tld))2
(pbinding)2

where T is the second moment of the binding time. We find that
the time for DNA-protein binding when no sliding is considered,
follows an exponential distribution for most ranges of FE,..
(reported in the next section). It should be noted that as we
assume 7 to be quite small, we can approximate the total time
measurements of binding using a continuous (exponential in this
case) distribution instead of a discrete geometric distribution.
The average time 7} as calculated above gives the estimated
time for protein-DNA binding in bacterial cells. For eukaryotic
cells we should add the average protein transport time from
the cytoplasm to the nucleus that can be computed from any
standard diffusion model.

IV. RESULTS AND ANALYSIS

Problems in validation of our model: Before presenting
the results, we first discuss the difficulty of experimentally
validating our model. Note that we compute the average time for
protein-DNA binding in this paper. Existing experimental results
are based on estimation of the binding rate of any specific TF
to the DNA. And the experimental estimate of 1 ~ 10 secs
is reported from this rate measurement [4]. Hence, the number
of TFs in the cell will affect this estimate of time taken by
one single TF to bind to the DNA site. However, our model
computes the time taken by any particular TF to bind to the
DNA which should be independent of the number of TFs in
the cell. It is certainly very difficult to carry out experiments
to track a particular TF and physically compute the time. Also,
the stochastic nature of the binding process suggests that the
distribution of the time taken will have a very high variance. In
other words, in some cases the TF requires time in milliseconds
whereas in other cases it might take as long as 100 seconds.
The results we present next assume that the time taken for any
particular TF-DNA binding is 1 ~ 10 secs even though it is not
a true estimate of this event because it is not a molecular level
measurement.

Numerical Results for per = 1 (i.e. no TF sliding is
considered): In this section, we present the numerical results
for the theoretical models derived in the paper. Figs 5-8 present
the results for the PurR TF (having 35 binding sites) on the
E. coli chromosome. Similarly, Figs 9-10 illustrate the behavior
for eukaryotic cells where we considered the average human

— E_=10K_ T
act B,
[ Eac‘:15 KBT

e E,m20KT

Average Time for DNA-Protein binding (in secs)

At

Fig. 5. T4 against increasing At for E. coli.
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Fig. 6. T against increasing Eq¢; for E. coli.

cell with 20 pym diameter and the Htrfl DNA-binding protein.
The different parameters assumed for the numerical results are
concisely presented in Table 1. We used the EcoCyc database [1]
for the E. coli data, and the PDB database [2] for human cell
data.

Fig 5 plots T} against different values for At¢. The average
time for DNA-protein binding remains constant initially and
shoots up exponentially with increasing At¢. The same charac-
teristics are seen for different activation energies, F,.; = 10
kpT, 15 kpT and 20 kpT. The activation energy estimates
follow from the change in free energy related to binding that
includes the entropic loss of translational and rotational degrees
of freedom of the protein and amino acid side chains, the
entropic cost of water and ion extrusion from the DNA surface,
the hydrophobic effect, etc. as discussed in [3]. Lesser the
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Fig. 7. T against increasing number of binding sites for E. coli.
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TABLE I

PARAMETER ESTIMATION FOR BACTERIAL AND EUKARYOTIC CELLS.

Parameters Prokaryotic Cell Eukaryotic Cell

1% 4.52 x 10~18m3 (volume of cell)  4.187 x 10~ 6m3 (volume of nucleus)

Length of DNA 4.64 x 10% bp (E. coli) 3 x 10° bp (Human cell)

G 35 (for PurR) 35 (assumed for Htrfl)

Length of TF binding site (L) 26 48
Length of protein amino acid chain 341 (for PurR) 53 (Htrf1)
Length of protein motif 26 (for PurR) 48 (Htrf1)
Radius of Amino acid chain 1 nm (for PurR) 1 nm (Htrfl)
Average radius of the protein (%) 5 A° (for PurR) 5 A° (Htrfl)

mp 38.175 Dalton (for PurR) 6635 Dalton (for Htrf1)
Diameter of DNA (D) 2 nm (for E. coli) 2 nm (Human cell)
mp 3 x 106 Dalton (for E. coli) 1.9 x 102 Dalton (Human cell)

)

=)

. )
=
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1) = —
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Fig. 8. T comparison with experimental results.
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Fig. 9. T1 against F,c¢ for eukaryotes.
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Fig. 10. T4 against different o’s in eukaryotes.

required E,., more is p; for the protein molecules, and hence
lesser is T7. It is to be noted that p, as calculated above also
corresponds to the number of collisions in time At of the
protein molecule with the DNA. And for our assumption of
at most one collision taking place in At to hold, we have to
make sure that 0 < p, < 1 (this is also true because pp is a
probability). Thus the regions to the right of the vertical lines
corresponding to each E,.; plot denotes the forbidden region
where p, > 1 even though 0 < p < 1. This gives us an
estimate of the allowable At values for different F,.;’s such that
T, indeed remains constant. Note that with increasing At, the
time taken for successive collisions between the TF and DNA
increases, resulting in an overall increase in average binding
time. However, with At < 108, T} remains constant for each
Eact-

Fig 6 plots 7' against the different possible E,.; estimates
and we find that the average time for binding increases with
increasing E,.; values. As E,.; increases, more kinetic energy
is required by the TFs to achieve stable binding, and only
higher molecular velocities can produce that energy. Hence
pp decreases resulting in an overall increase in 7. However,
with very low E,. requirement, we find the binding times
tend to increase. This is because the kinetic energy requirement
becomes so low, that the TFs actually has to spend more time
to bind to a DNA site. Also, an interesting feature is that
T, remains the same for different estimates of At as long as
0 < pp < 1. As discussed before, the regions to the left of the
vertical lines denote the forbidden regions where p, > 1. The
speed-stability paradox [4] says that for acceptable average time
estimates we should have o ~ kT, whereas for stable binding
we need o > bHkgT. Our results show that we can achieve
stable binding between E,.; = 1kgT for At = 10785 and
E,.; = 13kpT for At = 10~*s. The minimum possible values
for E,.; for different A¢’s are reported in Table II. The average
time for TF-DNA binding is experimentally measured [4] to
be 1 ~ 10s, which is achieved with F,.; ~ 20kpT. Fig 8
gives the comparison between the experimental results and our
theoretical estimates. We find that for 20kgT < F,.: < 26kgT,
our results match with the experimental values. The minimum
and maximum times for binding reported in the figure for
different E,.; values are calculated assuming 95% confidence
interval. Thus our theoretical model also gives an estimate of
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TABLE II
ALLOWABLE Eq¢t VALUES AGAINST At SUCH THAT 0 < pp, < 1

At (in secs) Minimum Egct (in kgT)

10~4 13
10~° 10
10—6 7.6
10-7 5
10~8 1

Cumulative Probability

3 4 5 6
Time for binding (in secs)

Fig. 11. CDF of our stochastic model for Eqct = 22kgT, At = 1078,

the activation energy required for stable binding. It should be
noted that E,., refers to the total free energy change due to
binding and should be higher than o as calculated in [4]. We
also find that in the range 20kpT < E,.; < 26kpT, the time
of binding follows an exponential distribution (as the calculated
mean is very close to the standard deviation). In Fig 7, we find
that 77 decreases as the number of binding sites G is increased
which is again logical as the protein molecules now have more
options for binding.

Fig 9 shows similar trends for eukaryotic cells. The 77 values
for eukaryotic cells are higher than those for bacterial cells
mainly because the volume of the nucleus is larger than the
average volume for prokaryotic cells. Also, o decreases the
probability of binding appreciably as the DNA is arranged in
nucleosome cylinders, thereby reducing the average surface area
for collision, and hence reducing p;. Also, the pg; component of
p results in lesser values of p; for eukaryotic cells and hence
greater values for 73. Fig 10 shows the dependence of 7} on
a. With less «, lesser is C.ry, and hence higher is T7. It can
be observed that o does not affect the average time for binding
significantly.

Fig 11 plots the cumulative distribution function (CDF) for
the time of binding with E,.; = 22kgT for E. coli. Figs 12
and 13 show the dependence of 77 on At and number of binding
sites respectively for eukaryotic cells.

Figs 7,9,10 were generated with E,., = 15 kpT. For
eukaryotic cells, we consider the average time for binding after
the TF has diffused inside the nucleus. Thus the overall time for
DNA-protein binding has to consider the time taken by protein
molecules for diffusion. This has been extensively studied and
not reported here.

Important observations from the per = 1 results

1) Our model achieves the experimental estimate of 1 ~

10 secs with activation energy in the range: 20kpT <
FEq.ct < 26kpT for prokaryotic cells (obviously the results

“_E_-l0KT
act B
_E 5K T
107 Y EC0KT
act_ B

Average Time for DNA-Protein binding (in secs)

Fig. 12. T1 measurements with increasing At for eukaryotic cells.
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Fig. 13. Average Time against increasing number of binding sites for

eukaryotes.

are generated for the PurR TF in E. coli and we have not
tested this range for other TFs as yet). The corresponding
range for eukaryotic cells has not been reported here
because we need to know the corresponding experimental
estimates for human cells.

2) The stochastic nature of protein-DNA binding time can be
approximated by an exponential distribution in this range
as the observed values for mean and standard deviation
of the binding time are comparable.

3) The average time for DNA-protein binding is approxi-
mately independent of At¢ and increases for higher F, ;.

4) An acceptable estimate of At is 1078 secs. Figs 5-6 show
the dependence of the average time on At and Eg..
We find that a wider range of E,.; is available (keeping
pp < 1) with lesser At. The same estimate holds true for
eukaryotic cells also.

5) The average time decreases as the number of DNA
binding sites increase because the TF has more sites to
bind to.

6) The average time is not significantly affected by « i.e. the
percentage availability of average collision cross-sectional
area.

Validation of DNA replication with no-sliding assumption:
We used another model validation exercise having robust mea-
surement data. We build the DNA replication model of E. coli
that provides the gross measurement data of large number of
DNA nucleotide/protein interaction sequences. We also build the
analytical model from the micro-scale DNA nucleotide/protein
interaction times to copy the DNA. In E. Coli cells, replication
of the single circular chromosome takes about 42 minutes and
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TABLE III

FEqct AND per REQUIREMENTS FOR n = 100bps

o (in kgT) Eqct (in kpT) per
5 20 — 26 1.0

4 20 — 26 1.0

3 11—150r20—26 0.1 —-09or 1.0

2 14—170r20—26 0.1 —-09or 1.0

1 20—240r20—26 0.1—09o0r 1.0

TABLE IV
FEqct AND per REQUIREMENTS FOR n = 50bps
o (in kgT) Egct (n kgT) per
5 20 — 26 1.0
4 20 — 26 1.0
3 12 — 15 0r 20 — 26 0.1 —0.90r1.0
2 20 — 24 0r 20 — 26 0.1 —0.90r1.0
1 22 — 25 0r 20 — 26 0.1 —0.90r1.0

our analytical model predicts the time as ~ 36 mins.
Numerical Results for the combined model in E. coli with
per # 1: In [4], the authors present an experimental estimate
of 74 for different values of sliding distance (denoted by
m) and at different roughness o for the PurR TF of E.Coli
with a random and uncorrelated energy profile having standard
deviation ~ 6.5kpT. These T4 estimates have been used to
generate the plots.

For ¢ = 1kgT and per = 0, the experimental estimates of
1 ~ 10 secs can be achieved with 15kgT < F,o < 20kgT,
even with n = 8000bps. However, the experimental results can
be achieved up to (n = 2000bps, 0 = 2kpT), (n = 200bps, o =
3kgT), (n = 20bps,c = 4kgT) and (n = Tbps,o = bkgT).
Thus if we assume that every collision of the TF with the DNA
is accompanied with a 1-d diffusion, the average number of
base pairs that the TF can slide is only 7 bps when o = 5kpT.
This is certainly a very low estimate and it is logical to assume
that not every TF-DNA collision involves 1-d diffusion.

The next step is to find an estimate of per (# 0), that gives
binding times in the experimental range even with biologically
relevant amounts of sliding. In [4], the authors report the optimal
number of base-pairs that can be searched at ¢ = 1kpgT
as 100 bps. We report the maximum ¢ that can achieve the
experimental estimates from our results in Table III and that
for 50 bps in Table IV. Thus we can get the bounds on E,,
for different combinations of per,o and n. The above results
show the maximum value of ¢ for which the experimental rate
can be achieved. However, for o = 5kgT’, we have to consider
either per = 1.0, i.e. the TF does not slide on the DNA, or it
can slide a maximum of 7 bps.

V. CONCLUSION

We have presented a simplified model to estimate the DNA-
protein binding time by transforming the biological function
as a stochastic process of a number of biological micro events
and use the microevents probability information to create the
complete stochastic model of the biological event. We used
collision theory and Maxwell Boltzmann velocity distribution to
get this microevent information. The model is computationally
fast and provides two moments for this random number. The
model is robust as the major factors are captured in a reasonably

accurate way for general cell environments. The complexity
of DNA packing has been simplified to achieve acceptable
estimates of the DNA-protein binding time. We found the range
of activation energies of the TFs that are crucial for the robust
functioning of gene transcription. The speed-stability paradox
can also be bypassed using the no TF sliding assumption and its
effects reduced if we incorporate 1-d diffusion. The proposed
mechanism has important biological implications in explaining
how a TF can find its site on DNA, in vivo, in the presence
of other TFs and nucleosomes and by a simultaneous search
by several TFs. Beside providing a quantitative framework
for analysis of the kinetics of TF binding (and hence, gene
expression), our model also links molecular properties of TFs
and the location of the binding sites on nucleosome cylinders
to the timing of transcription activation. This provides us
with a general, predictive, parametric model for this biological
function. These details make the model more versatile compared
to the current rate constants used in the Gillespie simulation.
Thus, our discrete stochastic modeling can incorporate more
parameters in the simulation.
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