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Abstract— The fact that neuroleptics may have a more or less
noticeable influence on fine motor skills is well-known. However,
up to now there is no system that allows one to measure and
to quantify such an impact of neuroleptics or other drugs. This
article goes a first step into this direction by demonstrating how
the handwriting dynamics of a healthy person can automatically
be distinguished from that of a schizophrenic and, therefore,
appropriately medicated person. Moreover, it is shown that
differences can be detected even for a very simple kind of hand
movement. That is, the persons trace a given meander. The
handwriting dynamics are measured by means of a pen equipped
with force and tilt sensors (Biometric Smart Pen). Then, the
parameterized script generator model proposed by Hollerbach is
used in order to extract characteristic features from the measured
signals, e.g., features describing deviations of measured time
series from predicted model time series. These features are then
used as inputs of support vector machines that classify whether
the handwriting has been provided by a healthy or a diseased
person.

Index Terms— biometric smart pen, handwriting dynamics,
script generator model, support vector machine, neuroleptics,
medical diagnosis

I. INTRODUCTION

One way to measure human fine motor skills is to measure
the dynamics of handwriting. This kind of biometrics allows
various applications not only in the field of authentication (see,
e.g., our work on signature verification in [1], [2]) but also in
areas such as medical diagnosis or therapy. For example, it
would be important to assess side effects of drugs in order
to control the medication of patients or in the context of
admission procedures for such drugs.

In principle, there are two ways of handwriting measure-
ment and analysis: off-line techniques (measurement and anal-
ysis of handwriting images) and on-line techniques (measure-
ment and analysis of handwriting dynamics). The latter can
be realized utilizing graphic tablets that measure time series
of coordinates or specific pens equipped with force and/or
tilt sensors, for instance. On-line techniques certainly provide
more valuable information for biomedical applications.

In this article, we compare the handwriting of mentally
diseased persons and healthy persons. The disease considered
here is schizophrenia, which is a mental disorder that affects
cognition, behavior, and emotion. It occurs in various forms
[3] with symptoms such as disorganized thinking, delusions,
or hallucinations. In acute phases, persons suffering from
schizophrenia receive neuroleptics. However, patients respond
to this treatment in different ways. Besides the desired effects,
side effects such as extrapyramidal symptoms (EPS) – certain
motion disorders – can be observed. Depending on the strength
of those disorders, neuroleptics are classified as either typical
neuroleptics (first-generation antipsychotic drugs) or atypical
neuroleptics (second-generation antipsychotic drugs). Many
novel neuroleptics with minor EPS are termed to be atypical.
However, this classification is disputed [4] and the question
whether typical or atypical neuroleptics should be applied is
lively discussed [5], [6]. To answer this question it would
be very useful to quantify the impact of neuroleptics on
human fine motor skills. Such a quantification would be even
more important from another viewpoint: The medication of
patients could be controlled individually and – hopefully –
more specifically than today. Also, admission procedures for
neuroleptics could be enhanced by additional test methods.

This article makes an important move towards these goals
by demonstrating how the handwriting dynamics of a healthy
person can automatically be distinguished from that of a
schizophrenic person with appropriate medication. Section II
deals with the state of the art in analysis of handwriting
dynamics of schizophrenic persons and in models for hand-
writing dynamics. Section III describes the biometric pen used
in our experiments. Section IV briefly introduces the experi-
ments themselves. Also, the most important components of our
analysis framework are summarized. The handwriting model
used here is set out in Section V and the characteristic features
that are computed by means of this model are described in
Section VI. Experimental results can be found in Section VII
and Section VIII summarizes the major findings.
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II. RELATED WORK

Many mental diseases and also many drugs have an im-
pact on fine motor skills. For example, there are signifi-
cant differences in the kinematic characteristics of healthy
and schizophrenic persons [7]. Also, it has been stated that
kinematic effects of schizophrenia are unlike EPS induced
by neuroleptics [8]. A comparison of the handwriting of
patients suffering from Parkinson’s disease and schizophrenic
patients shows similar characteristics but with lower values
of characteristic parameters for schizophrenic patients [9].
Differences in the writing speed and in the variability of writ-
ing were recognized for schizophrenic patients, patients with
affective disorders, and healthy persons [10]. Influences of
schizophrenia, Alzheimer’s disease, and Huntington’s disease
on the speed and the regularity of handwriting were observed
by [11], [12], [13], [14]. Deficiencies in the regularity of
handwriting were stated for schizophrenic patients with drug-
induced parkinsonism but not for patients actually suffering
from Parkinson’s disease [15].

The methods for an analysis of handwriting are often very
similar and simple. Usually, time series of a graphic tablet that
records the pen tip position are low-pass filtered and differen-
tiated. A segmentation technique is used to find local extrema
of the y-position. For each segment, extrema and means of the
time series are calculated. The means and standard deviations
of those values are regarded as characteristic features.

Handwriting models are medical theories that either explain
certain properties of handwriting or they are used to synthesize
script. In the following, some of these models are briefly
summarized together with some notes on how they could be
used for an analysis of handwriting.

The Two-Thirds Power Law [16] states that the velocity
of writing v can be expressed in terms of the curvature κ
(vκ

1
3 = g), where g is a constant that changes at discrete points

in time. As v and κ can be determined from the time series of a
data record, handwriting can be segmented by finding the times
where vκ

1
3 changes. The Minimum-Jerk model [17] calculates

a single value, the “jerk” of a movement, and supposes that
a skilled writer minimizes this value under given constraints.
[18] uses the Minimum-Jerk model to quantify handwriting
abilities. As those constraints determine the amount of jerk in
a data record and cannot be obtained from the time series of a
graphics tablet, the jerk cannot be analyzed directly. [18] uses a
normalization technique without medical background to solve
this problem. The model of Meulenbroeck [19] is capable of
synthesizing script from a set of two-dimensional points. The
arm is modeled as a kinematic chain and an optimal writing
trace is found by minimizing the link rotation. Because there
are several link positions for one position of the pen tip, it
is impossible to determine the parameters of the model from
the data of a graphics tablet. The Delta-Log-Normal model
[20] composes complex movements by adding the velocities
of simple movements. The parameters of those movements can
be calculated from a given data record and the model was used
for segmentation and movement composition. It could also be

used for feature extraction, yet the parameters of the model
have no medical background [21]. A similar approach is the
Oscillator Model [22] with the difference that it uses oscillator
functions with changing parameters for a synthesis of script.
This model is described in detail in Section V.

If a script generation model is “reverted”, a set of parameters
could be extracted from a measured time series that allow a
medical interpretation (see Section VI).

III. BIOMETRIC SMART PEN FOR DATA ACQUISITION

The Biometric Smart Pen (BiSP) is a novel ballpoint pen
for the acquisition of biometric features based on handwriting
dynamics [23], [24]. The device is equipped with a diversity
of sensors to measure the dynamics of forces transferred in
three dimensions from the refill to the force sensors and to
measure the finger kinematics by means of two inclination
(tilt) angles. A prototype of the BiSP device utilized here for
data acquisition is shown in Figure 1.

force in x-/y-direction
(strain gauges)

refill

force change in 
z-direction (piezo sensor)

tilt angles in 
xz-/yz-plane
(tilt sensor)

Fig. 1. Biometric Smart Pen (BiSP).

The forces resulting from handwriting on paper and trans-
ferred by the refill are monitored in horizontal directions x and
y by strain gauges placed close to the front part of the refill
and integrated in a half-bridge circuit. Their output signals are
conditioned by a low-pass filter (with a few hundred Hz) and
a single supply instrumentation amplifier. In the z-direction,
defined by the longitudinal axis of the refill, the dynamics of
the force are detected by a piezoelectric sensor located at the
end of the refill. This sensor, which is running in a passive
mode, samples the changes of the force in the z-direction. The
approximately linear signals from the three force sensors are
digitized with a 10 bit A/D converter at a sampling frequency
of 500 Hz. The movement of the fingers holding the pen is also
characterized by tilt angles α and β with respect to the axis
of the pen (refill). These angles are measured with electrolytic
tilt sensors with a sampling rate of 125 Hz and a resolution
of about 0.02 degrees. The recorded signals are then digitized
by a 10 bit A/D converter. Altogether, the pen provides a 5-
dimensional time series consisting of x-force px, y-force py ,
and z-force changes pz , as well as tilt angles α and β.
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The BiSP is in many respects superior to current pen-
based computer input devices because this pen is user friendly,
uses refills that are commercially available, and handwriting
can be performed on normal paper pads. A fundamental pre-
requisite for any analysis of dynamic handwriting patterns is a
high reproducibility of signals obtained from patterns written
repeatedly under optimal (i.e., identical) conditions by the
same person.

IV. ALGORITHMIC PRE-REQUISITES

In this article, experiments will show that it is possible to
detect differences in the fine motor skills of healthy persons
and schizophrenic persons medicated with neuroleptics (and,
sometimes, other drugs) automatically. The time series of the
BiSP will be analyzed using a script generator model. There-
for, simple drawing movements of the two groups of persons
were recorded and classification rates will be determined using
the recorded data.

All test persons had to trace given meanders as shown in
Figure 2(a) starting with the outer end point of the line. This
should be done as precise as possible and with only one stroke
(i.e., without interrupting the movement). The tracing of a
meander requires a movement in two directions in which the
wrist and the knuckles are involved. Records could be obtained
for 35 schizophrenic test persons (most of them medicated
with neuroleptics) and 18 healthy test persons. Figure 2 shows
the traced meander and the time series of a healthy person –
Figures 2(b) and 2(d) – as well as the traced meander and the
time series of a diseased person – Figures 2(c) and 2(e).

First, the recorded time series are cut from the beginning
to the end of the drawing movement. The force changes are
discretely integrated and all time series of forces are mapped
onto the same physical scale (forces in mN). Using the signals
of the forces and the tilt information, the time series of
the forces into the direction of writing and into a direction
orthogonal to that and the writing surface are calculated using
a coordinate system transformation (resulting in time series
f1 and f2). These time series have the advantage of being
widely independent of the tilt of the pen while writing [25].
Characteristic features needed for a classification are extracted
using the script generator model described in the following
section (Section V) and a Mahalanobis scaling method is
applied to align the features. A detailed explanation of the
features is set out in Section VI.

Cost-sensitive Support Vector Machines (C-SVM) are used
to classify the time series using the characteristic features as
inputs. SVM use a hyperplane to separate two classes [26]. For
classification problems that can not be linearly separated in the
input space, SVM find a solution using a nonlinear mapping
from the original input space into a high-dimensional so-
called feature space, where an optimally separating hyperplane
is searched. Those hyperplanes are called optimal that have
a maximal margin, where margin means the minimal dis-
tance from the separating hyperplane to the closest (mapped)
data points (so-called support vectors). The transformation
is usually realized by nonlinear kernel functions. Here, a

Gaussian kernel is used. C-SVM allow, but also minimize
misclassification.

In order to determine the classification rates of the SVM, a
cross-validation technique is used. This method segments the
data records into k subsets of approximately equal size. In
k runs, one subset is used for testing whereas the others are
used for the training of the classifier. With the results from the
cross-validation, the optimal set of parameters of the Gaussian
kernel is found using an exhaustive search on an exponential
grid.

(a) Meander which had
to be traced (scaled
down by a factor of
about two).

(b) Meander with line
drawn by a healthy test
person.

(c) Meander with line
drawn by a schizo-
phrenic test person.

(d) Force time series recorded with the BiSP (healthy test person).

(e) Force time series recorded with the BiSP (schizophrenic test person).

Fig. 2. Meanders that had to be traced and recorded raw data. The two
persons chosen for this figure show easily distinguishable writing behavior.

V. AN OSCILLATOR MODEL FOR HANDWRITING

The oscillator theory of Hollerbach [22] models a two-
dimensional drawing or writing trace using two orthogonal
oscillators and a constant movement along the direction of
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one of the oscillators. Let f : R → R be a periodic function,
then the two equations

dx

dt
= af(ω(t− t0) + Φx) + c,

dy

dt
= bf(ω(t− t0) + Φy)

and a starting point (x(t0), y(t0)) model a writing movement
along the x- and y-direction. The parameters a and b determine
the size, Φx and Φy the shape, and ω the speed of the
movement. The constant movement along the x-axis has
speed c.

Fig. 3. The generated word “eule” (German for “owl”).

TABLE I
PARAMETERS OF THE WORD “EULE”. f IS A SINUSOIDAL FUNCTION.

time t a b ωx ωy φx φy c
[0.00;0.26] 70.00 50.00 5.00·2·π 5.00·2·π π/4 0.0 20
[0.26;0.61] 50.00 50.00 5.00·2·π 5.00·2·π π/9 0.0 20
[0.61;0.82] 70.00 110.00 5.00·2·π 5.00·2·π π/10 −π/10 20
[0.82;1.05] 70.00 50.00 5.00·2·π 5.00·2·π π/4 0.0 20

Hollerbach suggests sinusoidal functions as oscillators be-
cause they approximate the movements that occur in real hand-
writing quite well. An example of a synthesized movement
can be seen in Figure 3, parameters are shown in Table I. In
order to model the changes of shape during handwriting (e.g.,
when writing consecutive letters), the parameters a, b, Φx,
and Φy may change at discrete points in time. The change of
parameters must result in a continuously differentiable writing
trace.

VI. CHARACTERISTIC FEATURES

The oscillator theory of Hollerbach models the speed of the
pen tip while writing. As the BiSP measures forces instead of
positions or speeds, the model has to be modified, because the
forces do not necessarily correspond directly to the speed of
handwriting.

The time series of meanders traced by several persons were
analyzed to find models for the forces. To model the forces, the
trigonometric trapezoid functions we introduced in [27] can
be used. The tracing of a meander requires movements into
two directions. Therefore, we have to model the time series
f1 and f2 (resulting from px and py by coordinate system
transformation, cf. Section IV).

Definition (trigonometric trapezoid function): Let k ∈ N,
a0, . . . , ak ∈ R, c1, . . . , ck ∈ R+

0 and r1, . . . , rk ∈ R+. A
function t : R+

0 → R is called a trigonometric trapezoid
function of degree k, if
(i) t(x) = a0 for x ∈ [0, r1],

(ii) t(x) = ak for x >
∑k

i=1(ri + ci),
(iii) t(x) = 0.5(ai−ai−1)

(
1− cos(x−s

e−s · π)
)

+ai−1 for i ∈
{1, . . . , k − 1}, s =

∑i
j=1(rj + cj), e = s + ri+1, and

x ∈
[∑i

j=1(rj + cj),
∑i

j=1(rj + cj) + ri+1

]
, and

(iv) t(x) = ai for i ∈ {1, . . . , k − 1} and x ∈[∑i
j=1(rj + cj)− ci,

∑i
j=1(rj + cj)

]
.

The intervals
[∑i

j=1(rj + cj),
∑i

j=1(rj + cj) + ri+1

]
for i ∈

{1, . . . k − 1} are called flanks of the trapezoid function.

Trigonometric trapezoid functions resemble common trape-
zoid functions with the exception that the flanks are not linear
but sinusoidal. This results in a better approximation of the
drawing movements.

In our case, the degree k of the trigonometric trapezoid
functions is given by the number of segments of a meander.
As the segment boundaries (segmentation points) correspond
to corners of the meander, these must be identical (i.e., at
the same points in time) for the two time series records
f1 : [0, b] → R and f2 : [0, b] → R. Consequently, if we fit
two models (parameterized trigonometric trapezoid functions)
t1 : [0, b] → R and t2 : [0, b] → R to the two time series, all
the points ci and ri must be identical for the two models. This
requirement implies additional constraints for the objective
function

2∑
i=1

∫ b

x=0

(ti (x)− fi (x))2 dx

which has to be minimized considering those constraints. As
we have data measured at discrete points in time, the integral
can be replaced by a sum.

However, the optimization problem described above is
highly nonlinear and multi-modal, and it is crucial to find a
very good starting point for any iterative optimization tech-
nique (e.g., Quasi-Newton or Conjugate Gradients). Otherwise
(e.g., with a randomly selected starting point), there is a high
chance that any optimization technique converges in a bad
local minimum of the objective function.

In order to obtain a good starting point, we initially segment
the time series. In principal, the corners of a meander would
be appropriate segmentation points. However, position infor-
mation is not available with our biometric pen. Therefore, we
use the time series f1 and f2 for segmentation. An analysis
of these time series reveals that the four corner types of a
meander correspond to different features of the time series: A
left upper corner corresponds to a falling flank of f2, a right
upper corner to a rising flank of f1, a bottom right corner
to a rising flank of f2, and, finally, a bottom left corner to a
falling flank of f1. However, a large number of consecutive
data points corresponds to one of these patterns. Therefore,
we apply additional knowledge about the approximate length
of the segments to select appropriate segmentation points.

We first utilize a low-pass filter and then apply the seg-
mentation algorithm of Brault and Plamondon [28] to the
time series f1 and f2 to find appropriate candidate points
for segmentation points. Basically, this algorithm has been
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developed to segment signatures at distinct points. Figure 4
gives an example.

Fig. 4. Candidate points found with Brault’s method.

Fig. 5. Final result of the segmentation.

Then, we assess the candidate points with respect to the
derivative of the time series and possibly existing level differ-
ences in a local environment around a candidate point. For the
actual choice of segmentation points we pass through the time
series and iteratively determine intervals which estimate the
position of the respective “next” segmentation point. Within
these intervals we select the candidate point with the highest
rating. Figure 5 shows the candidate points selected as segmen-
tation points. Near the end of the time series the segmentation
points are closer because the vertical and horizontal lines of
the meander are shorter near its center.

Next, we have to determine values for the parameters of
the two models which can be used as a starting point for
an optimization. For each segmentation point we determine
the point for which the level difference to subsequent points
is maximized. This point determines the boundary between a
flank and the interval with a constant value within a segment.
Now, the two models can be initialized with appropriate
starting values for all parameters (cf. Figure 6).

Finally, we apply the interior-reflective Newton method [29]
to improve these values, i.e., to minimize the objective func-
tion. That is, we utilize an iterative optimization method with
an appropriate starting point. The result of this optimization

step is shown in Figure 7. It should be mentioned again that
the two time series and the respective models should not be
regarded separately as additional constraints concerning the
segmentation points must be met (see above).

Fig. 6. Starting Function of the approximation.

Fig. 7. Result of the iterative approximation.

In a next step, we extract characteristic features from the
time series f1 and f2 as well as from the parameters of the
approximating trapezoid functions. These features will be used
as inputs for an SVM classifier. We compute features for the
entire meander, for all segments, separately for horizontal and
vertical segments, and separately for segments corresponding
to the four directions of hand movement. The features reflect
the drawing speed, inaccuracy, regularity, etc. Altogether, 102
features are determined. Feature selection algorithms (filter
algorithms such as ReliefF and SFG; cf. [30]) were applied
to assess the importance of features. Figure 8 shows the
feature rating obtained in the first run of the SFG algorithm
(Sequential Forward Feature Generation). The most important
feature has an information gain of about 0.4. The nine most
important features according to SFG, which utilizes a complete
search strategy in the feature space, will be defined now.

In the following, [1;n] refers to the currently evaluated time
interval, h (with h ≤ k) is the currently evaluated number of
segments, and f1 and f2 are the time series as mentioned
before.
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Fig. 8. Feature selection with SFG (one run).

The most important features m1 – m9 according to the
feature selection algorithm are:

• Inaccuracy: The inaccuracy is determined on the basis
of a principal component analysis (PCA) of the two time
series f1 and f2 yielding time series d1 and d2. We
assume that after the coordinate system transformation
one of the force directions dominates for each segment
(d1). If the meander would be traced perfectly, the force
into the other direction (d2) would be zero. Therefore,
we compute

Coeff j∈{1,...,h}
def= PCA (f1, f2) ,

di,j∈{1,...,h}
def= fi · Coeff j ,

error j∈{1,...,h}
def=

√
1
n

∫ n

x=1

(d2 (x)− avg(d2))
2
dx,

m1
def= avgj∈{1,...,h}(error j).

• Deviation: The distance between the trigonometric trape-
zoid functions t1 and t2 and the time series f1 and f2 is
the deviation of the trace from the model.

error j∈{1,...,h}
def=

∑
i

√
1
n

∫ n

x=1

(fi (x)− ti (x))2dx,

m2
def=

∑
h

(errorj) .

In addition, we determine similar features for each seg-
ment:

m3
def= avgj∈{1,...,h} (errorj ) ,

m4
def= minj∈{1,...,h} (errorj ) ,

m5
def= maxj∈{1,...,h} (errorj ) .

• Flank heights: The median of the flank heights is deter-
mined by

flank j∈{1,...,h}
def=

1
2

∑
i

(fi (j)− fi (j − 1)),

m6
def= medj∈{1,...,h}

(
flank j

)
and the irregularity of the flank heights is

m7
def= iqrj∈{1,...,h}

(
flank j

)
/ (m6) ,

where the interquartile range is used as it is more robust
to outliers than the standard deviation [31].

• Duration: The durations of the constant intervals and the
flanks are measured by

m8
def= medj∈{1,...,h} (cj) ,

m9
def= medj∈{1,...,h} (rj) .

VII. EXPERIMENTAL RESULTS

For our experiments we evaluated records of 35
schizophrenic persons (with different medications) and 18
healthy persons. Every test person provided three meander
samples in each of several test sessions (between 1 and
10 sessions for schizophrenic persons and between 2 and 4
test sessions for healthy persons). The data for schizophrenic
persons have been recorded at the Mental Health Institution
Taufkirchen, Germany. Altogether, there are 285 meanders of
schizophrenic persons and 171 meanders of healthy persons
available.

For a cross-validation test, five subsets were selected in a
way such that the records from one test session were either
used for training or for testing, but not for both.

In a classification test with SVM (see Section IV) we want
to show whether differences of the fine motor skills of healthy
and schizophrenic persons can be detected automatically.
Therefore, we computed the features as set out in Section
VI. We determine classification rates for each of the three
meanders of a test session and for all together. Results are
shown in Table II. It can be stated that the classification rates
are quite high. They do not differ significantly for the three
meanders – we can assume that there is no familiarization
effect – and are even slightly higher when all the available
data are used for training and testing. In this case, we obtain
a classification error of about 4.2% only.

TABLE II
EXPERIMENTAL RESULTS (CLASSIFICATION RATES).

Overall Healthy Schizophrenic Min. Max.
(Both Classes) (Class 0) (Class 1)

Meander 1 94.1% 94.9% 93.7% 79% 100%
Meander 2 94.2% 95.0% 93.7% 70% 100%
Meander 3 94.2% 94.9% 93.7% 74% 100%
Meander all 95.8% 95.9% 95.8% 88% 100%

Features which allow a good differentiation between
schizophrenic and healthy persons are the inaccuracy m1 and
the deviation m2. Box plots that show the quartiles of the
distributions of the two features (not scaled here) are set out in
Figures 9(a) and 9(b). For schizophrenic persons the variance
of feature values is noticeably higher. Furthermore, the values
of the inaccuracy measure and the deviation measure are
typically higher.

In future applications we want to observe and to assess the
etiopathology of a specific patient during her/his clinical treat-
ment. We are mainly interested to quantify various influences,
e.g., by the type of the applied drugs (e.g., typical or atypical
neuroleptics), by changes in medication, or by additional drugs
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(a) Feature m1 (inaccuracy).

(b) Feature m2 (deviation).

Fig. 9. Box plots of the distributions of two important features.

(e.g., sedatives). For the available data this is not possible as
they are too heterogeneous. That is, we only have a very low
number of schizophrenic patients who take one drug only. In
addition, we only have a very low number of schizophrenic
patients who attended five or more test sessions. However,
we claim that interesting results will be obtained in future
investigations: Figure 10 shows the development of the feature
m1 (inaccuracy) for three persons. For the healthy person –
Figure 10(a) – the values of the feature m1 do not change
significantly in subsequent test sessions (low average, low
variance). One of the schizophrenic patients – Figure 10(b) –
receives atypical neuroleptics at a relatively constant level and
also sedatives. Compared to the healthy person, the variance
is higher, but we also notice a deterioration of the accuracy
during the clinical treatment. The other schizophrenic patient
– Figure 10(c) – is alternately treated with various drugs, both
atypical and typical neuroleptics. Additionally, he occasionally
received an antiparkinsonian and an antidepressant. Between
the seventh and the eighth test session, the patient switched
from a depressive into a manic phase. At this point in time,
the accuracy seems to improve suddenly.

Conclusions concerning influences of various drugs cannot
be drawn at the moment. However, it can be noticed that ...

• ... the (in-)accuracy of healthy persons does not vary

(a) Development of m1 for a healthy person.

(b) Development of m1 for a schizophrenic person with more or less constant
medication.

(c) Development of m1 for a schizophrenic person taking various types of
drugs.

Fig. 10. Box plots of the distribution of the feature inaccuracy in several
consecutive test sessions.

significantly within one test session and for consecutive
test sessions, cf. Figure 10(a).

• ... it seems possible to detect trends in the development of
the (in-)accuracy if a schizophrenic patient is medicated
at a relatively constant level, cf. Figure 10(b).

VIII. CONCLUSION AND OUTLOOK

In this article, it is shown that it is possible to detect differ-
ences of the fine motor skills of healthy and schizophrenic
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persons automatically. This is even possible on a basis of
relatively simple hand movements such as those effected when
tracing a meander. A script generator model (Hollerbach’s
oscillator model) is applied to compute various characteristic
features from force and tilt angle signals measured with a
biometric pen. These features are subsequently classified by
support vector machines.

In order to rate the fine motor skills gradually – e.g.,
when the etiopathology of a person must be assessed or
the medication of a patient must be controlled – we must
analyze a larger number of more complex hand movements.
For example, patients have to write words containing the letters
“ll”, or to draw circles in various sizes either controlled by eye
or not (cf. closed loop vs. open loop writing). For that purpose,
we also have to adapt our algorithms. We also want to integrate
position sensors into our pen which will make the assessment
of accuracy and deviation easier and more precise. In addition
to that, a grip force sensor will provide additional information.
Other applications that could be realized in the future are
therapy support systems for children with ADHD (attention-
deficit / hyperactivity disorder) or patients with apoplectic
strokes. In [27], [32], we already investigated the influences
of low temperature, physical strain, and writing with the non-
preferred (left) hand.
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