
Abstract -  The 2005 DARPA Grand Challenge was a 213 Km 

robot  race  across  the  Mojave  Desert  between  Nevada  and 

California.   Our  team attempted to  run the course  using only 

stereo vision.   I  designed a  novel real-time large-image stereo 

vision system that uses sparse stereo and is biologically inspired. 

It uses a filter similar to that used in primary visual cortex to 

locate small line segments.  These are then arranged to form a 

polyline representation of the scene and estimate the depth. The 

technique was capable of nine frames per second of a megapixel 

image on a single processor.  Accuracy was questionable and the 

robot did not compete in the race for other reasons.

I. INTRODUCTION

Pixels strike mammalian retinal photodetectors, but  are 

immediately  transformed  and  never  sent  to  the  brain. 

Biological vision functions quite well using something like 

Gabor functions as the primitive.  These appear to be the 

most  primitive  representation  of  the  input  available  in 

cerebral  cortex  [1]  [2].   Yet  almost  all  the  research  in 

machine vision uses pixels as the primitive.  How could 

visual  tasks  be  done  using  Gabor  functions  as  the 

primitive?   I  attempted to answer  this  question  with  an 

application to a real world problem: stereoscopic ranging 

of obstacles in the 2005 DARPA Grand Challenge.

I  developed  a  method  of  edge  and  corner  detection 

without using pixels as part of my doctoral dissertation [3]. 

The method is  based  on  the  strategy used in  the  brain, 

where  pixels  strike  the  retina  but  are  discarded  before 

transmission to the brain via the optic nerve [4].  A truly 

biologically modeled system would go beyond this signal 

transformation and continue with the brain’s organization, 

as done in [5] and [6]. Since we are personally quite good 

at  vision  we  know  that  this  organization  works.   The 

interesting  question  is:  does  it  work  on  a  conventional 

computer that does not have a billion parallel processors? 

It has been demonstrated that this method can find edge 

location, orientation and contrast in artificial images [7]. It 

has never before been tried on a real world problem.  We 

decided  to  use this  method on the  2005 DARPA Grand 

Challenge.

A. Biological Vision

This work is inspired by a biological approach but does 

not attempt to mimic biology.  The question that I attempt 

to answer is “Why does the brain do this transformation 

and what computations can be based on it?”  This can be 

thought of as fitting into Marr’s first two levels: what is the 

goal of the computation and what algorithms can be used 

to  carry  it  out  [8]?   The  third  level  is  hardware 

implementation.  I have chosen to implement on a standard 

digital computer.  I will leave it to others to show that the 

algorithm can be implemented neuromorphically.  

B. Edge Detection

The visual field is tiled by a set of overlapping circular 

receptive fields.  Each circle contains four filters with an 

odd  and  even  pair  oriented  horizontally  and  vertically. 

Each  filter  is  correlated with the  image.   We make the 

assumption that at this  scale,  the image consists of dark 

and light half planes.  By examining the phase of the odd 

and even filters, we can find the position of the edge.  If 

our assumption that the image is a pure edge is correct, we 

can find its position to subpixel resolution. The magnitude 

of the two filters corresponds to the contrast of the edge. 

Features below a threshold are ignored [9].

The  four  filter  technique  is  a  simplification  of  the 

original method.  The filters are steerable,  which means 

that the number needed to interpolate the angle is related 

to the degree of the polynomial [10]. The filters resemble 

Gabor  functions,  but  they  are  actually  windowed 

polynomials.  The odd filters are first order and the even 

filters are second order.  Five filters are required to find 

orientations: two odd and three even.  Finding orientation 

takes  about half  the algorithm’s time.  For stereo vision, 

only features parallel or perpendicular to the epipolar line 

are of interest.  Thus for efficiency, we only look at filters 

in four orientations.

A brief explanation of this method is on the Web at [11]. 

The phase of the odd and even filter pair is used to locate 

the edge.

Some definitions:
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A  one-dimensional  feature has  a  significant  filter 

response in one direction but not in the normal direction. 

This is the same thing as a short line segment.

A two-dimensional feature has a normal response that is 

large  relative  to  the  primary  response.   This  may  be  a 

corner  or  other  interest  point.   When  orientations  are 

restricted to vertical  and horizontal,  a diagonal line is a 

two-dimensional feature.

A polyline is a doubly linked list of adjacent features.  

C. The Grand Challenge

The 2005 DARPA Grand Challenge [12] was a 213 Km 

robot race across the Mojave Desert between Nevada and 

California.  All participating vehicles must be completely 

autonomous and complete the unknown course in less than 

ten hours.  Speeds may reach 100 Km/hr.  The course is 

specified  by  about  2000  to  3000  rectangular  segments 

given in latitude and longitude coordinates.  The race was 

run on October 8, 2005, with five vehicles completing the 

entire course. Stanford University claimed the prize with a 

robot that used five LIDAR systems plus a camera [13].

Most  teams  entering the  Grand Challenge have made 

use  of  active  signal  ranging  as  a  primary  method  for 

detecting obstacles.  Our Team Sleipnir made the decision 

to  make  stereo  vision  the  primary  obstacle  avoidance 

method.  There are several reasons for this decision:

• We believe that stereo can perform adequately in 

real-time.

• Our  method  does  not  depend  on  global 

knowledge  and  can  be  done  in  parallel  to  hit 

frame-rate targets.

• Our analysis showed a visual system supporting 

faster driving speeds than swept ranging.

• Visual systems offer a cheaper solution than some 

other methods.

• Lack of active signals can achieve stealth and is 

not as vulnerable to countermeasures.

The  system  that  we  developed  guided  a  modified 

Kawasaki all terrain vehicle (ATV). A high accuracy GPS 

system was used for navigation [14].  The primary sensor 

was a Silicon Imaging SI-1280F 1280 x 1024 monochrome 

camera [15].  We used monochrome because it had higher 

resolution  and  color  was  judged  to  not  contribute 

significant  information.   We used  a  single  camera  with 

mirrors set up to provide virtual stereo [16] [17] [18].  This 

avoided  problems  with  different  exposures  on  the  two 

cameras  and  increased  robustness.  The  image  was  split 

into a top and a bottom image, with the bottom being the 

true image.  The mirrors flipped both images right to left 

and the bottom image was upside-down.  Figure 1 shows a 

view  from  Sleipnir’s  garage.   This  image  has  some 

problems  with  mirror  adjustments.   In  addition  to  the 

intended up-down disparity, there is an artifactual right-left 

shift  in  the  images,  which  is  not  completely  uniform. 

These images were adequate for developing the algorithms.

II. STEREO TECHNIQUES

The methods that we used were based on edge detection 

and a sparse match of features [19].   Much of the work 

done in stereo is based on dense image analysis [20].  We 

expect a  sparse algorithm to be more suitable for open-

ended conditions in real-time.  Sparse algorithms are not 

compatible with the taxonomy developed for dense stereo. 

Lacey et al.’s [21] experience on the TINA system has led 

to  the  conclusion  that  by the  time of  reaching  the  later 

stages of scene analysis, all required stereo information is 

provided  by  the  sparse  data.   They  found  that  accurate 

determination of dense 3D data can only be done in the 

context of knowledge of the scene contents.

There are several stages to the stereo match algorithm. 

They can be briefly summarized as:

A) Find line and corner segments in the image.  This is 

restricted to a grid that limits how many line segments will 

be  found.   Only  line  segments  that  have  a  significant 

component  perpendicular  and/or  parallel  to  the  epipolar 

are considered. Typically this reduces the problem from 1.3 

million pixels to 2,600 line segments.

B)  Determine  stereo from isolated  line  segments.   A 

small  window  (typically  5  x  5)  is  applied  to  the  line 

segment  representations  of  both  images  and  the  best 

correlation  is  selected.   If  the  center  of  the  match 

corresponds  to  a  segment  in  each  image,  the  match  is 

noted and uniqueness enforced.

C)  Combine  line  segments  into  polylines.   Segments 

with incompatible disparities do not combine.  Typically 

there are about 200 polylines in each image.

D)  Match  polylines.   The  individual  segments  that 

match  are  made  consistent  so  that  one  polyline  in  one 

image matches one in another image.  This is achieved by 

merging and splitting the original polylines.

E) Generate a single three dimensional representation of 

the scene.  All depths are adjusted so that the depth of each 

line is smooth.

F)  Format  the  3D  view  in  a  form  that  is  useful  for 

driving in a smooth path while avoiding obstacles.

A. Line Segments

The  orientation  perpendicular  to  the  epipolar  line 

contains  all  the  information  useful  for  stereo  matching. 

The other orientation carries no stereo information, but it 

can be useful for joining stereo segments.  If an edge is 

oriented  diagonally,  it  will  produce  a  response  at  both 

orientations  and  it  is  possible  to  determine  both 

coordinates.  An edge with components at two 
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Figure 1.  Raw image taken from Sleipnir’s garage using single 

camera with a mirror box.

orientations  is  called  a  two-dimensional  feature.   The

original  algorithm  used  steering  and  determined  the 

primary angle of the feature.  In that case, response at the 

normal  angle  always  meant  a  corner  or  interest  point. 

Angle  determination  has  been  eliminated  because  it  is 

computationally  expensive.   The  source  code  for  this 

method is publicly available [11].

Figure 2 is a detail of the line segments that have been 

fit to an image.  In this detail, a diameter of 21 pixels was 

used for the filters.  The detail is 480 x 300 pixels and is 

tiled  by a  36 x 18 grid.   The grid  used  in  the  work  is 

hexagonal, but a rectangular grid could also be used.

B. Isolated Stereo

Each  position  in  the  grid  has  been  identified  as  “no 

feature”, a “horizontal edge”, a “vertical edge”, or “other”. 

To  find  disparities  between  the  upper  and  lower

Figure 2. Detail of line segments fit to a portion of the image. 

The image has been flipped to undo the mirror reversal.

images, form a window with a width of five columns and 

height three.  Compare these windows between images at h 
positions on the epipolar.  Typically we might use  h = 5 

and circles with a diameter of 21 pixels for a 105 pixel 

maximum  disparity.   We  find  disparity  by  sliding  the 

window up to  h positions and selecting the position that 

gives the best match to the corresponding feature types in 

the 5 x 3 slots. If a feature is present, we know which side 

is dark and which light.  Light-to-dark edges do not match 

dark-to-light edges.  Negative disparities are not allowed.

At each of the 15 points in the window, the match is 

scored according to Table 1.   For example,  if  the lower 

image  has  type  “horizontal  edge”  (perpendicular  to 

epipolar line) and the corresponding position in the upper 

image does also,  that position scores +5.  That  assumes 

that  both features have the same orientation for  dark-to-

light.  If their orientations differ, they are scored as 0. This 

base score is modified by the difference in edge strength. 

Contrasts are scaled from -255 to 255.  The score found at 

a point is:

Type_match –  W * |Su – Sl| / 255            (1)

where Su and Sl are the contrast strengths in the upper and 

lower images and W is a weighting factor.  A value of 3 has 

been  used for  W.   Contrast  is  generally  set  to 0  for  no 

feature. The score for a stereo match at a point is the sum 

of these scores over the 15 circle grids of the window.

The  point  we  are  starting  from  has  type  “horizontal 

edge” or “other”.  There are two cases for disparity match. 

Either  the  matched  point  has  a  significant  stereo 

component in the proper direction or it does not.  If it does, 

the two line segments are mutually  marked as matching 

each other and disparity is more accurately found from the 

segments.   If  we do  not  match  another  horizontal  edge 

(maybe because of occlusion), we still have a rough idea of 

the disparity from the window 

TABLE 1: TYPE MATCH SCORES; “L” = LINE  PERPENDICULAR 

TO EPIPOLAR; “P” = LINE PARALLEL TO EPIPOLAR; “C” = 

BOTH; ORIENTATIONS ARE INDICATED BY “+” OR “-”.

none +

L

-L +P -P +C -C

none 2 1 1 1 1 1 1

+L 1 5 0 0 0 0 0

-L 1 0 5 0 0 0 0

+P 1 0 0 3 0 1 1

-P 1 0 0 0 3 1 1

+C 1 0 0 1 1 5 0

-C 1 0 0 1 1 0 5

match.  In either case we can compute the distance as a 

constant times the reciprocal of disparity.

The stereo match is  done twice,  once from the lower 

image to the upper, and once the other way.  If both the 

source  and  target  points  are  type  “horizontal  edge”  or 

“other” and they do  not match  another  point  better,  the 

results will be the same. In this case, disparity is computed 

from the positions of the two edges and neighbors do not 

contribute.   In  the  case  of  a  strong  match,  the 
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corresponding  matching  points  are  mutually  noted  and 

uniqueness is enforced.

We may encounter a situation in which a feature in the 

lower  image  matches  one  in  the  upper  image,  but  that 

upper  feature  matches  a  different  feature  in  the  lower 

image.  This can arise when there is one line in the upper 

image and two lines  in the lower, either due to occlusion 

or  an  artifact  of  edge  detection.  In  this  case,  pick  the 

stronger match and discard the other.

This initial stereo match is inaccurate.  Some points get 

the correct depth, some are mismatched, and others have a 

disparity but no definite point of correspondence.  Further 

processing will improve the stereo match.

C. Form Polylines

We start the next stage with a set of three- dimensional 

line  segments  in  each  image.   This  step  is  confined  to 

handling each image separately.  Polylines are grown by 

starting with a line segment and considering its neighbors. 

For example, if we have a horizontal line and are growing 

to the right, we consider the cells to the right, upper right, 

and lower right.  To add a cell to the polyline it must have a 

compatible orientation and be close either in disparity or 

depth.  If the disparity of the neighbor is not known, it is 

acceptable.  Cells must be facing in the proper direction to 

be acceptable.  A dark-to-light edge does not join with a 

light-to-dark  edge.   Neighbors  are  selected  with  a 

preference to keep the line going at the same orientation.

D. Match Polylines

At this  point  there is  a  set  of  polylines  in  the  upper 

image and another in the lower image.  At features that 

match, we know the curves of the corresponding segments. 

For example,  lower curve  5 might  match five points  on 

upper curve 4, three on upper 84, two on 85,  one each on 

ten other curves and have 34 points with no specific match. 

It  is  desired  to  manipulate  things  so  that  each  polyline 

matches only one other polyline.  This is done by merging 

and  splitting  polylines  or  by  changing  the  previously 

identified matches

In the example, we would first see if upper curves 4 and 

84  should  be  combined.   Failing  that,  we would  try  to 

readjust the disparities so that the points on lower curve 5 

that match to 4 and 84 have the same disparity.  If that 

can’t be done, lower curve 5 is split apart into a section 

matching upper curve 4 and one that  matches 84.  This 

process  is  repeated  until  curves  have  a  single  matching 

curve.

This process will  tend to fragment the curves.  These 

pieces must then be reassembled, mindful of the improved 

stereo  match.   A  segment  that  has  no  definite  stereo 

matches (perhaps because it is parallel to the epipolar line) 

can be joined with a nearby polyline.  Unknown disparities 

are  then  filled  in  from  known  points  on  the  polyline. 

Figure 3 gives a depth representation of the lines fit to an 

image.

Figure 3. Distances found in an image.  It is color-coded so that 

purples show lines with no disparity, reds show close features, 

yellow and green  are  intermediate,  and blues  are  distant.  The 

color codes can be seen in [22].

E. Single 3D Representation

The representation for the top versus bottom image may 

not be identical to that for the bottom versus top image.  If 

they differ, one must be selected.

It is now possible to convert from pixel locations and 

disparity to meters from the camera.  A simplification step 

eliminates unneeded points by computing distances.  If we 

are considering three points A, B and C, compute distances 

AB, BC and AC.  If  AC is close to AB + BC, eliminate 

point B [23].

We  can  generate  a  polyline  that  contains  vertices  in 

meters.  This is compatible with Open GL or DirectX and 

those rendering engines could be used.  It should also be 

possible to tessellate the surface and give the underlying 

model.  This step has not yet been done.  Also awaiting 

future work are the tasks of formatting the information in a 

form that supports driving and using multiple frames for 

motion stereo

III. TIMING AND ACCURACY

The task required for the site visit was to complete a 200 

meter course autonomously while avoiding obstacles.  The 

obstacles were to be two trash cans that DARPA people 

would  place  at  unknown  positions  on  the  course.   We 

tested the stereo vision system by taking 25 pictures from 

Sleipnir’s garage.  Each picture contained two trash cans at 

known ranges.   The image set  contained  some  difficult 

cases:  cans  too far  away,  too close,  in  deep  shadow or 

largely occluded.  Part of the objective of the photo set was 

to establish the maximum range for stereopsis.  It appears 

to be about 20 meters. Table 2 gives the known range for 

each trash can and the median of the range found by the 

algorithm of objects at the can’s location.  All ranges are in 

meters.  All images are given in the table.  Can numbers 

may be non-consecutive because some attempts to acquire 

images failed.  The camera was not rigorously calibrated.

The procedure  for  finding the median  was to  look  at 

each image and describe manually a rectangular block of 

pixels  containing  the  trash  can.   Code  was  written  to 
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output any range data found within this rectangle and take 

its median.  Features found in this rectangle do not always 

correspond  to  the  range,  which  was  found  with  a  tape 

measure.   The  table  shows  that  there  is  only  a  rough 

agreement between the actual range and that detected by 

the algorithm.  Objects with zero or negative disparity are 

taken to be at 100 meters.  If no object was found in the 

block of pixels, the situation is reported as “***”.

The results in Table 2 were based on using a coarse grid, 

with diameter of 21 pixels.  It is fast,  and can do a one 

megapixel  image at  9  frames per second on  a 2.4 GHz 

Pentium 4 PC1.  We could achieve higher frame rates by 

using three or four processors. 

However, the method suffers from lack of accurate edge 

location.   The  base  algorithm  can  achieve  sub-pixel 

accuracy if it is true that it is looking at a tile containing

TABLE  2.  COMPARISON  OF  GROUND  TRUTH  (TRUE)  AND 

DETECTED RANGES (FOUND) FOR TWO TRASH CANS IN EACH 

OF 24 IMAGES (DISTANCES IN METERS).

Can# True1 Found1 True2 Found2

4 9.4 3.9 9.8 3.9

6 3.4 3.4 7.5 3.7

7 3.4 4.3 7.3 3.7

8 6.1 3.3 19.2 29.7

9 27.1 100 12.8 17.5

10 27.1 100 27.4 ***

11 20.4 100 27.4 ***

12 20.4 100 20.4 100

14 13.4 23.7 16.5 14.2

15 13.4 35.3 16.5 14.7

16 13.4 27.1 16.5 14.9

17 13.7 28.1 15.2 26.2

18 13.7 29.8 13.7 13.9

19 13.7 37.9 13.7 16.9

20 13.7 39.5 3.7 1.6

22 21.9 76.6 23.2 ***

23 29.3 *** 29.3 ***

24 29.3 *** 30.5 ***

25 29.3 *** 45.7 100

26 32.0 100 45.7 100

28 39.6 *** 45.7 ***

29 11.3 11.4 11.9 ***

30 10.1 12.9 11.9 8.3

 only a  half-plane.   If  the  feature is  more complex,  the 

algorithm may mislocate by several  pixels.  The effect is 

compounded, since large filters are decimated to improve 

speed. The coarse edge detector is fast,  but  it  is  largely 

limited  to  determining  whether  an  object  is  close,  mid-

ground, or far.  Objects that are too close can be ignored, 

since  there is  not  enough reaction  time  to  do  anything. 

1
 The image is a pair of 1265 x 400 pixels each.

Thus we can use the system as a fast prefilter to identify 

medium range interest points for further processing.

The half-plane assumption is more likely to be true if 

the size of the tiles is reduced. Thus it should be possible 

to  use  smaller  filters  and  get  better  results.   However 

smaller filters are more likely to produce artifactual double 

edges when only one line is present. This can arise if the 

same horizontal edge is detected in the upper field of one 

filter and the lower field of another.  Edges close to the 

center of a field are positioned accurately, but those on the 

periphery tend to be less accurate.  Thus recognising when 

a  double  detection  should  be  a  single  or  double  line  is 

nontrivial.

IV. CONCLUSIONS

The non-pixel method can be used to classify objects as 

close,  intermediate  or  distant.   It  is  fast  enough  to  be 

competitive with existing algorithms. It has not yet been 

optimized and it can go faster.  It has the property that its 

speed can be controlled by making the circular windows 

bigger or smaller.  Thus, while the robot is standing still at 

the start, it can do a highly detailed scan.  When the robot 

is moving at maximum speed, the level of detail can be 

reduced to maintain real-time performance.  The grid does 

not  have  to  be  uniform;  objects  representing  possible 

collisions can be handled with more detail than those on 

the periphery.

The  method  is  highly  suitable  for  parallel 

implementation and does not depend on global processing. 

It could be done on three processors, with one handling the 

center at higher detail and the others covering the left and 

right periphery.

While  the  speed is  acceptable,  the  accuracy  does not 

appear to be good enough.  Double lines can be produced 

as artifacts of the method and they are difficult to correct. 

The line growing and matching is somewhat ad hoc and 

not as robust as would be desired.  While the algorithm can 

achieve sub-pixel accuracy on artificial  images,  it  seems 

unable to replicate that in natural images.  Testing has been 

preliminary and a better characterization of the results is 

unavailable.  For these reasons, it has been decided to not 

use this method for the 2007 DARPA Grand Challenge.

One reviewer commented that the method is suitable for 

artificial  images,  but not natural  ones because it has no 

model for noise. It is true that the method can do subpixel 

edge location in synthetic images and would thus perform 

better.  Natural image noise and clutter is non-gaussian and 

non-linear.   No one has a realistic  model for it.   It  was 

hoped  that  fitting  filters  to  sections  of  a  natural  image 

would defeat the noise.  This seems to not be the case.

The source code is downloadable [11].  CDs will also be 

available at the conference.
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