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Abstract-Protein acetylation of lysine residues is a reversible post-
translational modification associated with the substitution of a 
hydrogen in the -amino group of the side chain by the acetyl 
group. Lysine acetylation has been shown to be involved in a 
variety of cellular functions, most prominently gene regulation 
and transcription in eukaryotes. However, its full extent, se-
quence biases and functional repertoire remain largely unknown. 
In this study, we present a methodology for semi-automated lit-
erature mining where new acetylated sites are automatically 
identified from full scientific papers and then manually verified. 
We analyzed currently known acetylation sites with respect to 
sequence, physicochemical and structural properties in the 
neighborhood of acetylated residues and based on the analysis 
constructed a prediction model for identification of acetylated 
lysines. Our literature mining effort resulted in a set of 502 sites 
currently undocumented in major repositories of post-
translationally modified sites (SWISS-PROT, HPRD), while the 
analysis showed that acetylation sites preferentially occur within 
intrinsically disordered regions. The accuracy of the prediction 
model exceeded 80% in the cross-validation experiments. 

I. INTRODUCTION 

A. Protein Acetylation 
Acetylation of non-terminal lysines is a reversible post-
translational modification in which a hydrogen of the -NH2
group of the residue side chain is replaced by the acetyl group 
(-COCH3). Soon after the discovery of N-terminal acetyl 
groups in calf thymus histones [1], -N-acetyllysine was dis-
covered to exist in these histones as well [2]. In fact, most -
lysine acetylation research in the past has focused on histones, 
however, this modification is also known to occur on a variety 
of other proteins including transcription factors, -tubulin, 
nuclear receptors, and HMG proteins [3-7]. The DNA-binding 
protein HMG1 was the first non-histone protein found to be 
lysine acetylated [8]. In addition to the transcription and gene 
regulation, protein acetylation is also known to affect several 
other functions. Histone acetylation is involved in the regula-
tion of nuclear processes including DNA replication, recombi-
nation, and repair, while acetylation of transcription factors 
affects protein stability, DNA-binding affinity, and nuclear 
localization [9, 10]. 

Two mechanisms have been proposed to explain the ef-
fects of lysine acetylation on protein function: the ‘loss-of-
function’ and ‘gain-of-function’ mechanisms [10, 11]. With 

respect to the ‘loss-of-function’ mechanism, lysine acetylation 
neutralizes the positive charge on the lysine side chain. The 
modification is also thought to reduce the ability of the -
amino group to be a hydrogen bond donor [10, 11] and thus 
can influence the protein’s ability to interact with DNA, RNA, 
and other proteins. Concurrent with this, acetylation is most 
notably known for regulating transcriptional activity [12]. 
With respect to the ‘gain-of-function’ mechanism, acetylation 
of lysine provides a new face for protein interactions. It is 
known that bromodomains, which are found in many proteins, 
have the ability to recognize acetyllysines [10, 11].  

Protein acetylation is enzyme mediated, with the signal be-
ing turned on and off by acetyltransferases and deacetylases. 
There are six families of Histone Acetyltransferases (HATs). 
The first family, the GNAT superfamily, is perhaps the best 
understood. Members of this family are grouped together be-
cause they share conserved acetylation-related structural mo-
tifs found in the yeast protein Gcn5. Along with Gcn5, other 
members of GNAT superfamily include P/CAF (P300/CREB 
binding protein associated factor), Hat1 (HATB), Elp3, and 
Hpa2  [7, 13]. The second family is the MYST family, which 
derives its name from its founding members: MOZ, 
Ybf2/Sas3, Sas2, and Tip60 [14, 15]. Other members of this 
family include Esa1, MOF, MORF, and Hbo1 [7, 13]. Mem-
bers of the MYST family also share a portion of the GNAT 
motif [14, 15]. The third family is p300/CBP which includes 
p300 and its close homolog CBP (CREB Binding Protein) as 
members [7, 13]. The fourth family is the Nuclear Receptor 
Cofactors and contains three members: SRC-1, ACTR, and 
TIF2 [7, 13]. The fifth and sixth families so far contain only 
one member each, TAFII250 (TFIID) and TFIIIC, respec-
tively [7, 13]. Roth et al. grouped TAFII250 and TFIIIC into 
one family called Basal Transcription Factors [7]. Although 
these acetyltransferases are termed HATs, implying that they 
acetylate histones, previous studies have shown that they have 
the ability to acetylate other proteins as well. Thus the term 
Factor Acetyltransferase (FAT) has been created. P/CAF, 
p300/CBP, and TAFII250 are among the acetyltransferases 
that have demonstrated the ability to acetylate proteins other 
than histones [13]. 

The first histone deacetylase was discovered in 1996 by 
Taunton et al. [16]. There are now 18 known deacetylases in 
humans. They can be grouped into two families, histone 
deacetylases (HDACs) and the Sir2-like deacetylases. The 
HDACs can be split into two classes [17]. The first class of 
HDACs is grouped together due to their high homology with 
RPD3, a yeast histone deacetylase. Members of this class are 
HDAC1, HDAC2, HDAC3, HDAC8, and HDAC11 [18-20]. 
The second class of HDACs is categorized together due to 
their strong homology with hda1, another yeast histone deace-
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tylase. There are five members of the hda1-like class which 
includes HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and 
HDAC10 [18-20]. The Sir2-like family is grouped together 
because of their shared homology with Sir2, a transcriptional 
silencer in yeast. The Sir2-like family contains seven members 
in humans: SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and 
SIRT7 [17]. 

The degree of lysine acetylation of diverse proteins is 
largely unknown [21], as may be implied from the sheer num-
ber of acetyltransferases and deacetylases. However, there are 
currently fewer than 300 proteins found to be lysine acetylated 
and several hundreds of known lysine sites within these pro-
teins [9, 13, 22]. To more fully understand the range of regula-
tory functions of lysine acetylation in biological pathways, 
information is needed about the diverse protein types and lo-
cations of lysine residues that are acetylated.  

Various experimental techniques have been employed in 
the past to study acetylation within proteins. However, these 
techniques can be both expensive and time-consuming. Our 
aim is to present the research community with an in silico
method to quickly and inexpensively elucidate some knowl-
edge about lysine acetylation within proteins. These predic-
tions can then be used for discerning knowledge about bio-
logical pathways, protein-protein or protein-nucleic acid inter-
actions involving lysine acetylation.  

To our knowledge, two published predictors of lysine ace-
tylation sites have been constructed prior to our work. The 
AutoMotif Server, created by Plewczynski et al., contains 
within it an acetylation prediction [23]. These predictions rely 
on the creation of regular expressions based on experimentally 
verified acetylation sites within proteins from SWISS-PROT. 
Recently, Li et al. published PAIL, an internal lysine acetyla-
tion predictor utilizing a Bayesian discriminant method [24]. 
Their predictor was created using a dataset of 89 proteins 
which included 246 acetylation sites. Predictions were based 
on the product of the probabilities of the residues surrounding 
lysine residues.  

B. Intrinsically Disorder Proteins and their Prediction 
Intrinsically disordered proteins have recently gained signifi-
cant attention of the research community due to their existence 
as conformational ensembles and ability to carry out function 
in ways different from well-established lock-and-key and in-
duced-fit theories [25-27]. Several research groups have con-
structed predictors of disordered regions with accuracy levels 
varying between 70% and 80%, measured using a balanced-
sample accuracy. Our group has constructed several of these 
models [28-32] with increasing success over the years. These 
predictors have shown to be of practical interest not only for 
the direct identification of disordered proteins or reducing the 
costs of structural genomics studies, but also as inputs to other 
problems where the amount of available data has been limited. 
Among many other (for review see [33]), two such studies 
were related to prediction of protein modification sites, where 
predictions of disordered regions directly helped increased 
accuracy of phosphorylation [34] and methylation sites [35]. 
Our work in this study features the VSL2 predictor [32] as 
being especially important for the prediction of protein acety-
lation sites. 

C. Outline of the Study 
The goal of our approach was to enlarge databases of docu-
mented acetylation sites using semi-automated approaches, 
then study their sequence and functional properties. Finally, 
we construct a predictor that will be useful in future studies of 
protein acetylation as well as protein function in general. In 
Section II, we present our methodology for extracting lysine 
acetylation sites from scientific literature and then elaborate 
on the approach for data analysis and prediction. Section III 
provides experimental details and results of our study. Section 
IV summarizes this paper. 

II. MATERIALS AND METHODS 

A. Mining Scientific Literature 
We developed an algorithm for identifying protein acetylation 
sites from the scientific literature. The algorithm searches full 
papers and uses simple and intuitive techniques based on regu-
lar expressions. The task of our algorithm is to identify a set of 
scientific papers that are most likely to describe experimen-
tally determined acetylation sites. We require that each article 
be prioritized so as to maximize the number of newly ex-
tracted acetylation sites. These papers are subsequently read in 
order to provide us with confident locations of acetylation 
sites. Thus, all newly identified acetylation sites are verified 
manually and associated with literature that represents trace-
able evidence of experimental support. 

Given an article s that can be represented as a string of 
lowercase symbols, we first locate all words a containing the 
substring “acetylat”, A = {a1, a2, …, a|A |}, and subsequently all 
strings r that can be described by a regular expression of the 
form  

(k  lys  lysine) (space)* (digit)+ (space)*                      (1) 

where digit  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Symbol * represents 
the Kleene star and x+ = x* , where  is an empty string and 
x is an arbitrary non-empty string. We denote a set of strings 
described by the regular expression from (1) as R = {r1, r2, …, 
r|R |}.

Given sets A and R, the priority score S for article s can be 
calculated using the following expression  

||
1 ),(R

i i ArscoreS ,

where  

|))()((|),( kii apositionrpositionfArscore

and

|)()(|minarg ...1 jimj apositionrpositionk .

To convert a set of distances between ri and aj into a score that 
is inversely proportional to the distance between the starting 
positions of strings, position(ri) and position(ak), we are using 
the following functional form 

f(x) = c e d x,                                                                      (2) 
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where x is the distance in characters between ri and aj, while c
and d are positive constants. In other words, for each word r
R, word a A closest to r is identified and their distance is 
calculated. The overall score S for article s is calculated as 
cumulatively over all regular expressions in R. Constants c
and d are determined empirically so as to provide easily inter-
pretable scores.  

The above-mentioned procedure represents the basis of our 
algorithm, however it can be susceptible to large repetitions of 
acetylation sites within papers or sites that are simply more 
frequently studied and thus repetitively mentioned by the au-
thors. This is frequently the case with histones. Therefore, in a 
practical setting, this procedure can be modified to exclude 
certain other sites or proteins (Section III). 

B. Datasets 
Proteins used for analysis of acetylation sites and predictor 
construction were collected from three sources: (i) SWISS-
PROT, (ii) Human Protein Reference Database (HPRD), and 
(iii) scientific literature. SWISS-PROT is one of the best anno-
tated databases storing protein sequence, taxonomic and func-
tional annotation [36]. Acetylated residues were extracted by 
examining the MOD_RES fields for each protein. All records 
containing N6-acetyllysine were subsequently collected, how-
ever, sites containing annotation “by similarity,” “probable” 
and “potential” were excluded. HPRD provides a large variety 
of information on human proteins, including the post-
translational modification sites, protein-protein interactions 
and protein function [37]. Finally, articles found using our text 
mining approaches comprised the third source of acetylatable 
lysines. In determining whether a particular site can be acety-
lated we followed author’s statements and have not interpreted 
their data or assigned confidence of annotation. 

A significant problem in any approach predicting protein 
functional annotation is confident determination of negative 
examples, i.e. non-acetylated sites. In the case of acetylation, 
many sites were shown to be acetylated by various experimen-
tal techniques, however given isolated in vitro experiments it 
is often unclear whether the remaining sites in the same pro-
tein can undergo acetylation. Therefore, negative sites are ex-
pected to contain a significantly larger fraction of incorrect 
class labels, even in the mass spectrometry experiments where 
cellular conditions, proteomics platform or identification 
software may play an important role. In total, we collected a 
set of 293 proteins with 683 positive sites and 7,714 negative 
sites.

C. Redundancy Removal 
To prevent learning and accuracy estimation on sites with very 
similar neighborhoods, positive and negative sites were fil-
tered. Here, a “site” is considered to be a sequence fragment 
consisting of 25 residues around the central Lys. Negative 
fragments were first sifted against the positive fragments, i.e. 
each negative fragment whose sequence neighborhood was 
more than 40% similar to any of the positive fragments was 
removed from the set. There are two reasons for this step: (i) 
identical or very similar proteins could be used in different 
experiments, potentially involving different acetyltransferases, 
and thus resulting in different sites being acetylated; and (ii) 
two proteins having high sequence similarity are expected to 

have similar functions, thus unlabeled fragments are removed 
form the dataset since they could be considered positives “by 
similarity”. In the second filtering step, no two sites in any of 
the sets were allowed to have sequence identity greater than 
40%. This step enables us to remove clusters of data points 
with high density as potential artifacts arising from certain 
proteins being intensively studied by the experimental com-
munity. With the same rationale as above, if two sites were 
characterized by similar amino acid neighborhood, they can be 
considered positive/negative based on similarity. Finally, re-
dundancy removal prevents overestimation of the prediction 
accuracy.

D. Data Representation 
Each lysine in our set of proteins is represented as a labeled 
data point in vector space. Features are calculated using a set 
of concentric windows flanking the Lys residues and can be 
grouped into three categories: (i) amino acid content and phys-
icochemical properties, (ii) predicted protein properties, and 
(iii) evolutionary conservation. More formally, given a protein 
sequence P = r1r2...rn , where ri represents a residue at position 
i, and a window of length w, a collection of features is calcu-
lated for the following subsequence r[i h, i+h], where h = 
floor(w/2), is the half window.  

Features based on amino acid content and physico-
chemical properties. The first set of amino acid features was 
derived for windows w  {3, 7, 11, 21} by calculating 20 
amino acid compositions. In addition, we calculated sequence 
complexity [38], -entropy [39], charge and aromatic content 
for the fragments. Positive charge within the window was cal-
culated by finding the number of Lys and Arg residues, while 
negative charge was calculated by finding the number of Asp 
and Glu residues. By looking at the count of Phe, Tyr and Trp 
residues we calculated the aromatic content within the win-
dow. 

Features based on predicted properties. We utilized sev-
eral predictors that output residue-based scores and created 
features over windows w  {1, 7, 11, 21}. For each protein we 
predicted intrinsic disorder using VL2 [29], VL3 [30], and 
VSL2 [32] models. In addition, we used a flexibility predictor 
by Vihinen et al. [40], predictions of the B-factor [41], hydro-
phobic moment values [42], a predictor of phosphorylation 
[34], and the charge-hydropathy ratio [43]. 

Feature based on evolutionary conservation. We estimated 
the evolutionary conservation of residues over windows w
{1, 3, 11, 21} by first creating a position specific scoring ma-
trix (PSSM) for each sequence and then averaging PSSM val-
ues for each residue over w values. PSSMs were calculated 
using PSI-BLAST [44] against GenBank. Each PSSM-based 
feature provides a measure of conservation of a given residue 
within a window. A window w = 1 provides a conservation 
score at a given Lys residue. 

E. Predictor Construction and Evaluation 
Once each sequence fragment was mapped to a vector space, a 
predictor was constructed in the following two steps: (i) data 
preprocessing and (ii) model training. In the data preprocess-
ing step, we performed a set of three transformations on our 
data. Features were first removed using a t-test based feature 
filtering. Those whose p-values were above threshold tfs were 
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removed from the further steps, where tfs  {1, 0.1, 0.01, 
0.001}. Z-score normalization was then performed on the re-
maining features, followed by the principal component analy-
sis. Support vector machines (SVMs) were trained on the pre-
processed data using SVMlight software [45]. We explored both 
polynomial and Gaussian kernels using several values for the 
parameters (see Section III). SVMlight provides a solution to 
the dual problem in which one seeks to create a hyperplane 
that maximizes the margin of separation between positive and 
negative data points. This problem is formalized as a maximi-
zation of the following equation 

)
2
1)(

1 1 1
jijij

N

i

N

i

N

j
ii KllQ x,(x ,

subject to constraints 0
1

N

i iil and 0i  for i = 1, 2, … 
N, where xi is i-th of the N training data points, li  { 1, 1} is 
the class label, and K is the kernel function. Using a trained 
model, test data point x is classified by comparing the score 

N

i jiii Kls
1

)x(x,

to zero. A value of the positive (negative) score provides the 
likelihood that the data point belongs to the positive (negative) 
set.

Performance estimation was carried out using a per-protein 
leave-one-out strategy. In each step, one protein was selected 
into a test set, while all the remaining proteins constituted a 
training set. This approach allows us to model a realistic situa-
tion in which a new protein is provided to the predictor for 
estimation of potential acetylation sites. 

Given a vector of scores s = [s1, s2 … sn] for each test pro-
tein, where si  ( , + ), and vector l representing a set of 
true class labels l = [l1, l2 … ln], where l  { 1, 1}, we calcu-
lated the sensitivity (sn), specificity (sp), precision (pr), accu-
racy (acc) and area under the receiver operating characteristic 
curve (AUC) as measures of predictor performance. Setting a 
threshold t = 0, sensitivity for each test protein was calculated 
as a ratio between |{i | si t li = 1}| and |{i | li = 1}|. Con-
versely, specificity is calculated as a ratio between |{i | si < t
li = 1}| and |{i | li = 1}|, while precision is obtained as |{i | si

t li = 1}| / |{i | si t }|. Accuracy is calculated as the aver-
age of sensitivity and specificity, since the dataset was heavily 
imbalanced. Finally, AUC was calculated as an area under the 
curve representing sn as a function of 1 – sp. This curve is 
generated when the threshold t is gradually shifted between 
the minimal and maximal prediction scores. Final accuracy is 
measured as a mean over all individual accuracies per protein, 
while the area under the curve was calculated over all test ex-
amples together, after the final leave-one-out step. 

F. Reliability Prediction 
The rationale for building a reliability predictor is to ensure 
valid statistical inference since models of protein acetylation 
may be trained and evaluated on a biased sample of protein 
data. To identify differences in data distributions, we con-
structed a contrast classifier [46] to distinguish between la-
beled examples, both positive and negative, and examples 
randomly selected from SWISS-PROT. Using the same set of 
predictor-building steps, with the exception of evolutionary 
information, each data point can be assigned a likelihood score 

of the class membership. There, a high score towards the class 
of unlabeled data indicates smaller reliability of statistical 
inference. A desired outcome for a reliability model is random 
prediction accuracy that would indicate that the labeled exam-
ples are good representatives of the unlabeled data.  

III. RESULTS 

A. Literature Mining
In order to build an adequate dataset for lysine acetylation 
sites, it was necessary to perform text mining on the current 
literature available and manually verify lysine acetylation 
sites. To date, there are 19,520 articles in PubMed that are 
returned when a search is performed for “acetylat*”. A similar 
search was performed on more than 30 journal sites and the 
resulting articles were downloaded. Nature and Science Direct 
provided the largest number of articles contributing 2,147 arti-
cles and 1,519 articles, respectively at the time of the search. 
In order to provide a level of automation and provide insight 
as to which articles would be more fruitful, they were ranked 
using the scoring function presented in Section II.A. The con-
stants c and d from expression (2) were assigned values of 10 
and 0.005, respectively, so as to provide scores for articles that 
held greater meaning in distinguishing site-rich articles from 
articles that did not provide as many sites. Ranking of the arti-
cles was performed several times using various combinations 
of values for c and d until functioning values were determined.  

The highest ranking article was from the Journal of Bio-
logical Chemistry, had a score of 151.9 and contained 10 
unique acetylation sites. Later, another step to aid in site dis-
covery efficiency was to try to exclude articles discussing his-
tones. If the word “histone” or “H3” or “H4” were seen in 
combination greater than 120 times, the article was excluded 
from the ranking. The value of 120 was chosen to try to mini-
mize the number of articles excluded that would have pro-
vided non-histone acetylation sites. With this ranking, the 
highest scoring article received a score of 116.4 and contained 
8 unique acetylation sites. This article was obtained from the 
Biochemistry Journal. Looking at the top 25, the Journal of 
Biological Chemistry provided the most articles with 5, fol-
lowed by Nature, Biochemistry, and Molecular Cell which 
each provided 4 articles. Cell provided 3 articles, Nucleic Ac-
ids Research provided 2 articles, the Journal of Proteome Re-
search provided 1 article, International Journal of Mass Spec-
trometry provided 1 article, and Gene provided 1 article.  

Ranking provided very useful information for prioritizing 
the articles; however, it was not perfect. In general, articles 
with scores greater than 30 showed potential for providing at 
least one site, but as scores approached 30, articles without 
acetylation sites began to appear. A common reason was that 
the regular expression from equation (1) was not selective 
enough and included other information, e.g. protein names. 
Also, due to how the ranking was performed, we were able to 
count sites only once if the sites were discussed in a consistent 
manner throughout the article. However, if the author referred 
to the sites in more than one way, the sites were potentially 
counted more than once and could have led to the article hav-
ing a falsely high score. Articles also potentially fell in the 
ranking if the acetylation sites were not listed in the text of the 
article and were only provided in figure or as supplementary 
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data. An example of such an occurrence was the 144th ranked 
article in the rankings that included articles referring to his-
tones. This article provided 11 unique acetylation sites; how-
ever, its score was only 41.7. The article providing the largest 
amount of lysine acetylation sites was “Substrate and func-
tional diversity of lysine acetylation revealed by a proteomics 
survey” by Kim et al. [22] and was obtained through Science 
Direct. This article provided 386 unique sites in 197 different 
proteins. In our ranking system this article received a score of 
72.0 and was ranked 35th if articles containing histones were 
considered and 8th if histone containing articles were ex-
cluded. The vast majority of these sites were provided as sup-
plementary data on the article website. Thus, this article re-
ceived a falsely lower score in our ranking system. 

Overall, our literature search with manual curation de-
tected 541 acetylation sites with traceable evidence. In Figure 
1 we compare this number of sites to the ones currently avail-
able in SWISS-PROT and HPRD as of August 2006. Since 
SWISS-PROT and HPRD provide additional curation in iden-
tifying acetylation sites, it may not be very surprising that our 
dataset was the largest. However, it is surprising that the num-
ber of overlapping sites between SWISS-PROT, HPRD and 
our literature search are 94% orthogonal. All the sites identi-
fied in this study are freely available upon request. 

Figure 1. A comparison of the number of acetylation sites contained in HPRD, 
SWISS-PROT and those detected in our study. 

B. Functional Analysis of Acetylated Proteins
To study functional annotation of acetylated proteins we 
searched the Gene Ontology (GO) database [47]. We used a 
non-redundant set of proteins in which sequence identity was 
<80% over the entire length. From the set of 290 acetylated 
proteins, 77 were found to be associated with a variety of GO 
terms. In the molecular function category, 112 functional 
terms were identified. The most prominent ones were tran-
scription-related activities (“transcription regulator activity”, 
“transcription factor activity”, “transcription factor binding”, 
“transcription cofactor activity”, “transcription coactivator 
activity”, “transcriptional activator activity”) and catalytic 
activity (“transferase activity”, “hydrolase activity” oxidore-
ductase activity”, “acetyltransferase activity”, “acyltransferase 
activity”, “histone acetyltransferase activity”). However, a 
variety of other terms has been detected, including “unfolded 
protein binding”, “DNA binding”, “damaged DNA binding” 

etc. In the biological process category, nearly 300 different 
terms were observed, among which the ones involving the 
largest number of proteins were: “metabolism”, “response to 
stimulus”, “regulation of biological process”, “regulation of 
physiological process”, “transcription”, “regulation of metabo-
lism”, “regulation of transcription”, etc. Finally, a set of 53 
terms from the category cellular component has been found. 
Most proteins were associated with terms “intracellular”, “or-
ganelle”, “membrane-bound organelle”, “cytoplasm”, “mito-
chondrion”, “nucleus” and “membrane”. 

This analysis possibly implicates protein acetylation in a 
variety of regulatory functions, but also indicates that the data-
set used in this study is diverse enough to provide valid statis-
tical inference.

C. Statistical Analysis of Flanking Regions 
Position-specific amino acid preferences were analyzed using 
Two Sample Logo software [48], located at http://www.two-
samplelogo.org. Two Sample Logo calculates statistically 
significant differences between two sets of multiple sequence 
alignments. Residues whose p-value was below 0.05 are plot-
ted in Figure 2, with the size of each residue proportional to 
the difference between the samples. 

Figure 2. Two Sample Logo of the lysine acetylation sites. The upper panel 
represents residues enriched in the set of acetylated lysines, the lower panel 
represents residues depleted in the set of acetylated lysines, while the middle 
panel displays consensus residues between acetylated lysine sites and all 
remaining sites from the same set of proteins. 

The upper panel of Figure 2 displays residues that are enriched 
in the positive sample, the lower panel displays those depleted 
in the positive sample, while the middle part displays the con-
sensus residues. The most striking difference between positive 
and negative residues is the presence of positively charged 
residues around the acetylated lysine. Fifteen out of 24 posi-
tions are enriched in lysine, while 6 are enriched in arginine. 
The most interesting signature of acetylated lysines is the 
presence of histidine and tyrosine at position +1, and this sig-
nature is discussed by Kim et al. [22].  

Previous studies have already identified clustering of lysi-
nes around acetylation sites. In particular, four sequence mo-
tifs have been reported to date: (i) KXKK [49-51], (ii) RXKK 
[50], (iii) GKXXP [7, 9] and (iii) H4 motif [52]. We applied 
motif search on the set of proteins in our dataset and identified 
68 KXKK, 33 RXKK, 31 GKXXP and 4 H4 motifs. However, 
only 10 KXKK, 4 RXKK, 5 GKXXP and 3 H4 motifs were 
actually known acetylation sites, giving potentially high false 
positive rates. 

Statistical analysis of non-position specific features is pre-
sented in Table I. For each feature described in Section II, we 
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calculated the p-value of the null hypothesis that positive and 
negative examples were generated by the same distribution. 
For this purpose we assumed a normal distribution over all 
data points and applied the t-test. The top 10 positively and 
negatively correlated features, together with their p-values, are 
listed in Table I. We note here that each property is displayed 
only once, for the best performing window size (in parenthe-
ses).

TABLE I
TOP 10 FEATURES DESCRIBING LYSINE ACETYLATION. NUMBERS IN 
PARENTHESES INDICATE WINDOW SIZES. SEE TEXT FOR DETAILED 

EXPLANATIONS.

Positive correlation Negative correlation 
Feature p-value Feature p-value 

VSL2B (21) 9.9 10 73 PSSM, L (21) 1.4 10 17

net charge (21) 2.9 10 19 -entropy (21) 2.9 10 13

residue G (21) 6.3 10 19 PSSM, I (21) 1.4 10 11

B-factor (21) 7.7 10 19 entropy (21) 2.0 10 10

residue K (21) 1.6 10 18 PSSM, M (21) 4.9 10 10

residue H (3) 1.0 10 17 PSSM, F (21) 1.8 10 10

VL2-C (21) 8.2 10 14 residue L (21) 2.6 10 6

DisPhos (21) 2.7 10 14 PSSM, V (21) 3.1 10 6

Vihinen (21) 4.8 10 14 PSSM, Y (21) 4.2 10 6

VL3 (21) 4.7 10 13 residue I (21) 1.4 10 5

Apart from the enrichment of Gly, Lys and His around the 
acetylated sites, the most striking positive correlation was 
achieved by the VSL2B disorder predictor [32]. VSL2B is the 
fast version of the VSL1 and VSL2 predictors which achieved 
excellent performance during CASP6 experiment [31]. This 
feature is orders of magnitude more informative than any 
other individual feature and greatly increased prediction accu-
racy. The remaining positively correlated features were all 
related to high content of intrinsic disorder. Interestingly, the 
conservation of acetylated lysines was selected as the 11th best 
feature with the p-value of 1.7 10–12 thus indicating functional 
similarity across the eukaryotic kingdom. Negatively corre-
lated features are related to the presence of hydrophobic resi-
dues (Leu, Ile) and their evolutionary conservation. Thus, less 
conserved Leu, Ile, Met, Phe, Val, and Tyr in the flanking 
regions are a signature of acetylated lysines. 

D. Acetylation and Intrinsic Disorder 
Based on several examples from the literature, the relationship 
between several protein post-translational modifications and 
intrinsically disordered regions was suggested previously [27, 
53]. Here, we investigate this relationship thoroughly for all 
acetylation sites and compare them with other lysine sites as-
sumed not to be acetylated. Since the structural form of most 
of the acetylated proteins is unknown, we used currently most 
accurate predictors of intrinsically disordered regions [31, 32]. 
The average VSL2B score for acetylated sites was 0.58 0.01, 
while the score for the remaining sites was 0.34 0.01. The 
sites were also classified into near-terminal, if they were 12 
residues or less away from the N- or C-terminus, or internal. 
The corresponding disorder scores for the near-terminal posi-
tive and negative sites were 0.78 0.04 and 0.53 0.01, respec-
tively. Similarly, the scores for the internal positive and nega-
tive sites were 0.56 0.01 and 0.33 0.01, respectively. 

E. Predictor Evaluation 
As mentioned in Section II, the acetylation predictor was 
evaluated using per-protein leave-one-out strategy. However, 
within each protein, only non-redundant sites to the training 
set were considered. Several learning parameters were consid-
ered for training SVMs: for the polynomial kernel we varied 
degree of the polynomial between 1 and 3, while for the Gaus-
sian kernel,  was assigned values from {10 2, 10 4, 10 6}.

The results shown in Tables II-II indicate that lysine acety-
lation is predictable with relatively high accuracy, matching or 
exceeding protein phosphorylation or methylation. Non-linear 
models with Gaussian kernel outperformed polynomial ker-
nels. Figure 3 shows ROC curves for the best performing 
models from each class. We believe that these findings are 
extendable to other protein sequences since the accuracy of 
the reliability model did not exceed 58%. This indicates that 
the unlabeled lysines were generally not distinguishable from 
those present in our dataset. 

TABLE II
CLASSIFICATION ACCURACY [%] FOR THE PREDICTION OF LYSINE 

ACETYLATION SITES USING SVM WITH POLYNOMIAL KERNEL; sn – 
SENSITIVITY, pr – PRECISION, sp – SPECIFICITY, acc = (sn + sp) / 2 – 

ACCURACY, AUC – AREA UNDER THE ROC CURVE.

Acetylation, polynomial kernel degree
sn sp pr acc AUC

p = 1 88.0 71.1 49.8 79.5 84.0 
p = 2 67.2 85.4 55.5 76.3 86.0 
p = 3 88.2 70.8 49.4 79.5 83.8 

TABLE III 
CLASSIFICATION ACCURACY [%] FOR THE PREDICTION OF LYSINE 

ACETYLATION SITES USING SVM WITH GAUSSIAN KERNEL; sn – SENSITIVITY,
sp – SPECIFICITY, pr – PRECISION, acc = (sn + sp) / 2 – ACCURACY, AUC – 

AREA UNDER THE ROC CURVE.

Acetylation, Gaussian kernel sigma
sn sp pr acc AUC

 = 10 2 75.4 85.0 57.8 80.2 89.9 
 = 10 4 90.8 74.0 52.1 82.4 86.8 
 = 10 6 88.2 70.8 49.4 79.5 83.8 

We compared classification accuracy of our system with 
AutoMotif server and PAIL. For these, we used only the new-
est sites [22] on which these servers were likely not trained. 
Out of 382 positive and 5,395 negative sites, AutoMotif server 
predicts 18 sites as positives and none of the negative sites as 
positives. Similarly, PAIL predicted 204 positives correctly, 
however it also predicted 2,633 negatives as positive sites. 
These results were obtained using high stringency threshold, 
while similar ones can be obtained using medium stringency. 

IV. DISCUSSION 

While lysine acetylation is emerging as an important and 
widespread post-translational modification, its full functional 
role is still incompletely understood. The goal of our study 
was to build methodology and collect a large number of ex-
perimentally determined acetylation sites, analyze their prop-
erties systematically and construct a prediction model that will 
be useful for applications in bioinformatics. 

Our text mining algorithm is simple and based on regular 
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Figure 3. Receiver operating characteristic curves for (i) support vector
machine with Gaussian kernel and  = 0.01, - solid curve; (ii) support vector
machine with polynomial kernel and p = 2, - dashed curve; (iii) random model
– dotted line. The area under the curve for the best model is AUC = 86.8%. 

expressions for identifying candidate acetylation sites. Each 
candidate site was subsequently verified manually, and the 
author statements from the corresponding publications are 
stored. The acetylation sites found using this methodology 
were used for the analysis of sequence, physicochemical, 
structural and evolutionary properties of acetylation sites. This 
analysis was conducted by comparing them to the “back-
ground” sites, i.e. lysines from the same set of proteins that 
were not identified to be acetylated. Prominent properties of 
acetylation neighborhoods were high positive charge, primar-
ily the content of Lys and Arg, the presence of Gly, and also 
presence of His or Tyr at position +1. Interestingly, the pres-
ence of Gly has also been identified as a signature of methy-
lated residues.  

While the findings given above are consistent with those 
from the literature, our analysis adds new information that 
lysine acetylation is highly correlated with protein intrinsic 
disorder. This analysis has been made by means of predictors. 
Interestingly, out of several disorder prediction models devel-
oped over the years by the Dunker-Obradovic group and col-
laborators, the role of VSL2B was far more important than 
any other model. VSL2 is the newest and most accurate pre-
dictor and its usefulness in protein acetylation provides sup-
port that improving the accuracy of disorder prediction can 
have positive consequences on prediction of residue-based 
function. Without the use of the VSL2 predictions as a feature, 
the prediction accuracy drops by about 10 percentage points. 

The prediction accuracy achieved by our final models has 
been achieved after limited experimentation with training pa-
rameters and could possibly be improved, even for the present 
dataset. However, at this stage, we were more concerned with 
developing robust models that would have good generalization 
properties in a real life setting. 
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