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Abstract— The discovery and understanding of functional rela-
tionships amongst genes and their gene products are fundamental
to our understanding of human disease. Data regarding protein-
protein interactions in humans are not complete and computa-
tional techniques along with data provided from other organisms
can be used to better inform relationships in humans. We demon-
strate the utility of using genome scale data from Drosophila
melanogaster to predict protein-protein relationships for human
proteins specific to disease. To find the most likely candidates
for protein-protein interaction, the predicted relationships are
tested against human protein interaction and known disease data,
then ranked through a Support Vector Machine. An illustrative
example related to hBrm and hSNF5 shows the validity of our
approach.

I. INTRODUCTION

Most of our knowledge about human disease genes is based
on associations between phenotypes and genetic variation.
The current state of knowledge includes approximately 7,000
human genes associated with 1,500 diseases as found in
OMIM (Online Mendelian Inheritance in Man)[1]. However,
the vast majority of human genes are poorly characterized for
function, if at all[2]. The fact that the products of most genes
function at the cellular level in interconnected pathways of in-
teracting molecules, provides a means of prioritizing research
efforts on likely disease-related candidate genes. Elucidating
the interacting partners and the genetic pathways in which
human disease genes act, enhances our understanding of these
respective diseases and also identifies additional potential drug
targets[3].

The recent blossoming of genome-wide studies of molecular
gene function in humans provides a ready means to identify
putative functional relationships between disease genes and
previously uncharacterized or poorly characterized genes[4],
[5]. The general approach is to identify functional relationship-
based assays of human genes, such as protein-protein interac-
tions, microarray co-expression, gene knockdown phenotypes,
or integration of such data sets.

A complimentary approach takes advantage of the fact that
many genes and gene pathways are widely conserved across
genera including well characterized model organisms such as
S. cerevisiae, C. elegans, D. melanogaster and M. musculus.

For instance, approximately 75% of known human disease
genes have homologs in D. melanogaster[6]. Additionally,
many of the human disease relevant signaling pathways are
conserved across metazoans[7], [8], [9]. It follows that gene-
gene functional relationships established in these experimen-
tally tractable and well-studied organisms can be used to infer
putative functional relationships between pairs of orthologous
human genes[6], [10]. As a recent illustration, Cooper et al.
[11] used yeast to study the molecular effects of α-synuclein
misfolding and discovered a yeast gene, Rab1, whose ortholog
in mouse – a mammalian model for Parkinson’s disease [12],
[13] – protected against neuron loss when expressed.

Drosophila melanogaster is arguably one of the most well-
studied model organisms and with this distinction comes a
great deal of genetic and genomic data. Consequently, it has
been used to model a number of diseases [6], [14], including
cancer [10] and neuromuscular diseases [15], [16], [13]. In this
study we aim to leverage Drosophila genetic and genomic, ex-
perimental data to perform a systematic genome-scale analysis
to better inform potential functional relationships of human
genes involved in disease.

The term interolog was first introduced by Walhout, et
al. [17] to describe interacting gene pairs that are conserved
across species, where both their sequence and interacting
relationship is conserved. This term has propagated through
the literature [18], [19], but has mostly been used in the context
of conserved protein-protein interactions. In fact, work by
Bandyopadhyay, et al. [20], used protein interaction network
alignments between fly and yeast to assign gene function
annotations. Although it has been shown that protein-protein
interactions are more conserved within species than across
species [21], as described above, there are still many examples
of conserved pathways across species that can be used to study
biological processes.

Our approach considers the potential complications that may
arise from looking solely within protein-protein interactions
and draws from the multitude of data and data sources
available in Drosophila. Conceptually, we are looking to
find interologs between human and fly, but from the unique
perspective of human disease genes, where the functional re-
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Fig. 1. Conceptual diagram of the methodology used to predict human protein relationships. Edge A represents the set of relationships
between human proteins associated with disease and orthologous fly proteins, GHF . Edge B represents the set of functional relationships
between fly genes, GDmel. Edge C represents the set of fly genes that have human orthologs, GFH . Gpred are the predicted relationships.

lationships are derived from physical and genetic interactions,
along with gene co-expression, shared transcription factor
binding sites, and annotated localization in Drosophila.

In Figure 1, we illustrate the flow of our methodology.
Initially, we gather fly orthologs to human disease genes (A).
Next, we find fly genes that are functionally related to these
fly orthologs (B). We then look for human orthologs to the
functionally related fly genes (C). Lastly, we draw potential
connections between human genes represented by the question
mark next to (D). Traveling this path allows us to gather a set
of features which support the gene pair relationships, such
as sequence similarity or experimental measures. Some of
the disease relationships we predict in human can be verified
against known data, while the vast majority cannot. Ultimately
we break this problem down to a classification task, where
we employ the proficiency of a Support Vector Machine to
determine which predicted human gene pairs are most likely
to interact and be involved in the same disease or disease
pathway.

To test whether our prediction method returns biologically
relevant results, we show one example of a high scoring,
predicted relationship that is concordant with published data,
but this relationship has yet to be reported in OMIM.

The procedures and computational methods we employed
are covered in Section II. The results of our approach along
with data validation and an illustrative example are covered in
Section III, and a short discussion closes the paper in Section
IV.

II. METHODS

The methods used to predict human protein relationships
with respect to fly data is conceptually illustrated in Figure 1.

To best understand the computational techniques and proce-
dures, we use this figure as a guide and refer back to it in the
following subsections.

A. Collection of Human to Fly Candidate Orthologs

The methods to determine relationships between human
proteins associated with disease and Drosophila proteins are
described in this section representing edge A in Figure 1.

To start, a set of proteins involved in human disease and
their homologous sequences in Drosophila are downloaded
from the v2.1 Homophila database[22]. Homophila provides
a mapping from human proteins associated with disease to fly
proteins, which are ranked on BLAST[23] e-values. Disease
relationships within Homophila are defined by NCBI’s OMIM
database. For our analysis, we created a candidate set of
human-fly homologs, GH , based on an e-value cutoff of
10−20.

To increase the likelihood of comparing functionally similar
proteins, the candidate set taken from Homophila were filtered
using the Inparanoid[24] algorithm, which utilizes reciprocally
best-matching BLAST scores to determine orthologs and ad-
ditionally in and out-paralogs[25]. Protein pairs determined to
be orthologs were only considered, thus ignoring the in and
out-paralog relationships. The justification for such a filter is
demonstrated by Hulsen et al.[26], who found by combining
sensitivity and selectivity of ortholog identification, Inparanoid
ranked highest among other methods in terms of identifying
functionally equivalent genes. The set of human-fly protein
pairs filtered through Inparanoid is designated, GHF , where
GHF ⊂ GH .

470

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



B. Finding Functional Relationships through Fly Data

The methods to determine functional relationships between
fly genes are described in this section representing edge B in
Figure 1.

The popularity of Drosophila as a model organism has
resulted in the generation of large amounts of genome-scale
experimental data; gene expression profiles, protein-protein
interaction, and genetic interaction to name a few. Each one
of these techniques captures a narrow and specific perspective
of the entire system and the integration of these orthogonal
datasets can provide a more informed and comprehensive
perspective of relationships between genes, as compared to
any individual dataset[27], [28]. This perspective is consistent
with work from C. elegans[29], [30] and S. cerevisiae[31],
[32].

For this study, we collected genome-scale data from D.
melanogaster in the form of gene co-expression[33], [34],
[35], protein-protein interaction from FlyGrid1, DIP2, MINT3,
and BIND4, genetic interaction from Flybase5, phenotypic
annotation from Flybase[36], and shared transcription factor
binding sites[37]. These data were then cleaned, normalized,
and stored in a MySQL database. Since each of the data
sources convey different information regarding functionally
related genes, each data source has its own measure of a gene-
gene relationship. For protein-protein interaction data, a pair of
genes is given a value of 1 if they are found to interact. Gene
pairs that are reported to genetically interact are given a value
of 1 and a value of 0 if they are experimentally determined not
to genetically interact. The gene pair relationship measure for
microarray data is given as the Pearson correlation between the
expression profiles of two genes, across the experiment. For
transcription factor binding site data, a correlation measure
is assigned to the number of known binding sites shared in
the upstream regions of any two genes. Lastly, the measure
of phenotypic annotation was measured using Lord’s [38]
measure of semantic similarity, since the annotated terms
belong to an anatomical ontology [39]. Semantic similarity
is an information content based measure which leverages the
fact that terms further from the root of the ontology will be
used less frequently and thus carry more information.

A connection between two fly genes is drawn to reflect
the functional relationships between the two genes derived
from the aforementioned experimental data. Specifically, con-
nections were created if there is a reported genetic inter-
action, protein-protein interaction, significant co-expression
correlation, or significant similarity in phenotypic annotation.
Often times a gene pair has supporting evidence from more
than one data source, which increased our confidence in that
relationship and exemplifies the complementary nature of the
different data sources.

1http://biodata.mshri.on.ca/fly grid/servlet/SearchPage
2http://dip.doe-mbi.ucla.edu/dip/Main.cgi
3http://mint.bio.uniroma2.it/mint/
4http://www.bind.ca/Action
5http://www.flybase.net

The fly orthologs from GHF are matched to the list of
determined relationships, and the query gene’s partner was
taken to construct a set of fly-fly functionally related gene
pairs, GDmel. Drosophila genes from GHF that did not match
any integrated fly relationships are subsequently excluded.

C. Determining Human Orthologs from Fly Interactions

This section describes the methods used to determine fly
and human orthologs representing edge C in Figure 1

The set GDmel contains fly-fly gene relationships, where fly
orthologs of disease related human genes are matched with
functionally related fly genes. In order to find new human
relationships, the functionally related fly genes are mapped
back to human orthologous proteins. To accomplish this task,
we again utilized the Inparanoid [24] algorithm to create the
set of fly-human orthologs, GFH . Since we do not expect all
fly genes derived from the Drosophila data to have orthologous
sequences to human, the fly genes that do not map to human
are ignored.

D. Predicting New Human Protein Relationships

To complete the cycle in Figure 1, the relationships from
GHF to GDmel to GFH , are traced, thus providing a Human
→ Fly → Fly → Human sequence of genes/proteins. By
drawing a connection between the two human genes, the
prediction of gene relationships is made and subsequently
tested. The final set of human-human predicted relationships
is designated Gpred. At this point we have found relationships
consistent with the interolog concept, where a functional
related fly genes are used to predict potential relationships
in humans.

The predicted human protein relationships require that the
original human protein be associated with at least one disease,
since that protein was extracted from Homophila, but the
partner human protein may not be associated with a disease.
Thus, disease associations are mapped onto the predicted
relationships and verified against OMIM. As a second method
of verification, relationships from Gpred are tested against the
repository of human protein interactions, OPHID (The Online
Predicted Human Interaction Database)[40], to determine how
many predicted relationship are concordant with known and
high-confidence human protein interaction data.

III. RESULTS

Applying our method, we produce the following numbers.
From Homophila, we extracted 1,340 human-fly protein ho-
mologs associated with a disease. Of the 1,340, there are 774
unique human-fly protein pairs, GH = 774. The reduced num-
ber is attributable to a single human protein being associated
with more than one disease. To find putative orthologs, GH is
then filtered through Inparanoid, which reduces the human-fly
protein homologs to 332 distinct human-fly protein orthologs,
GHF = 332. The genes in GHF are associated with 556
distinct diseases. The Drosophila proteins in GHF are then
mapped to the integrated fly data where 274 of a potential 332
are present, meaning that there are 58 genes from GHF that
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are not accounted for in the experimental fly data. These 274
genes cover 466 distinct diseases. Of these 274 fly genes, 7,893
fly-fly functional relationships are extracted, GDmel = 7,893.
From these fly relationships, there are 4,056 new partner genes.
In other words, the 274 fly orthologs of human genes combine
with 4,056 unique fly genes to create 7,893 unique fly-fly
functional relationships. Thus, on average, each of the 274 fly
genes has ≈ 27 partners determined from the fly data. From
GDmel, the 4,056 unique fly genes are then mapped to human,
where 1,890 are determined to be orthologs, GFH = 1,890.
Consequently, 2,166 fly genes and their corresponding rela-
tionships are removed from GDmel. The full procedure results
in a final set of 3,941 predicted human-human relationships, or
Gpred = 3,941. This set of 3,941 relationships is composed of
2,035 distinct human proteins. Lastly, to explore the disease
association among the proteins in Gpred, each of the 2,035
proteins are annotated with known disease associations. The
proteins extracted from Homophila have already been associ-
ated with disease, however, the partner protein in a given pair
must be assigned an annotated disease. The partner protein
is text-mined against the description field in OMIM, where
associated diseases are matched to that protein. In total, 725
diseases are covered by the 2,035 proteins. From Gpred, 1,610
of the 3,941 relationships (≈ 41%) have an associated disease
with both proteins in the protein pair. The remaining 2,331 of
the 3,941 relationships (≈ 59%) have disease associations with
the protein extracted from Homophila, but not its predicted
partner protein.

The following three subsections describe the approaches
taken to determine the statistical significance of the final pre-
dicted set of human proteins, rank and validate the interactions,
and test a new prediction through literature review.

A. Validation and Statistical Significance

The premise of this approach is that functional relationships
between genes are conserved between flies and humans, thus
the human gene pairs identified in Gpred are predicted to have
putative functional relationships in humans. Obviously, this
method will be subject to errors stemming from inaccuracies
in determining correct orthologs and the evolution of new
gene functions. To test the utility of this approach, we assess
whether Gpred is significantly enriched for true positives. We
define a true positive as a human gene pair in Gpred that is
known to either (i) be associated with the same disease, or (ii)
have a protein-protein interaction.

The first statistical measure aims to test the recovery of gene
pairs associated with the same disease. We found 71 pairs
in Gpred that shared a common disease, where a common
disease is an exact text match between disease names. We
tested the significance of this recovery with respect to a set
of randomly generated protein pairs of equivalent size over
10,000 iterations. As shown in Figure 2 A, B, two distributions
were created, where the first distribution sampled random
pairs from the list of 2,035 unique proteins in Gpred, and
the second distribution sampled random pairs from a list of
proteins defined by the HGNC (HUGO Gene Nomenclature

Committee)6. So, although 71 protein pairs may seem like a
low number, it has a p-value of >> 10−20 when compared to
the 2,035 proteins from Gpred and a p-value of 10−6 when
compared to all HGNC proteins.

Using a similar approach we tested the recovery of gene
pairs previously known or predicted to have human protein-
protein interactions. We used OPHID (The Online Predicted
Human Interaction Database)[40], June 2006, as the source of
true positives. This data set contains over 9,000 proteins com-
prising over 50,000 human protein interactions. The protein
interactions within OPHID are compiled from human, as well
as model organism data, and uses supporting evidence from
co-expression, Gene Ontology (GO) terms, protein domains,
and literature mining to strengthen its predictions. Since data
from other model organisms was used in the construction of
OPHID, including Drosophila, any interactions derived from
fly were removed from the OPHID data. Each of the 3,941
relationships in Gpred were tested against OPHID and 47
relationships are found. As with the association of a shared
disease, the statistical significance of these numbers were then
tested against a set of randomly generated protein pairs tested
against OPHID interactions (fly data excluded). As shown in
Figure 2 C, D, two distributions were created, where the first
distribution sampled random pairs from the list of 2,035 unique
proteins in Gpred, and the second distribution sampled random
pairs from a list of proteins defined by HGNC. Consistent with
the disease association calculations, the 47 protein pairs from
Gpred found in OPHID may seem like a low number, but it has
a p-value of >> 10−20 when compared to the 2,035 proteins
from Gpred and a p-value of >> 10−20 when compared to all
HGNC proteins.

B. Ranking Predicted Gene Relationships

The relationships predicted through Drosophila data are not
specific to protein interactions. In fact, outside of the exper-
imental protein-protein interactions in fly, the remaining data
suggest the presence of functional relationships which may
or may not include a physical protein interaction. Knowing
this and considering the protein interaction relationships that
are concordant with OPHID, we explore the possibility of
finding other protein pairs in Gpred that share features with
the 47 protein pairs found in OPHID. This same logic can be
applied to the disease relationships, where we do not expect
the fly data to specifically predict disease, but we can look for
gene pairs that share similar features to the 71 proteins that
have a common annotated disease. To accomplish this task,
we employ a Support Vector Machine (SVM) to separate and
rank order the predicted relationships.

The generation of features to test and train the SVM were
derived from characteristics of the fly and human proteins re-
sulting in a list of 24 features. These features include measures
of similarity from Gene Ontology (GO)[41] terms between
fly-human and fly-fly pairs (electronically inferred annotations
were ignored), where the measure of similarity between two

6http://www.gene.ucl.ac.uk/nomenclature/
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Fig. 2. Distributions showing the significance of the predicted human protein pairs, designated by the black arrows, as compared to randomly
generated gene pairs. Plots (A) and (B) show the significance of predicted protein pairs as they relate to known disease. Plots (C) and (D)
show the significance of predicted protein pairs as they relate to protein interactions found in OPHID. The randomly created pairs from plots
(A) and (C) are sample from proteins found in Gpred only, while random pairs created in plots (B) and (D) are sampled from all genes in
HGNC. The p-value of plot (B) is 10−6 , while the p-values for all other plots are >> 10−20 .

genes is Lord’s measure of semantic similarity [38]. When
considering the GO classes of Biological Process, Molecular
Function, and Cellular Component across the human → fly, fly
→ fly, fly → human, and human → human relationships (A,
B, C, and D in Figure 1); this results in 12 features. BLAST
e-values for fly and human protein pairs add 2 more features.
The functional data defining fly-fly relationships consisted of 3
microarray experiments, reported protein interactions, reported
genetic interactions, phenotypic similarity, and common tran-
scription factor binding sites, which qualifies as 7 features.
Also related to the functional data, we wanted to take into
account the number of experimentally determined partners of
the fly genes in a functionally related pair, as some genes
have many more partners than others. Thus, for each of the
two genes in the interacting pair, we counted the number
of neighbor genes for each gene and also considered the
number of neighbor genes shared between the two paired
genes, resulting in 3 more features. Considering all this data
results in a total of 24 features.

For classification of protein interactions, the 47 protein
pairs found in OPHID were treated as positives, and for
classification of proteins involved with the same disease, the
71 protein pairs known to share a disease were treated as
positives. The remaining relationships in Gpred in either set
are treated as negatives.

For each classification task, a 10-fold cross-validation was
done, where both positive and negative data were evenly split
into 10 disjoint sets. One set was treated as the test set,
while the remaining 9 were combined to form the training set.
SVMlight v6.01[42] was used to train a linear kernel model on
the training set, which was used to classify the test set. During
training, the cost-factor parameter was set to balance the error
associated with the size imbalance in the positive and negative
data. This procedure was followed for each of the 10 disjoint
sets. The data from each of the 10 classification results were

combined to test the overall efficacy of classification, which is
reflected in the ROC curves shown in Figure 3. When plotted,
the AUC (area under the curve) for the protein interaction
classification was calculated to be 75.7% and the disease
classification was calculated to be 78.4%, which suggests there
is a definite bias in the relationships predicted in Gpred. The
false positive rate and false negative rate are reflected in the
ROC plots (Figure 3).

Every protein pair from each of the classified 10-fold cross
validation sets is given a logistic function score, which can
then be converted into a probability. The probabilities of
each protein pair are then used to rank order the predicted
relationships. Since there is a probability associated with a
prediction for both potential protein interactions and potential
disease relationships, a joint probability can be created to
reflect a potential physical interaction and a shared disease.
This measure can then be used to rank order the predicted
pairs. The results from the SVM classification have been made
available in a searchable web interface.7.

C. Verification of a Predicted Relationship

As a specific validation of our method, we explored the top
ranked protein pairs from the combined protein interaction
and disease relation scores with respect to relevant literature.
Manual inspection of the literature revealed that many of the
putative relationships indeed were supported; here we high-
light one example whose protein interaction is not reported
in OPHID and a connection can not be found in OMIM. We
identified the human gene pair hBrm (also known as hSNF2α,
Q9H836) and hSNF5 (P51531) via the following path: hSNF5
(human disease gene) → Snf5-related 1 (fly ortholog to human
disease gene) → brahma (functionally related fly gene) →
hBrm.

7http://www.monkey.informatics.indiana.edu/disease/
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Fig. 3. ROC curves constructed from the 10-fold cross validation results of the SVM clssification. Plot A was generated from training a
SVM on protein pairs which have a shared disease, and plot B was generated from training a SVM on protein pairs found in OPHID.

In both humans and flies, the proteins encoded by these
genes are subunits of the large multimeric SWI/SNF chromatin
remodeling complex. In humans, the literature reports that
mutations in hSNF are associated with rhabdosarcomas and
T cell lymphomas[43], [44]. OMIM, on the other hand,
reports that hSnf5 is associated with Leukemia and Gene
Expression, while hBrm is reported to be associated with
Rhabdoid Predisposition Syndrome in OMIM. Proteins that
are involved in large complexes may never physically interact
with each other due to their location in the complex, so not
finding a reported protein-protein interaction in OPHID is not
surprising. However, their connection to each other is in their
potential to be involved in the same disease as subunits in
the same protein complex. Our prediction of this high scoring
relationship complemented by the literature, and the fact that
these two proteins are subunits of a protein complex suggest
the pair should be investigated further.

IV. DISCUSSION

The results of our method show the utility of using
Drosophila genome-scale data to discover new relationships
among human proteins. Specifically, the task was to explore
Drosophila data to predict protein relationships in human
specific to disease in a genome-scale, systematic manner.
As shown through SVM classification of gene pairs found
in OPHID and shared disease relationships among human
proteins, the data suggest there are putative relationships that
need to be either validated or simply investigated. In fact, the
combination of ranks derived from the two classification tasks
offers a simple measure of the most likely protein pairs that
interact and may share a disease, which is shown through our
findings between hBrm and hSNF5.

The approach we have taken to detect new protein relation-
ships relies on integration of multiple kinds of D. melanogaster
data. The nature of the fly data is not specific to any partic-
ular kind of functional relationships among genes. However,
through the classification tasks performed by a SVM, the data

do reveal separable associations that reflect specific molecular
relationships, which is extremely encouraging for an applied
systems approach with benefits to, for example, drug target
prediction. Further, it would be of interest to explore the extent
of what relationships are and are not predictable through our
methodology beyond the ones tested in this paper.

Another consideration in predicting relationships through
an integrative approach is whether the integration of data is
supplying new information or whether all of the information
can be garnered from one data source. Of the 47 predicted
protein pairs that were found in OPHID, the functional con-
nections made in fly are supported by 27 genetic interactions,
11 protein interactions, and another 15 were from microarray
experiments. Of the 71 predicted protein pairs that have
a shared disease from OMIM, the relationships in fly are
supported by 32 genetic interactions, 17 protein interactions,
and 28 from microarray data. Keep in mind that any particular
predicted pair may be supported by multiple data sources. The
distribution of different data sources amongst our predicted
protein pairs that are concordant with known human data do
validate that integration of the different data sources supplies
new information. This method also adds support to the concept
of interologs.

In summation, the integrative approach of using model
organism data to inform relationships in human is not new[7],
[11], [45], [46]; however, our approach to focus of methods
on human disease genes for prediction of new protein rela-
tionships in human through Drosophila experimental data is a
novel application and resulted in testable predictions.
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