
Abstract –  Brain computer Interface (BCI) has gained a lot 
of attention recently, as a means to detect individuals’ intents 
using brain signals such as electroencephalographic (EEG) for 
control of machines. In order to achieve the possible use of BCI 
in stroke rehabilitation, computational intelligent algorithms 
are important for reliable separation of shoulder versus elbow 
movement intentions. Efforts have been made on  developing 
data processing and classification algorithm for such task. 
Differently, this paper investigates the optimal use of electrodes 
and signal channels, which is formulated as a data-driven 
feature selection problem. 163 EEG electrodes are used to 
collect scalp recordings to predict shoulder abduction and elbow 
flexion intentions in healthy and stroke subjects. We combine 
the support vector channel selection with a time-frequency 
synthesized classification algorithm and examine the 
performances of using different subsets of channel inputs.  
Preliminary results show that 1) a reduced number of electrodes 
can be used to achieve the same or better performance than 
using the full set of signal channels; 2) besides the fact that the 
accuracy on able-bodied subjects is expectedly higher than the 
stroke subject, the stroke subject tends to need more electrodes 
to achieve the best performance; 3) visualization of spatial 
distribution of channel rankings shows reasonable connection 
with functional motor cortex areas.

I.  INTRODUCTION

As an approach to detect an individual’s intents and to 
convert brain signals such as electroencephalographic (EEG) 
into usable control commands,  Brain Computer Interface 
(BCI) has been gaining much attention [1][2].   Recently,  
there has been  study exploring the possibility of applying 
BCI for clinical use to help patients with  moderate to severe 
motor impairment due to stroke [3][4].    In order to 
potentially use EEG signals to control a neural prosthesis or 
other devices for rehabilitation of  arm movement 
discoordination after stroke, it is critical to provide reliable 
prediction of subjects’ motor intentions  of shoulder or elbow 
movements.  Effort has been made to explore suitable signal 
processing and classification algorithms [3][4].   Differently, 
in this paper, we examine the optimal use of EEG electrodes 
for the task  of classifying mental states for shoulder or 
elbow movements. In a typical EEG-based BCI study,  a 
number of electrodes are arranged at specific locations of a 

cap to get scalp EEG recordings. In early studies of BCI, a 
relatively small number of electrodes are used in the 
experiments [5][6]. Advancement of multi-channel EEG 
hardware systems has made it possible to have larger amount 
of electrodes in recent BCI studies (e.g., 64 electrodes are 
used in [7] and, in our experiment,  scalp recordings were 
made using a 163-channel EEG system with active 
electrodes, as shown in Figure 1).  Despite that neural-
scientists have been using such multi-channel electrode 
ensemble,  most decisions on number of electrodes are based 
on cost or other ad hoc factors and the determination of  the 
number of channels  using computational models has not 
been systematically explored, especially in the context  
involving stroke subjects.  

Figure 1   163 electrodes are used for EEG signal recording. 

In this paper, we study the channel selection in order to 
find out input EEG signal channels that are most relevant to 
the classification task of shoulder abduction and elbow 
flexion intentions for healthy and stroke patients.   

We formulate the problem as a feature selection problem 
in computational intelligence. The EEG signal channels are  
thus analogous to features (also called variables in Statistics 
learning). The input EEG signal is represented by a multi-
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dimensional pattern vector  p = (p1, … pn)
T, with n as the 

number of channels used in the   experiment.  

Channel selection brings several important advantages to 
BCI study including: 

1) Finding out an optimal  number of channels. It is known 
in the theory and practice of feature selection that multiple 
features in an  input vector typically represent redundancy 
[8][9].  Feature selection can obtain a subset of features of 
reduced redundancy yet still retain enough distinguishing 
information. So in BCI, we can use a subset of channels that 
are as effective as the full set. In other words, instead of 
using an unnecessary large number of electrodes, the number 
of electrodes used in EEG signal collection can be optimized 
and subsequently the investment on experimental costs can 
be maximized.  

2) Achieving the optimal prediction accuracy.  Extending 
from the above advantage,  while redundancy can be reduced 
by feature selection, we can also select the most relevant 
features to the prediction task and  potentially increase the 
accuracy compared with using the full set of channels. Such 
effort can help achieve the best accuracy of classifying 
mental intentions. It is important for improving the feasibility 
of applying BCI to clinical use such as stroke rehabilitation 
since the state-of-the-art EEG-based BCI algorithms for such 
tasks are yet to be improved. 

3) Investigating important EEG signal channels for 
distinguishing shoulder/elbow movement intentions and their 
spatial distribution.  Physical locations of the important 
electrodes on scalp can provide feedback on policy of 
placement of the electrodes. The results on stroke subjects 
may also contain physiological insights to help neuroscientist 
and physical therapist to gain more understanding of 
mechanisms of motor control on healthy and stroke subjects.  

In our study, we apply channel ranking and selection to the 
BCI task by combining the support vector channel selection 
[10][13] with a weighted time-frequency synthesis 
classification algorithm [11][4][3]. The approach is data 
driven with no requirement on prior physiological 
knowledge. We test the algorithm on two healthy and one 
stroke subjects.  It is the first time that channel selection is 
investigated for the BCI task of  EEG-based classification of 
shoulder and elbow movement intentions. Same as  in [10], 
we  observed that  channel selection can reduce the number 
of channels needed without an increase of error.   In addition, 
we also found that  better accuracy may be achieved with an 
optimal subset. More importantly, preliminary results on the 
stroke subject indicate that healthy and stroke subjects may 
require different number of electrodes  for optimal 
performance. The results can potentially have positive impact 
for developing prostheses for  stroke rehabilitation. 

II. DATA COLLECTION AND SIGNAL PREPROCESSING 

We use scalp EEG data collected from two able-bodied 
(N1, N2) and one stroke subject (S1) at Department of 
Physical Therapy, Northwestern University, Chicago. The 
stroke subject has a Fugl-Meyer score of 26/66. Each subject 
learned to self-initiate the generation of isometric shoulder 
abduction (SABD) or elbow flexion (EF) at a level of 25% of 
his/her maximum voluntary torques (MVTs). EEG and 
torques were collected during the generation of isometric 
elbow/shoulder torque.  

Subjects were cast at the wrist and secured to a six degree 
of freedom (DOF) load cell with shoulder at 70° abduction 
angle. The tip of the hand was aligned with the median 
sagittal plane of the subject and located at a distance from the 
body which yields an elbow angle of 90°, with 0° 
representing full extension of the elbow, and the shoulder at 
approximately a 40° flexion angle. In order to minimize the 
effect of trunk muscle activation, subjects were seated in a 
Biodex chair with the trunk secured and the shoulders 
strapped to the back of the chair. A computer monitor was 
placed in front of the subject to provide visual feedback of 
the torque generation during the training protocol. 

Scalp recordings were made using a 163-channel EEG 
system with active electrodes. The electrodes are mounted on 
a stretchable fabric based on a 10/20 system positioned as 
illustrated by Figure 1. The cap was fitted on the head of the 
subject lining the Cz electrode with the intersection of the 
planes defined by the nasion, inion, and pre-auricular points. 
EEG data were collected at 1000 Hz sampling rate. Anti-
aliasing filtering (100 Hz) was provided before data 
acquisition. The system was equipped active electrodes that 
provide a first amplification stage, allowing for the recording 
of EEG signals with a higher SNR and quicker preparation. 

Signals were segmented from -1800ms pre- to -100ms pre- 
torque onset, and then were baseline corrected and down 
sampled to 256 Hz. Finite difference surface Laplacian (SL) 
[14] was applied to signal from each of the channels before 
exporting the data for further analysis. peripheral electrodes 
were removed and preprocessed EEG signals from the 
remaining inner 131 electrodes were exported for BCI 
classification.   

III.  CLASSIFICATION METHOD: SUPPORT VECTOR ENHANCED 
TFSP

For classification of  two mental intentions corresponding 
to shoulder abduction and elbow flexion, we use an improved 
version of the Time-frequency Synthesized Spatial Patterns 
algorithm (TFSP).  
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TFSP is a BCI algorithm developed in [4] and [11] that  
analyzes event-related desynchronization (ERD) in 
spontaneous EEG rhythmic activity by decomposing the 
signal into a time and frequency feature space. In our 
experiment, a series of 13 frequency bands are obtained, and 
time intervals of 55ms each are extracted in temporal 
domain. These time-frequency segments are weighed based 
on their corresponding contribution and the weights are 
synthesized during final classification. While the original 
TFSP algorithm has proved itself an effective feature 
extraction approach for EEG-based BCI, its prediction power 
is constrained since a simple correlation comparison with 
minimal training was used for the classification on the grids.   
Instead, we use a learning-based classifier to derive weight of 
time-frequency grid and obtain labels for a new EEG trial on 
each time-frequency segment.  We called our improved 
method the Classifier-enhanced TFSP. The comparison of the 
improved version and the original TFSP has found an 
enhanced accuracy by the new algorithm [3].  In this paper,  
to facilitate the combination with the channel selection 
method,  we use the support vector classifier [12] as  the 
classifier for the Classifier-enhanced TFSP on each grid for 
deriving labels and calculating weight of that time-frequency 
grid.   

Support vector classifier is a popular and powerful 
machine learning algorithm that obtains the weight vector  ws
and offset b of the separating hyperplane between two classes 
by solving the optimization problem that maximizes the 
margin, which is defined as the distance between the 
bounding planes of the two data sets and equivalent to  

2/|| sw ||2.

The objective of  support vector classifier is thus defined 
to minimize ½||ws||2. The subset of training samples that 
participate in defining the optimal hyperplane are called 
“support vectors”. 

In support vector enhanced TFSP,  for each time-
frequency grid,  its conclusion on the class label d for a 
testing trial p(t,f) is given by a support vector classifier:   
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where Pi(t,f) is the spatial pattern of ith training trial in the set 
of support vectors SV; li is the desired label of the ith training 
trial in SV. αi is the Lagrange coefficient obtained when 
using Lagrange theory to solve the above optimization 
problem. A kernel function k(pi(t,f), p(t,f)) can replace the 
inner product in Eq (1) to map samples from the raw data 
space  to a feature space for nonlinear problems. In this 
paper, linear support vector classifier is used to facilitate the 
calculation of channel selection criterion (see next Section). 

The weight of the time-frequency grid is then obtained by 
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where  r(t,f) is the recognition rate calculated on the grid,    
and Th is a threshold used to set weights to 0 for grids with 
low recognition rates.  The w(t,f) is not to be confused with 
the weight vector of support vector hyperplane ws. A final 
classification decision for an EEG trial p is obtained using 
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In our experiment, R(p)  = 1 corresponds to the movement 
intention of shoulder abduction while R(p) = -1 indicates an 
elbow flexion mental intention. 

IV. SUPPORT VECTOR CHANNEL SELECTION 

A. Support Vector Channel Selection and Ranking 

Many methods can be used to do feature selection [9]. The 
simplest approach is to assume all features are independent 
and test them individually based on a selection criterion. 
However, this approach may not be suitable due to 
correlations existing among features. Top-down or bottom-up 
feature selection approaches are more powerful since they 
can test different subsets of features without assuming 
features being independent. Meanwhile they avoid the 
expensive cost of exhaustive testing of all possible 
permutations. 

Support vector channel selection is a top-down approach 
that uses the Sequential Backward Elimination to select 
features.   The method was first proposed in the context of 
gene selection for cancer classification [13].  The concept is 
to determine the importance of a feature/channel based on the 
influence of the channel has on the margin of a trained 
support vector classifier.  The algorithm starts with the full 
set of channels.  In each round, after training, the  weight 
magnitude ||ws||  for each channel is calculated.  For linear 
case, ws is calculated as below: 
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The channel(s) with the smallest  ||ws|| has the lowest 
influence on the change of objective function and is 
considered the least important.  It is then eliminated from the 
list of channels. In next round, the signals with the remaining 
features are trained again using support vector classifier and 
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the channel(s) corresponding to the smallest ||ws|| this time is 
again eliminated. This is done iteratively until there are no 
channels remaining.  

In our experiment, the removed channels are stored in their 
order of removal in a vector for ranking. To facilitate 
visualization of  important channel groups,  ranks of  1 to 10  
are assigned to the channels with 10 as the highest rank (most 
important and last removed from channel list). Each rank is a 
group of  channels. For example, with total of 131 channels, 
each rank group has 13 channels except the group 1 which 
has 14 channels. 

B. Combining  Support Vector Channel Selection with 
TFSP   

We use Support Vector Enhanced TFSP as our BCI 
algorithm.  As explained in Section 3, support vector 
classifier is applied to every time/frequency grid.  So every 
time/frequency grid calculates the margin  and  comes up 
with the candidate channel for elimination.  During decision 
synthesis, a majority voting is conducted among 
time/frequency grids to determine which channel should be 
eliminated in current iteration.  Only those time/frequency 
segments with higher than average  w(t,f) are eligible voters.  
If there is a tie on the decision, all tied channels are removed 
from the set (and added to the rank vector).  Table 1 
describes the flow of our algorithm of combining  support 
vector channel selection with TFSP. 

 Table   1.   Pseudo code for  Support Vector Channel  Selection with 
TFSP. 
ChannelSet = [1, 2, … , #of channels] 
Rank = [ ] 
while ChannelSet is not empty 
   for  t = 1 to # of Time Segments 
    for f = 1 to # of Frequency Segments 
        apply Support Vector Classifier 
  calculate weight vector  ws of  support vector    
hyperplane for each remaining channel in ChannelSet 
  get the smallest ||ws|| and the corresponding channel 
c(t,f): the candidate channel to be eliminated. 
        calculate r(t,f) and w(t,f) for TFSP 
      end  
   end  
   majority voting  to determine the channel c to be 
eliminated 
   remove channel c from ChannelSet. 
   add c into Rank 
   obtain  R(p), the classification decision for testing trials, 
and calculate the error rate. 
end //of while 

V. EXPERIMENTS AND DISCUSSIONS 

We applied classified-enhanced TFSP and  support vector 
channel selection to 2 healthy subjects N1 and N2, as well as 
1 stroke subject S1.  Error rates are reported using 17 fold 
cross-validation. Th in Eq. (2) is set to 0.6. Linear SVM is 
used for the combined channel selection with classified-
enhanced TFSP. 

Figure 2 depicts the error rates versus number of channels 
in the selected set.  Polynomial degree-2 fitting is used to get 
the trend line of the data. Figure 3  displays the distribution 
of ranking of all channels on the scalp. The warmer color 
indicates more important channels (e.g. the color red 
represents rank 10). 
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   Figure 2.  Error Rates  vs.  Number of Channels. 

(a)  N1 
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(b) N2 

(c) S1 
Figure 3.   Rank distribution of channels on scalp. The map is a 2D view 
when looking down at the top of the head with subject’s left-ear to the 
left. The warm colors indicate higher ranks (important channels). The 
black dots are the positions of electrodes on the scalp. 

From Figure 2, we can see that the proposed classification 
algorithm is able to achieve accuracies of higher than 90% 
(10% error rate or lower) on healthy subjects N1 and N2.  
Expectedly,  stroke subject S1 has a higher error rate than 
two healthy subjects,  which may be explained by the 
possible increase of overlap between cortical activities follow 
stroke [15]. The trend of error rates versus selected channels 
shows that, initially, error rates of all three subjects decrease 
while the number of channels increases, which is a 
reasonable effect.  When the number of channels further 
increases, we observe the following: 

1. For subject N1, the fitting curve shows that error rates 
actually increase after the number of channels exceeds 
an optimal point, which is around 90 channels. 

2. For subject N2, the fitting curve becomes almost flat 
when the size of channels reaches certain number,  
which coincidently is also around 90. This indicates that 
further increasing number of channels or electrodes 
beyond this number may not be very effective for 
reducing error rates.   

3. For stroke subject S1, the fitting curve also shows an 
increase of error rate when the number of channels is 
big, yet it happens at around 110 channels, which is 
much later than N1. This suggests that in order to 
achieve optimal performance, more electrodes are 
needed for S1 than that of N1 or N2.  

In Figure 3, ranks of EEG channels are drawn on the 2D 
scalp map to show the spatial distribution of the electrodes 
and their relative significance. The distributions of important 
channels are consistent among three subjects.  Electrodes 
positioned close to motor cortex area are marked with warm 
colors, which shows connection to the physiological 
mechanism despite that the algorithm in this study is purely 
computational and data-driven.  We also hope that such study 
of channel selection can provide feedback for optimal 
positioning of electrodes on scalp. 

VI.  CONCLUSION 

This study presents preliminary results of channel 
selection on using EEG to separate shoulder abduction or 
elbow flexion intentions of healthy and stroke subjects. 
Observations confirm the need of exploring important signal 
channels, not only for the purpose of optimizing cost-
effectiveness, but also for enhancing the performance of 
intention prediction. Current results indicate that healthy and 
stroke subjects may require different number of electrodes  
for optimal performance. Future work with more subjects 
may reveal other differences on optimal electrode usage 
between healthy and stroke subjects. 

ACKNOWLEDGMENT 

The authors thank Dr. Jules Dewald at Northwestern 
University for providing the data for this research. The 
authors also thank Dr. Jun Yao and Ms. Jie Deng for their 
helpful discussions. 

REFERENCES 

[1] J. R. Wolpaw, D. J. MaFarland, T. M. Vaughan, and G. Schalk. 
“The Wadsworth Center brain-computer interface (BCI) 
research and development program.” IEEE Trans. Neural. 
Syst. Eng. 11:204-207, 2003. 

[2] A. Vallabhaneni, T. Wang T and B. He.  Brain-computer 
interface. Neural Engineering ed B He (New York: 
Kluwer/Plenum)  85-122, 2005. 

[3] J. Zhou, J. Yao, J. Deng, and J. Dewald.  “EEG-based 
Discrimination of Elbow/Shoulder Torques using Brain 
Computer Interface Algorithms: Implications for 
Rehabilitation”. Proc. 27th Annual Int. Conf. of the IEEE 
Engineering in Medicine and Biology Society 2005. pp4134 - 
4137

[4] J. Deng, J. Yao and J. Dewald, “Classification of the intent to 
generate a shoulder versus elbow torque by means of a time-
frequency synthesized spatial patterns BCI algorithm,” J Neural 
Engineering, 2:131-138, 2005. 

[5] G. Pfurtscheller, C. Neuper,  A. Schlogl, K. Lugger, 
“Separability of EEG signals recorded during right and left 

459

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



motor imagery using adaptive autoregressive parameters,” IEEE 
Trans. Rehabil. Eng, 6(3), pp316-325, 1998 

[6] J. R. Wolpaw, D. J. McFarland, G. W. Neat, and C.A. Forneris, 
“An EEG-based brain-computer interface for cursor control,” 
Electroencephalogr. Clin. Neurophysiol, 78, pp252-259, 1991. 

[7] A. Osman and R. Albert, “Time-course of cortical activation 
during overt and imagined movements,” Cognitive 
Neuroscience Annual Meeting, New York. 

[8] H. Peng, F. Long, and C. Ding, "Feature selection based on 
mutual information: criteria of max-dependency, max-
relevance, and min-redundancy," IEEE Trans on Pattern 
Analysis and Machine Intelligence, 27(8), pp.1226-1238, 2005. 

[9] A. Webb.  Statistical Pattern Recognition.  John Wiley and 
Sons. 2002.   

[10] T. N. Lal, M. Schrüder, T. Hingerberger, J. Weston, M. 
Bogdan, N. Birbaumer, and B. Schölkopf.  “Support Vector 
Channel Selection in BCI”.  IEEE Transactions on Biomedical 
Eng. 51(6):1003 – 1010, 2004.  

[11] T. Wang, J. Deng, and B. He, “Classifying EEG-based motor 
imagery tasks by means of time–frequency synthesized spatial 
patterns”. Clinical Neurophysiology, 115, 2744–2753, 2004. 

[12] V. Vapnik. The nature of statistical learning theory.  Springer-
Verlag.  New York. 1996. 

[13] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene 
selection for cancer classification using support vector 
machines,” J. Machine Learning Res., vol. 3, pp. 1439–1461, 
March 2003. 

[14] B. Hjorth, “An on-line transformation of EEG scalp potentials 
into orthogonal source derivations,” Electroencephalogr. Clin. 
Neurophysiol. 39, pp526-530, 1975. 

[15] J. Yao, M. Ellis, and J. Dewald, “Mechanism and rehabilitation 
of discoordination following stroke using a cortical imaging 
method,” Proc. of 27th Annual Int. Conf. Of the IEEE 
Engineering in Medicine and Biology Society, 2005.

460

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)


