
Abstract- Among the many applications of mass spectrometry, 
biomarker pattern discovery from protein mass spectra has 
aroused huge interest in the recent years. While research efforts 
have raised hopes of early and less invasive diagnosis, they 
have also brought to light the many issues to be tackled before 
mass-spectra-based proteomic patterns become routine clinical 
tools. Undoubtedly, biomarker selection among the high 
dimensional input data is the most critical part of each pattern 
recognition algorithm applied to this area. In this paper we 
pursued a new feature selection strategy that explores all data 
points as initial features rather than just peaks. Using the 
derived features in conjunction with only two intuitive fuzzy 
rules, we achieved a considerable accuracy over a couple of 
well-known ovarian cancer datasets.  

Keywords: Mass Spectroscopy, Ovarian Cancer, Biomarker, 
Data Mining, Fuzzy Linguistic Rules. 

I. INTRODUCTION

Cancer is a major public health concern in all over the 
world. Cancer accounts for one of every four deaths in the 
US. Currently the best way of reducing the morbidity and 
mortality of cancer is to detect and treat it in the earliest 
stages [1].In particular the early diagnosis of ovarian cancer 
has the potential to reduce the mortality associated with this 
disease down to satisfactory level [2].  

 A biomarker is a biologically derived molecule in the 
body that indicates the progress or status of the disease 
[1].Biomarkers under investigation include genes, proteins 
and small molecules, which base four major bioinformatics 
branches: genomics, transcriptomics, proteomics and 
metabonomics.  

 In proteomics studies, the usage of mass spectrometry 
profiling of patient serum proteins, combined with advanced 
data mining algorithms, to detect protein patterns associated 
with malignancy, has been reported as a promising field of 
research to achieve the goal of early cancer detection 
[2].Mass spectrometry provides rapid and precise 
measurements of the size and relative abundance of the 
proteins presents in a complex biological/chemical mixture 
biomarkers which can distinguish between cancer and 
normal samples and at the meantime, provide the ability to 
convenient interpretation of the results for the physician.  

A mass spectrum usually contains thousands of different 
mass/charge (m/z) ratios on the x-axis, each with 
corresponding signal intensity on the y-axis. For data mining 
purposes, each m/z ratio is represented as a distinct variable 

whose value is the intensity; hence each case can be seen 
geometrically as a single point in a very high-dimensional 
space. In classification for diagnosis and biomarker 
discovery, the problem of high dimensionality is 
compounded by small sample size: diseased specimens are 
relatively rare and difficult to collect, especially when 
invasive procedures are involved. This twofold pathology, 
called the high dimensionality- small-sample (HDSS) 
problem, is the main issue that plagues and propels current 
research on protein mass spectra classification [3]. 

Dimensionality reduction is crucial to biomarker 
discovery. First, the curse of dimensionality must be coped 
with if the classification problem is to be solved at all. 
Whatever the classification goal, the most effective way so 
far to get around the HDSS problem is by reducing the size 
of the variable set. More importantly, extracting a handful of 
variables from an initial set of several thousands is not a 
simple preprocessing expedient but the very goal of 
biomarker discovery. The final variables and their 
interaction in the learned model constitute the proteomic 
signature, which the biomedical researcher must then 
identify, validate, and interpret. In short, dimensionality 
reduction and classification are the co-essential goals of 
mass spectra mining for biomarker discovery [3]. 

 Aspects of knowledge representation and reasoning have 
dominated research in fuzzy set theory (FST) for a long 
time, at least in that part of the theory which lends itself to 
intelligent systems design and applications in artificial 
intelligence[4]. The significance of fuzzy set theory in the 
realm of pattern recognition is adequately justified in 
• Representing linguistically phrased input features for 
processing. 
• Providing an estimate (representation) of missing 
information in terms of membership values. 
• Representing multiclass membership of ambiguous 
patterns and in generating rules and inferences in linguistic 
form [5]. 

So far, many pattern recognition studies have done in the 
investigation of cancer diagnosis from mass spectra [6]. 
Although some of these studies utilized methods that lead to 
high sensitivity and specificity, but lack of intuitive insight 
of results make them completely “black box” approaches 
that are almost uninterpretable for the physician. To the best 
of our knowledge, the fuzzy rule based system has been 
rarely used in proteomics mass spectroscopy domain, while 
it has shown a great potential in various areas of knowledge 
discovery in database (KDD). 

Extracting Efficient Fuzzy If-Then Rules from Mass Spectra of Blood 
Samples to Early Diagnosis of Ovarian Cancer  

A.Assareh, M.H.Moradi

Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. 

502

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)

1-4244-0710-9/07/$20.00 ©2007 IEEE



0 5000 10000 15000
0

50

100

In
te

ns
ity
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b: The Spectrum after Baseline Correction
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c: The Spectrum after Baseline Correction & Smoothing
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d: The Spectrum after Baseline Correction, Smoothing & Normalization

The main objective of this paper is to explore a simple 
framework of linguistic rule building to extract knowledge 
hidden in proteomics raw datasets which to some extent can 
improve the ‘black box’ drawback of other methods. In the 
other word, this approach will simplify the mutual 
knowledge communication between human expert and 
classifier that may lead to following advantages: knowledge 
acquisition from generated rules, extend the physician 
insight into the achieved results and consequently better 
validation of the results, and the ability of employ biological 
knowledge in the decision making via adding some extra 
rule to the rule set by the human expert. 

II.DATASET 
This research takes the surface enhanced laser 

desorption-ionization time-of-flight (SELDI-TOF) mass 
spectrometry (MS) serum proteomic patterns as input. 

Serum SELDI-TOF spectra data were used from patients 
and a healthy screening population. 

 Here, we utilized the two well-known MS datasets of 
ovarian cancer available at American National Cancer 
Institute (NIC) website. The first sample set, so called 
dataset includes 91 controls and 162 ovarian cancers and the 
second one consists of 100 normal, 16 benign and 100 
ovarian cancer samples. Here, we dedicated roughly 70% of 
each dataset samples for training and the others for testing. 

A mass spectrum is a curve where the x-axis indicates 
the ratio of the weight of a specific molecule to its electrical 
charge (M/Z, in Daltons per unit charge) and the y-axis is 
the signal intensity for the same molecule as a measure of 
the abundance of that molecule in the sample. 

Each mass spectrum curve represents the expression 
profile of 15154 peptides defined by their M/z ratios with 
corresponding intensities. Figure 1 shows a sample of the 
dataset before and after preprocessing. 

III. PREPROCESSING 
A typical mass spectrum consists of signals, and noise. 

The noise is the undesired interfering signal caused by 
sources unrelated to the biochemical nature of the sample 
being analyzed and the signal is the relative abundance of 
ions originating from the peptides, proteins, and 
contaminants present in a sample [1]. Here we have two 
kinds of noises: low frequency (or baseline) and high 
frequency. The baseline is the slowly varying trend under 
the spectrum; and the high frequency noise consist of 
chemical background, electronic noise, signal intensity 
fluctuations , statistical noise, warping of the signal shapes 
(due to overcharging in ion traps), and statistical noise in the 
isotopic clusters[3].

The goal of preprocessing stage is to ‘‘clean up’’ the data 
such that machine learning algorithms will be able to extract 
key information and correctly classify new samples based on 
a limited set of examples [1]. 

In analyzing mass spectra of blood samples, the 
preprocessing stage roughly includes three main tasks: 
baseline correction, smoothing and normalization. In 
followings, we will discuss the strategies we employed in 
the mentioned steps. 

A. Baseline Correction 

Mass spectra exhibit a monotonically decreasing Baseline 
which can be regarded as low frequency noise because the 
baseline lies over a fairly long mass-to-charge ratio range. 

In this study, we utilized local average within a moving 
window as a local estimator of the baseline and the overall 
baseline is estimated by sliding the window over the mass 
spectrum. The size of the applied window was 200 M/Z. In 
addition shape-preserving piecewise cubic interpolation has 
been applied to regress the window estimated points to a soft 
curve. 

B.Smoothing 

Mass spectra of blood samples also exhibit an additive 
high frequency noise component. The presence of this noise 
influences both data mining algorithms and human observers 
in finding meaningful patterns in mass spectra. The heuristic 
high frequency noise reduction approaches employed most 
commonly in studies to date are smoothing filters ,the 
wavelet transform (WT) , or the deconvolution filter[1].
Here we employ a locally weighted linear regression method 
with a span of 10 M/Z to smooth the spectra. Figure 2 
illustrates the smoothing effect on a section of a typical 
spectrum. 

Figure 1. typical mass spectra before preprocessing(a), after baseline 
correction(b), smoothing(c) and normalization(d).
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C.Normalization

A peak in mass spectra indicates the relative abundance of a 
protein; therefore, the magnitudes of mass spectra cannot be 
directly compared with each other [1]. 

Normalization methods scale the intensities of mass 
spectra to make mass spectra comparable. We normalized a 
group of mass spectra by standardizing the area under the 
curve (AUC) to the group median. 

IV. FEATURE EXTRACTION & SELECTION 
Since abundance data from within the mass error rate are 

considered to represent the same protein, features are often 
extracted from mass spectra based on the properties of 
‘‘peaks’’ that are comprised of multiple M/z 
points[1].However there is no guarantee based on which we 
assure that each peak represent one and only one protein. 
Apparently, if only peaks are taken into account, some other 
major discriminant features are neglected. In the present 
study we considered the abundance (intensity) information 
of every point in preprocessed mass spectra as the initial 
features. To avoid regional correlation between the selected 
features, we used regional information to outweigh the value 
of potential features using following factor: 

W= (1-Exp(-(Dist/2)2))           (1) 

Where Dist is the distance between the candidate feature 
and previously selected features. A small Dist (close to 0) 
outweighs the significance statistics of only close features. 
This means that features that are close to already picked 
features are less likely to be included in the output list. 
Combining this weighting factor with the “T test” feature 
selection algorithm over the training set [7], we derived 
following 10 M/Z indices as the most discriminant features 
in the first dataset: 2239, 2690, 1645, 2242, 1677, 2236, 
2694, 3551, 1775 and 1681.Conducting a same method, the 
biomarkers of the second dataset were selected as follows 
:3930, 4177, 3926, 4181, 6291, 3934, 6211, 4174, 4244 and 
3748. 

V.CLASSIFIER 
Figure 3 illustrates the discrimination power of the first 4 

features (biomarkers) by showing the distribution of 
biomarkers values over the cancer and the normal groups in 

the first dataset. Considering the histograms of the 4 
biomarkers, it quickly comes to mind that the two classes are 
separable just by defining two simple linguistic rules over 
the markers. If we assign two membership functions, so 
called low and high, for each of the first 3 markers, the 
intuitively derived linguistic rules are as follows: 

In applied sample, 

“ if  biomarker 1 is low & biomarker 2 is low & biomarker 3 
is low, then the sample belongs to the  Normal group.” 
“ if  biomarker 1 is high & biomarker 2 is high & biomarker 
3 is high, then the sample belongs to the  Cancer group.” 

Consequently, we utilized fuzzy logic as the powerful tool 
of soft computation using linguistic variables and rules. To 
design two fuzzy sets, high and low, as the linguistic values 
of the features .We utilized Gaussian membership functions 
and adjusted their parameters with respect to histogram 
analysis of the feature value distribution over the training 
samples. Figure 4 illustrates the designed membership 
functions of biomarkers of the first dataset. 

Figure 2. A section of a typical spectrum before and after smoothing.

Figure 3. Histogram analysis of the first 4 derived biomarkers in 
the first dataset.Obviously, the distribution of biomarkers 
intensities over cancer and normal groups are separable. 

Figure 4. Membership function of the fuzzy if-then rules, 
designed with respect to histogram analysis of the biomarkers.

504

Proceedings of the 2007 IEEE Symposium on Computational 
Intelligence in Bioinformatics and Computational Biology (CIBCB 2007)



0 2 4 6 8 10
0

20

40
a-Biomarker 1 (Cancer Group)

0 2 4 6 8 10
0

10

20
e-Biomarker 3 (Cancer Group)

0 2 4 6 8 10
0

20

40
b-Biomarker 1 (Normal Group)

0 2 4 6 8 10
0

20

40

N
um

be
r 
of

 S
am

pl
es

c-Biomarker 2 (Cancer Group)

0 2 4 6 8 10
0

20

40

N
um

be
r 
of

 S
am

pl
es

d-Biomarker 2 (Normal Group)

0 2 4 6 8 10
0

20

40 f- Biomarker 3 (Normal Group)

0 5 10 15 20
0

20

40
g-Biomaarker 4 (Cancer Group)

0 5 10 15 20
0

20

40
h-Biomarker 4 (Normal Group)

0 0.5 1 1.5 2
0

20

40
i-Biomarker 5(Cancer Group)

0 0.5 1 1.5 2
0

20

40 j-Biomarker 5 (Normal Group)

0 2 4 6 8
0

20

40
k-Biomarker 6 (Cancer Group)

0 2 4 6 8
0

20

40 l-Biomarker 6( Normal Group)

0 1 2 3 4 5
0

20

40
m- Biomarker 7 (Cancer Group)

0 1 2 3 4 5
0

20

40 n-Biomarker 7 (Cancer Group)

0 2 4 6 8
0

20

40
o-Biomarker 8 (Cancer Group)

0 2 4 6 8
0

20

40
p-Biomarker 8 (Normal Group)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

low high

0 2 4 6 8 10 12
0

0.5

1

low high

0 1 2 3 4 5 6 7
0

0.5

1
low high

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
low high

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
low high

0 1 2 3 4 5 6 7 8
0

0.5

1

D
e

gr
ee

 o
f 

m
em

be
rs

hi
p

low high

Marker  1

Marker  2

Marker 6

Marker  5

Marker  4

Marker  3

Using only the two above-mentioned rules, we achieved 
perfect accuracy over the test dataset by following typical 
properties for our inference engine:   
Product inference engine (comprising individual-rule base 
inference with union combination, Mamdani’s product 
implication, algebraic product for all T-norm operation and 
maximum for all the S-norm operation), singleton fuzzifier 
and maximum defuzzifier[8]. 

But for the second dataset, the condition is not as 
straightforward as the first case. Figure 5 shows histogram 
analysis of the first 8 biomarkers over cancer and normal 
groups (we considered benign subjects as normal 
ones).Obviously the overlap of intensity distribution 
between cancer and normal groups, makes the classification 
process more complicated. This led us to utilize 3 more 
biomarkers to achieve a satisfactory result. Similar to the 
first dataset, here we defined two linguistic rules over the 
selected markers as follows: 

In applied sample, 
“if biomarker 1 is low & biomarker 2 is low & …& 
biomarker 6  is low, then the sample belongs to the  Cancer 
group.” 
“if biomarker 1 is high & biomarker 2 is high &…& 
biomarker 6 is high, then the sample belongs to the  Normal 
group.” 

Here, in addition to histogram analysis, we used genetic 
algorithm [9] to adjust the input membership functions of the 
rules. Figure 6 illustrates the resulting membership 
functions. 

VI. RESULTS 
Diagnostic tests are typically evaluated in terms of their 

sensitivity and specificity. Sensitivity is the fraction of 
disease cases that are correctly identified as disease. 
Specificity is the fraction of non-disease cases that are 
correctly identified as non-disease. 
     We also implemented two classifiers, based on two 
popular methods: linear discriminant analysis (LDA) and K 
nearest neighbor (KNN), to assess our system performance 
from classification view. All of the classifiers were driven 
using the same features. For each evaluation we used similar 
preprocessed dataset. As priory mentioned, we randomly 
hold out approximately 30% of each dataset for test. The 
results are illustrated in table 1 and show the excellence of 
proposed fuzzy system comparing to both KNN and LDA 
methods. 

VII. CONCLUSION 
In this paper, we described a new method for feature 

selection which considers all of the M/Z points as potential 
features, rather than just considering peaks. We applied a 

Figure 5. Histogram analysis of the first 8 derived biomarkers in the second dataset.Overlap between the biomarkers intensity distribution, 
makes the classification more complicated compairing to the first dataset. 

Figure 6. Membership function of the fuzzy if-then rules, designed with 
respect to histogram analysis of the biomarkers and adjusted by  genetic 

algorithm. 

Table 1:  Comparison of classification performance of the proposed 
method with LDA and KNN over the two datasets. 

Dataset 1 
Classifier Sensitivity Specificity Total 

Accuracy 
KNN 98.39% 100% 98.91% 
LDA 100% 100% 100% 

Proposed 
Method 

100% 100% 100% 

Dataset2 
Classifier Sensitivity Specificity Total 

Accuracy 
KNN 83.33% 55.56% 68.18% 
LDA 100% 52.78% 74.24% 

Proposed 
Method 

90% 83.33% 86.36% 
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weight factor in ‘T test’ feature selection algorithm to 
eliminate those feature which are regionally correlated and 
thus likely to correspond to a same peptide. Intuitive 
linguistic rules are then built based on histogram analysis of 
the biomarkers intensities and the membership function are 
adjusted using genetic algorithm. Our emphasis was to 
extract limited number of simple rules, which can be 
understood by human being as knowledge and furthermore 
human expert can add his/her knowledge to the system by a 
number of rules. In the other word, the proposed method 
simplifies the “knowledge exchange” procedure between 
human being and classification system. Moreover from 
classifier perspective, and using only two simple linguistic 
rules, the proposed method achieved a satisfactory accuracy 
and outperformed two well-defined classification methods: 
LDA and KNN.  
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