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Abstract — In this paper, we propose a flexible fully-

multiplicative orthogonal-group based ICA 

(FlexibleOgICA) algorithm, which can instantaneously 

separate the mixture of sub-Gaussian and super-

Gaussian source signals. It adopts a self-adaptive 

nonlinear function, which adjusts its parameter to 

achieve better performance based on the estimation of 

the kurtosis of super-Gaussian source signals. We also 

have successfully applied the algorithm to obtain the 

fetal electrocardiogram (FECG) signal, showing its fast 

convergence speed and high separation performance. 

I. INTRODUCTION 

Over the past decade independent component analysis 
(ICA) [1][3][8] or blind source separation (BSS) has 
attracted a great deal of attention because of its potential 
applicability to a wide range of problems, spanning 
disciplines as diverse as communications, signal processing, 
feature extraction and biomedical signal processing 
[9][10][11]. The problem arises when multidimensional 
observations, generated when a set of signals are mixed by 
passage through an unknown medium, must be processed to 
recover the original sources without the benefit of any a 
priori knowledge about the mixing operation or the sources 
themselves. 

Many different algorithms have been developed for the 
solution of ICA, which blindly separate the mixture of sub- 
and super-Gaussian [3][5][8]. An important work is done by 
Lee and Girolami [3]. They present an extend Infomax 
(ExtICA) algorithm that is able to blindly separate mixed 
signals with sub-Gaussian and super-Gaussian source 
distributions by using the nonlinear model switch technique. 
The application of the algorithm is prevalent in separating a 
wider range of source signals. Unfortunately, the 
convergence of the algorithm is relatively slow.  

Recently, Fiori [4] presents a fully-multiplicative 
orthogonal-group ICA neural algorithm, which exploits the 
known principle of diagonalization of a tensor of a warped 

network's outputs. It has very fast convergence speed. 
However the algorithm is only separate sub-Gaussian source 
signals. In other words, it is unable to separate the mixture of 
pure super-Gaussian source signals, or the mixture of sub-
Gaussian and super-Gaussian source signals. Thus the 
algorithm’s application has been greatly limited. 

To address the problem above, we propose the 
FlexibleOgICA algorithm, which exploits multiplicative 
orthogonal-group [4] and uses a self-adaptive nonlinear 
function controlled by a single parameter (Gaussian 
exponent) that is adjusted according to the estimated kurtosis 
value of algorithm output [5]. The algorithm has fast 
convergence speed and high separation performance. 
Computer simulations on artificially generated data and real-
world ECG data have shown its better performance, 
compared with the classical extend Infomax algorithm [3].  

II. PROPOSED FLEXIBLEOGICA ALGORITHM

The basis ICA model can be summarized as follows: 
assume that there exist mutually independent unknown 
source si(i=1,…,N), which have zero mean and unit variance. 
And also assume that the sources are linearly mixed with an 
unknown M N(M N) matrix A:

x = A s,                                   (1) 
where s = [s1, s2, ,sN]T and x = [x1, x2, ,xM ]T are N-
dimensional sources and M-dimensional mixed signals 
respectively. In independent component analysis, the basic 
goal is to find an N M separating matrix W without 
knowing the mixing matrix A, that is  

                                   y = W
T

x                                           (2) 
such that y= [y1, y2, ,yN]T is an estimate of s that each 
component of s may appear in any component of y with a 
scalar factor. For the sake of simplicity, we assume M=N.

According to [6], W belongs to the orthogonal group 
O(N)={A RN N|AT

A =IN}.  A class of ICA algorithm stems 
from the following well-known principle: Given two odd 
nonlinear functions f ( )and g( ), the separating algorithm 
ought to diagonalize the matrix Ey [f (y) g(y)T], where the 
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symbol Ex [ h(x) ] denotes statistical expectation of the 
function h(x) over the distribution of the random-vector x.

Let us define the matrix G = Ey[f (y) g(y)T] RN N and 
define an N N real, invertible, positive-define diagonal 
matrix B. The above recalled diagonalization principle may 
be expressed in the following way which proves useful in the 
following development: 

G
-1 = B

 -1                                          (3)  

 By pre-multiplying by W and post-multiplying by B both 
members of the above equation, we obtain: 

                                      W G
-1

 B =W                                     (4)  
This expression readily suggests the following batch 

iterative learning algorithm: 
               Wn+1

+ = Wn Gn
-1

B,    n=0, 1, 2,…                 (5) 
               Wn+1 = (Wn+1

+ (Wn+1
+) T )-1/2

Wn+1
+

                          (6)
where Gn = Ey[f (yn) g(yn)

T], with  yn = Wn
 T 

x, W0  O(N)
is an initial value and n deno-tes the iteration index. The last 
expression (6) denotes the symmetric orthogonalization step 
that is necessary to project the update matrix Wn+1 into the 
orthogonal group.  

In order to separate instantaneous mixtures of sub- and 
super-Gaussian source signals, we choose a switching 
criterion, based on self-adaptive nonlinear function that 
controlled by a single parameter (Gaussian exponent a)
according to the estimated kurtosis value of separating filter 
output [5]. So the FlexibleOgICA batch iterative learning 
algorithm: 

Wn+1
+ = Wn Ey[f (yn) g(yn)

T] -1 
B, n=0, 1, 2,…   (7) 

Wn+1 = (Wn+1
+ (Wn+1

+) T )-1/2
Wn+1

+
                                      (8) 

Some practical nonlinear functions are suggested for f(yn)
and g(yn) [5] as following. The nonlinear function g(yn)
remains invariable whatever sub-Gaussian signals or super-
Gaussian ones: 

g(yn)= yn
 2 sign (yn)                        (9) 

where sign(yn)is the signum function of yn. And the typical 
examples of the other nonlinear function f (yn) with different 
values of a is shown: 

a = 4 for ki 0   ( i.e, yn is sub-Gaussian.): 

f (yn)=| yn |
2
 yn                                                   (10)

a = 0.8 for ki 20 (i.e, yn is super-Gaussian whose 
kurtosis value is more than 20.):    

f (yn)= | yn |a-1 sign(yn)                           (11) 

a = 1 for 0 ki 20 (i.e, yn is super-Gaussian whose 
kurtosis value is less than 20.) : 

f (yn)= yn / | yn |                                     (12) 
where ki is the estimated kurtosis value: 

                             ki  = E[yi
4]/ E2[yi

2] – 3                             (13) 

Note the above FlexibleOgICA batch iterative learning 
algorithm (7)-(12) can be directly transformed into an online 

FlexibleOgICA algorithm. In addition, it is clear to observe 
that, in contrast to other well-known on line or batch-type 
algorithms [2][3][5], the proposed FlexibleOgICA algorithm 
does not stem from first-order nor second-order (Newton-
like) cost-function optimization and is expressed in a fully-
multiplicative fashion in this paper. As a result, the 
FlexibleOgICA has fast convergence speed and high 
separation performance. 

III. SIMULATIONS AND EXPERIMENTS 

In the first simulation, we used the ABio7 data, which could 
be found in [12], shown in Fig. 1(a). Each signal had 5000 
samples. Three signals s1, s5, s6 were sub-Gaussian, two 
signal s4, s7 are super-Gaussian, and the others s2, s3 are 
Gaussian noisy. Their normalized kurtosis values were, 
respectively, -1.5, 0.04, 0.01, 37, -0.5, -1.05 and 11. On the 
other hand, we assumed the simplest choice for the real, 
invertible, positive-define diagonal matrix B=IN in the 
proposed algorithm [8]. All of the algorithms were offline 
versions. Their parameters were adjusted so that they 
obtained the best averaged performance. 

These source signals were randomly mixed. After 
whitening the mixed signals, we ran the original OgICA 
algorithm [4], the extended Infomax (ExtICA) algorithm [3] 
and the proposed FlexibleOgICA algorithm in this paper. 
The results are shown in Fig.1(b), Fig.1(c) and Fig.1(d), from 
which it is clear to see that the original OgICA algorithm in 
[4] can not separate the mixture of sub- and super-Gaussian 
because the algorithm itself was designed to separate the 
mixture of sub-Gaussian, while the other two algorithms 
correctly separated the seven source signals. 
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Fig.1 Simulation on artificially generated data. (a) The seven source signals. 
(b) The separated signals by the original OgICA algorithm in [4]. (c) The 
separated signals by the ExtICA algorithm in [3]. (d) The separated signals 
by the proposed FlexibleOgICA algorithm in this paper. 

To evaluate the separation performance of the ExtICA 
algorithm in [3] and the proposed FlexibleOgICA algorithm 
in this paper that separated the correct signals, we adopted 
the following measure:  

2

2

1

1
( 1)

1 max

N

i

i i i

e
PI

N e
               (14) 

where e = W
T
VA = [e1,…,eN], V is the whitening matrix 

and A is the mixing matrix. The performance metric has the 
following features: (1) PI lies in [0,1] for any vector e; (2) 
PI =1 if and only if ei

2=ej
2 for all i, j  in the range [1, N]; (3) PI

=0 if and only if e has only one non-zero element. When 
perfect signal separation is carried out, the performance 
index PI is zero. In practice, it is a very small number. The 
lower PI was, the better the performance was. The averaged 
performance over 200 independent trials of the original 
OgICA algorithm [4], the ExtICA algorithm in [3] and of 
the proposed FlexibleOgICA algorithm in this paper was 
shown in Fig.2. Clearly, it is shown that the original OgICA 
algorithm cannot separate the mixture of sub- and super-
Gaussian signals as the performance index PI of the 
algorithm [4] is larger (here PI  0.55). Furthermore, one 
can observe that the proposed FlexibleOgICA algorithm 
gives better separation performance and faster convergence 
speed (only 20 iterations are needed to achieve convergence) 

than the ExtICA algorithm in [3]. Faster convergence might 
be due to the fully-multiplicative orthogonal-group adopted 
in this paper. Also, the results of the FlexibleOgICA 
algorithm keep stable over time, showing that the algorithm 
didn’t exhibit post-separation oscillations. 
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Fig.2 Averaged performance index over 200 independent trials: real line is 
for the proposed FlexibleOgICA algorithm in this paper, dashed line is for 
the ExtICA algorithm in [3], and dot line is for the original OgICA in [4]. 

Next we used the real-world ECG data [13] (Fig. 3(a)). 
Our goal was to obtain the fetal ECG (FECG) signal by the 
proposed FlexibleOgICA algorithm in this paper, which was 
very weak and almost only visible in x1. The result was 
shown in Fig. 3(b). One can observe that the weak FECG 
was well separated by the proposed FlexibleOgICA 
algorithm in this paper. Note the second node output signal 
y2 corresponds to the FECG signal separated by the 
algorithm in Fig. 3(b). The rest of separated signals might be 
breathing artifact, the mother’s ECG (MECG) and lots of 
noise. 

IV. CONCLUSION

In this paper we propose a FlexibleOgICA algorithm, 
which not only can instantaneously separate the mixture of 
sub-Gaussian and super-Gaussian source signals, but also 
can separate super-Gaussian whose kurtosis value lies in a 
specific range. It converges quickly (only about 20 iterations 
are needed to achieve convergence), due to the use of full-
multiplicative orthogonal-group. Furthermore, the algorithm 
has good separation performance because of adopting self-
adaptive nonlinear function that controlled by a single 
parameter (Gaussian exponent a) according to the estimated 
kurtosis value of separating filter output. The validity and 
performance of the algorithms are confirmed by extensive 
computer simulations and experiments on real-world data. 
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Fig.3 Simulation on real-world ECG data. (a) The ECG data. (b) The 
separated FECG signal y2 by the proposed FlexibleOgICA algorithm 
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