
Daubechies Complex Wavelet Transform  
Based Moving Object Tracking 

 
Ashish Khare1 and Uma Shanker Tiwary2, Senior Member IEEE 

1. Department of Electronics & Communication, University of Allahabad, Allahabad, India. 
2. Indian Institute of Information Technology, Allahabad, India. 

 
Abstract -This paper describes a new method for moving object 
tracking, using complex wavelet transform. Real-valued wavelet 
transform is widely used in tracking applications, but it suffers 
from shift-sensitivity. Daubechies complex wavelet transform is 
more suitable for tracking due to approximate shift-invariance 
nature. The proposed method is intelligent enough to segment the 
object from a scene. Segmentation in the first frame has been 
done by computing multiscale correlation of imaginary 
component of complex wavelet coefficients and then object is 
tracked in next frames by computing the energy of complex 
wavelet coefficients corresponding to the object area and 
matching this energy to that of the neighborhood area. The 
proposed method is simple and does not require any other 
parameter except complex wavelet coefficients for segmentation 
as well as tracking. 
 

I. INTRODUCTION 
 Object tracking is an important problem in computer 
vision [1]. Object tracking is needed in many applications 
such as sport video analysis to extract highlights, human-
computer interface to assist visually challenged people, 
medical image analysis, etc. Object tracking requires the 
segmentation of the object from scene followed by tracking. 
 The most popular method for tracking is based on a 
moving object region tracking [2]. The method identifies and 
tracks a bounding box, which is calculated for connected 
components of moving objects in 2D space. These methods 
have a major shortcoming that they rely on many properties of 
object such as size, color, shape, velocity, etc. For avoiding 
this shortcoming feature based tracking is used. Feature 
selection of the object requires some heuristic. We have used 
complex wavelet coefficients of the object as a feature. 
Although real-valued wavelet transform can be a useful tool 
for object tracking among several frames, but it suffers from 
shift-sensitivity [3,4]. Use of complex wavelet transform will 
reduce this shortcoming. Several complex wavelet transforms 
like dual tree complex wavelet transform (DTCWT) [5], 
projection-based complex wavelet transform [6], steerable 
pyramid complex wavelet transform [7], etc. have been 
proposed. These transforms are approximate shift-invariant 
but in all of the above transforms, the use of real filters make 
them not a true complex wavelet transform and due to the 
presence of redundancy, they are also computationally costly. 
For avoiding this, Daubechies complex wavelet transform [8] 
can be used which is also approximate shift-invariant. 
 In the present paper complex wavelet coefficient has been 
used in an effective manner to first segment the object 
followed by tracking. Literature for tracking using complex 
wavelet transform is few and far between. Magarey and 

Kingsbury [9] described a motion estimation algorithm, using 
a separable 2-D DWT, which is based on complex-valued pair 
of 4-tap FIR filters with Gabor-like characteristic. A more 
efficient motion estimation algorithm using complex wavelet 
transform is given by Yilmaz and Severcan [10]. Not many 
researchers have applied complex wavelet transform with the 
assumption that, by adding imaginary component, the 
algorithm will not be suitable for real-time applications. We 
have shown that due to reduced shift-sensitivity property, 
complex wavelet transform is quite helpful for tracking. We 
have used imaginary components of complex wavelet 
coefficients in an intelligent manner to segment and thereby 
tracking the object in the sequence of frames. Further use of 
only one feature for segmentation as well as tracking makes 
the algorithm appropriate for real time applications. 
 The rest of paper is organized as follows: Section II 
describes reduced shift-sensitivity property of complex 
wavelet transform. Section III deals with the proposed 
segmentation and tracking algorithms. Experimental results 
and conclusions are given in section IV and V respectively. 
  

II. REDUCED SHIFT-SENSITIVITY OF DAUBECHIES 
COMPLEX WAVELET TRANSFORM 

 Object tracking is a problem where moving object may be 
present in translated as well as rotated form among different 
frames. Thus any object feature which remains invariant by 
translation and rotation of the object will be helpful for 
tracking. Most of the transform features vary by translation 
and rotation of the object. We have found that Daubechies 
complex wavelet transform of the object remain 
approximately invariant in such conditions. The approximate 
shift invariance property of Daubechies complex wavelet 
transform is described below. 

The basic equation of Multiresolution theory is the scaling 
equation [11]  

( ) 2 (2 )n
n

t a t nφ φ= −∑       (1) 

where, an s are coefficients. The an s can be real as well as 
complex valued and ∑an = 1. 
Daubechies’s wavelet bases {ψj,k(t)} in one dimension are 
defined through the above scaling function and multiresolution 
analysis of 2( )L ℜ [11]. She has given the general solution for 
standard Daubechies scaling function. During the formation of 
solution if we relax the Daubechies condition for an to be real 
[12], it leads to complex valued scaling function. The 
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orthogonal wavelet basis ,{ ( ), , }j k t j kψ ∈ ∈ and generating 
wavelet ( )tψ  is given by, 

1( ) 2 ( 1) (2 )n
n

n

t a t nψ φ−= − −∑            (2) 

and ( )tψ and ( )tφ shares the same compact support [-N, N+1]. 
Any function ( )f t can be decomposed into complex 

scaling function and a mother wavelet as: 

            
max

0

0

0

1

, ,( ) ( ) ( )
j

j j
k j k k j k

k j j

f t c t d tφ ψ
−

=

= +∑ ∑                  (3) 

where, 0j  is a given low resolution level, 0{ }j
kc  and { }j

kd are  
known as approximation and detail coefficients. 
 The Daubechies complex wavelet function can be made 
symmetric. The symmetry property of filter makes it easy to 
handle the boundary problems of the object [12]. We have 
used symmetric Daubechies complex wavelet (SDW) 
transform for segmentation as well as tracking. SDW is also in 
linear phase and its linear phase property allows it to retain the 
shape of the object during reconstruction [12]. 
 A transform is shift sensitive if an input signal shift 
causes an unpredictable change in transform coefficients. Real 
valued wavelet transforms are shift-sensitive. Fig. 1 illustrates 
the reduced shift-sensitivity of symmetric complex 
Daubechies wavelet (SDW) transform. Fig. 1(a) is an input 
signal while fig. 1(b) is the shifted form of the signal by one 
sample. Fig. 1(c) and 1(d) are high-pass wavelet coefficients 
of signals using real wavelet transform (db4) while fig. 1(e) 
and 1(f) show the magnitude of high-pass wavelet coefficients 
using complex wavelet transform (SDW6). This figure 
indicates that the nature of magnitude and energy of complex 
wavelet coefficients remain approximately same by shifting 
the input signal and the energy is also approximately invariant. 
Thus magnitude and energy of complex wavelet coefficients 
remain approximately invariant by translating the object in 
different frames of a video. To perform a precise detection of 
any feature, a transform should not “miss” the feature due to 
such shifts. Fig. 2 shows the sensitivity of different wavelet 
transforms to shifts of the input image. It shows an image 
shifted by 0, 1 and 2 pixels to its right and its Daubechies real 
and Daubechies complex wavelet based reconstruction at 2 
levels. From the figure it is clear that complex wavelet 
transform is less sensitive to shift and it does not miss the 
features of image. Fig. 2 also has a circular edge structure and 
as the circular edge structure  moves  through space, the  
reconstruction using real discrete wavelet transform 
coefficients changes erratically, while complex wavelet 
transform reconstructs all local shifts and orientations in the 
same manner. This indicates that complex wavelet transform 
is also rotational invariant. Thus rotation of object in different 
frames keep magnitude and energy of complex wavelet 
coefficients approximately same. This property is very much 
useful for detection of same object in different frames. 
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Fig. 1. (a) Original Signal, (b) signal shifted by one sample, (c)-(d) high-pass 
wavelet coefficient of original signal and shifted signal using real db4 
wavelet, (e)-(f) Magnitude of complex wavelet coefficients of original signal 
and shifted signal using SDW6 wavelet. 
 

       
(a) 

       
(b) 

       
(c) 

 
Fig. 2. (a) Image shifted by 0,1 and 2 pixels to the right. Image reconstructed 
from 2 levels of wavelet coefficients using (b) Real db6 wavelet and (c) 
Complex SDW6 wavelet. 
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III. THE PROPOSED OBJECT TRACKING METHOD 
 The proposed method consists of two steps – 
 
A. The Segmentation Algorithm 
 Segmentation of object has been done in complex wavelet 
domain. The proposed segmentation algorithm uses imaginary 
components of multiscale complex wavelet coefficients. The 
intelligence of algorithm lies in the fact that the segmentation 
process is automatic in nature and require no intervention. The 
algorithm is based on the concept that multiscale scaling and 
wavelet projection of the function ( )f t  carries edge 
information in its imaginary components [12,13]. 

Let ( ) ( ) ( )t k t i l tφ = +  be a scaling function and 
( ) ( ) ( )t u t i v tψ = +  be a wavelet function. Let ( )l̂ ω and 
( )k̂ ω are Fourier transforms of ( )l t  and ( )k t . The ratio 

     ( ) ( )
( )

ˆ
ˆ
l
k

ω
α ω

ω
= −                          (4)           

is strictly real-valued and behaves as 2ω  for ω π<  [13]. This 
observation relates the imaginary and real components of 
scaling function: ( )l t accurately approximates the second 
derivative of ( )k t , up to some constant factor. Similarly for 
wavelet function ( )tψ , the ratio 

    ( ) ( )
( )

ˆ
ˆ
v
u

ω
ω

ω
β = −                    (5)    

is also real valued.  
Equations (4) and (5) indicate ( ) ( )l t k tα≈ ∆  and 

( ) ( )v t u tβ≈ ∆ . This gives multiscale projections of a function 
( )f t  as, 

, , ,

, ,

( ) , ( ) ( ) , ( ) ( ) , ( )

( ) , ( ) ( ) , ( )

j k j k j k

j k j k

f t t f t k t i f t l t

f t k t i f t k t

φ

α≈

= +

+ ∆

     (6) 

, , ,

, ,

( ) , ( ) ( ) , ( ) ( ) , ( )

( ) , ( ) ( ) , ( )

j k j k j k

j k j k

f t t f t u t i f t v t

f t u t i f t u t

ψ

α≈

= +

+ ∆

     (7) 

From (6), it can be concluded that the real component of 
complex scaling function carries averaging information and 
the imaginary component carries Laplacian (i.e. edge 
information). Similarly from (7), it can be concluded that the 
imaginary component of complex wavelet function also 
carries edge information. We exploited this property of 
Daubechies complex wavelet coefficients for detection of 
edges. For edge detection, we used interscale product of 
imaginary component of wavelet coefficients i.e. direct 
multiplication of imaginary components of the subband 
decomposition, similar to noise filtration technique developed 
by Xu et.al. [14]. Large values of direct multiplication locate 
important edges. This approach is straightforward, easier to 
implement and robust.  

In order to calculate edge coefficients, correlation among 
imaginary component of wavelet coefficients at adjacent 
scales has been computed. In the 1-D case, the correlation is 
defined as 

( ) ( )( )
0

2 , Im 2 ,
L

j j r
L

r
C k Wf k+

=
= ∏          (8) 

where ( )( )Im 2 ,j rWf k+  denotes imaginary component of complex 
wavelet coefficient at kth point and j+r th level. Since wavelet 
coefficients of actual edges propagate well across scales, while 
noise dies out swiftly with increasing scale, the above 
correlation enhances major edges. Instead of choosing a 
threshold from each subband ( )( )Im 2 ,j rWf x+ , the method 
extracts gradually more and more edge coefficients. The 
procedure for edge detection is as follows – 
     Step 1. Rescale the power of ( ){ }1

2 ,j
L k n

C k
≤ ≤

to that of  
  ( ){ }1

2 ,j
k n

Wf k
≤ ≤

. 
     Step 2. Identify an edge at position k if ( ) ( )2 , 2 ,j j

LC k Wf k> . 
This procedure can be easily extended for detection of edges 
in 2-D images. By means of experiments, we found that the 
choice for L = 3 gives good results.  

After detecting strong edge points, a simple 
hysteresis based thresholding [1] has been used for 
segmentation and a square bounding box has been made to 
cover the object. The result of the segmentation algorithm 
described above is shown in fig. 3 for cameraman image. 

(a)  (b)  
Fig. 3. (a). Cameraman image and  

(b). Segmented image by the proposed segmentation method 
   
B.  The Tracking Algorithm 

The proposed tracking algorithm uses the advantage of 
approximate shift-invariance property of Daubechies complex 
wavelet transform, described in section II. The shift-invariance 
property makes the feature vectors independent of precise 
location and rotation. If the object is moving (equivalently 
shifted in frames), then the nature of complex wavelet 
coefficients in the region where object is placed will not 
change. This has been shown in fig. 1 and fig. 2. The tracking 
algorithm searches the object in next frame according to the 
value of current velocity, which is computed from the 
previous three frames and direction of movement. In all the 
computations, it has been assumed that the frame rate is 
adequate and the size of the object should not change between 
adjacent frames. However our algorithm is capable of tracking 
an object whose size changes within a range in various frames. 

Calculation of velocity of the moving object is based on 
object position coordinates. For this, we have computed 
centroid of the object. This computation makes each object 
correspond to a single point. Further, we assume that the 
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movement of object in a few adjacent frames is close to 
straight line. The object centroids from previous three frames 
are used to predict new centroid in the next frame. 

The tracking algorithm does not require any other 
parameter except complex wavelet coefficient. Complete 
tracking algorithm is as follows – 
Step 1. Segment the first frame, by the method described in 

subsection III.A. Make a square bounding box to 
cover the object with centroid at (C1,C2) and compute 
the energy of complex wavelet coefficients of the 
square box, say E, as 

( , )

2

,
i j

bounding box

i jE w
∈

= ∑  

where ,i jw  is complex wavelet coefficients at (i,j)th 
point. 

Step 2: for frame_no = 2 to last do 
 compute the complex wavelet coefficients of the  

frame, say ,i jw . 
     if frame_no = 2 or 3 
            search_length = 10. 
     else 
      search_length = 4. 

 Predict the centroid (C1,C2) of the current 
frame with help of centroids of previous three 
frames and basic equations of straight line 
motion. 

     endif 
     for i = - search_length  to +search_length do 
                        for j = - search_length to +search_length do 
   Cnew1 = C1 + i; Cnew2 = C2 + j; 

 Make a bounding box with centroid (Cnew1, 
Cnew2). 

 Compute the difference of energy of wavelet 
coefficient of bounding box, with E, say di,j. 

                        end 
     end 
     Find minimum of {di,j} and its index, say (m,n). 
     C1 = C1 + m; C2 = C2 + n. 
 Mark the object in current frame with bounding 

box with centeroid (C1,C2) and energy of bounding 
box E as 

     
( , )

2

,
i j

bounding box

i jE w
∈

= ∑  

 end. 
 

IV. EXPERIMENTS AND RESULTS 
 To evaluate the proposed tracking method, we applied it 
to several video clips of football match, for tracking football. 
The frame size is 256 by 256. For one representative video 
clip of ten frames, we have compared the results of the 
proposed method with the tracking results of Magarey [9] by 
our own program. The results are shown in fig. 4. It illustrates 
the result of the method applied on the sequence. Here 
SDW14 Daubechies complex wavelet transform is used, as it 
is reported as an optimal choice [4,15]. From fig. 4, it is quite 

clear that the proposed tracking method performs well. The 
proposed method process 14 frames/second, while method of 
Magarey [9] process 16 frames/second but the proposed 
method does more accurate tracking as evident from the fig.4. 
Centroid values of the tracked object are also given. We have 
traced the position of centroid in complex wavelet domain, as 
it gives information about the locality of object. It is also 
evident that the tracking method can track the object 
efficiently even in the presence of background, whose 
intensity is very similar to the object intensity. This indicates 
the robustness of the proposed method. 

 
                     Fame 1           Frame 2 

 
      Frame 3           Frame 4 

 
      Frame 5          Frame 6 

 
      Frame 7           Frame 8 

 
        Frame 9          Frame 10 

(a) 
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        Frame 1  (Centroid (77,49))                 Frame2 (Centroid (78,45))  

 
        Frame3 (Centroid (78,43))         Frame 4 (Centroid (79,41)) 

 
        Frame 5 (Centroid (83,40))                Frame 6 (Centroid (85,38)) 

 
         Frame 7 (Centroid (85,37))                Frame 8 (Centroid (89,38))  

 
         Frame 9 (Centroid (94,31))                 Frame 10 (Centroid (95,31)) 
 

(b) 
 
Fig. 4. Tracking of football in 10 consecutive frames by (a). Motion 
estimation [9] method and (b). the proposed method 

 
V. CONCLUSIONS 

 Wavelet transform is known to provide position localized 
information. This information can be obtained at various 
levels depending on the resolution we require. However for 
moving objects the use of real valued wavelet transform is not 
appropriate because of its shift-sensitivity. We have shown 
that the reduced shift sensitivity of complex wavelet transform 

can be used for tracking the moving object in video clips. The 
reduction of search space has been done intelligently based on 
the two properties – 

1. The object boundaries and hence the centroid of the 
object can be computed with the help of imaginary 
component of complex wavelet coefficients of the 
object only (not the whole image). The image is 
segmented in the first frame to object and 
background in the complex wavelet domain. 

2. The total energy computed with the help of modulus 
of complex wavelet coefficient remains 
approximately constant in various frames. 

In addition, the rigid body assumption and smooth 
velocity change assumption provide extra reduction in search 
space. The method is simple, efficient and robust. The 
tracking algorithm does not require any human intervention. 
However for asymmetrical shapes of the object the method 
may require some change. Similarly the method may also 
require improvement for a very complex background. The 
paper is the first step towards exploration of new application 
of Daubechies complex wavelet transform.  
 

REFERENCES 
[1] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis and 

Machine Vision, Thomson Asia Pvt. Ltd., Singapore, 2001. 
[2]  O. Masoud and N.P. Papanikolopoulos, “A novel method for tracking and 

counting pedestrians in real-time using a single camera”, IEEE 
Transactions  on Vehicular Technology, vol. 50, pp. 1267-1278, 2001. 

[3] I.W. Selesnick, R.G. Baraniuk and N. Kingsbury, “The Dual-Tree 
Complex Wavelet Transform”, IEEE Signal Processing Magazine, pp. 
123-151, November 2005. 

[4]  A. Khare and U.S. Tiwary, “A New Method for Deblurring and Denoising 
of Medical Images using Complex Wavelet Transform”, in Proc. IEEE 
International Conference of  EMBS, pp. 1897-1900, 2005. 

[5]  N. Kingsbury,  “Complex  wavelets  for  Shift I nvariant  analysis  and 
filtering of signals,” Applied and Computational Harmonic Analysis, vol. 
10, pp. 234-253, 2001. 

[6] F.C.A. Fernandes, R. L. C. Spaendonck, and C. S. Burrus, “A new 
framework for complex wavelet transform”, IEEE Transactions on Signal 
Processing, vol. 51, no.7, pp. 1825-1837, 2003. 

[7]  A.A. Bharath and J. Ng, “A Steerable complex wavelet construction and 
its application to image denoising”, IEEE Transactions on Image 
Processing, vol. 14, no. 7, pp. 948-959, 2005. 

[8]  J.-M. Lina and M. Mayrand, “Complex Daubechies Wavelets”, Applied 
and Computational Harmonic Analysis, vol. 2, pp. 219-229, 1995. 

[9]  J.F.A. Magarey and N. Kingsbury, “Motion estimation using a complex-
valued wavelet transform,” IEEE Transactions on Signal Processing, vol. 
46, no. 4, pp. 1069-1084, April 1998 

[10] S. Yilmaz and M. Severcan, “Complex discrete wavelet transform based 
motion estimation for vision-based tracking of targets,” in Proc. of 13th 
European Signal Processing Conference, September 4-8, 2005, Antalya, 
Turkey. 

[11] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. 
[12] A. Khare and U.S. Tiwary, “Symmetric Daubechies Complex Wavelet 

Transform and its application to Denoising and Deblurring”, WSEAS 
Transactions on Signal Processing, vol. 2, no. 5, pp. 738-745, May 2006. 

[13] D. Clonda, J.-M. Lina and B. Goulard,  “Complex  Daubechies  wavelets: 
Properties and statistical image modeling”, Signal Processing, vol. 84, pp. 
1-23, 2004. 

[14] Y. Xu, J.B. Weaver, D.M. Healy and J. Lu, “Wavelet transform domain 
filters: a spatially selective noise filtration technique”, IEEE Transactions 
on Image Processing, vol. 3, no. 6, pp. 133-155, 1994. 

[15] A. Khare and U.S. Tiwary, “Daubechies Complex Wavelet Transform 
based Technique for Denoising of Medical Images”, International 
Journal of Image and Graphics, in press. 

40

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)


