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ABSTRACT

A novel approach based on computational intelligence tech-
niques for the identification of nonlinear dynamic systems
is presented in this paper. The technique encompasses both
the properties of the Karhunen-Loève Transform in repre-
senting stochastic processes and the approximation capa-
bilities of multi-layer neural networks. Experimental re-
sults on nonlinear systems governed by difference equations
demonstrate the effectiveness of the proposed approach that
is based on a real-time learning algorithm. Exhaustive ex-
perimentation on specific case studies was performed and
some experimental results were compared with other ex-
isting techniques such as the Lee-Schetzen method, Least
Mean Square (LMS), Recursive Least Square (RLS) and
Normalized Least Mean Square (NLMS) algorithms. A bet-
ter identification-accuracy was also achieved, and a reduc-
tion of some orders of magnitude in training-times com-
pared with the well-known Lee-Schetzen method was ob-
tained, thus making the proposed methodology one of the
current best practices in this field.

Index Terms – System Identification, Multi-Layer Neu-
ral Networks, Karhunen-Loève Transform, Nonlinear Dy-
namic Systems.

1. INTRODUCTION

Nonlinear system identification (NSI) is an important topic
that has been extensively studied for decades. The reason
for this great interest, is related to the intrinsic nonlinear
nature of physical phenomena occurring in the real world,
making the linear hypothesis just an approximation of the
real behavior.

NSI has applications not only in traditional fields such
as automatic control [1, 2], and communications [3, 4], but
also in image processing [5] and signal processing in gen-
eral [6].

Several different methods have been suggested for non-
linear system modelling, which those based on the Volterra

series and Neural Networks are the most commonly used.
In the former the system is modelled as a Taylor se-

ries expansion the generic term of which is a multiple inte-
gral depending on a function called a Volterra kernel [7, 8].
These identification techniques are aimed at determining the
kernels by stimulating the system with suitable signals. The
Lee-Schetzen method [7], based on the Wiener theory of
nonlinear systems and using white and non-white Gaussian
inputs, is the most successful technique. The main draw-
back of this approach is the computational effort required in
Kernel estimation, which limits the method to the identifi-
cation of low-order nonlinearities.

More recently identification techniques using recurrent
neural networks have been suggested [9,10]. This approach
is based on the properties of these networks which can be
viewed as nonlinear dynamic networks whose nonlinearity
in the feedback loop is implemented with a multilayer static
network. Identification of a specific nonlinear system cor-
responds to a learning problem: the need to determine an
adaptive algorithm or rule which adjusts the parameters of
the network on the basis of a given set of input-output pairs.
This method has proved to be very powerful for the identifi-
cation of some classes of systems represented by differential
and difference equations. The main limitation of this tech-
nique is the need for an a priori knowledge of the equation
to be modeled.

In this paper an approach1 to nonlinear system identifi-
cation that does not have the previously mentioned restric-
tions is suggested. The technique is based on the Karhunen-
Loève Transform (KLT) [12, 13] and uses a non-recurrent
neural network for the approximation of the no-memory
nonlinearity resulting from KLT expansion. The analyzed
nonlinear systems are stochastic nonlinear difference equa-
tions that generate complex output signals from several ini-
tial conditions and random parameters of the input signals.
Exhaustive experimentation on specific case studies showed

1A patent application of the proposed algorithm has been deposited by
C. Turchetti and F. Gianfelici [11] according to the copyright laws of the
Italian Government.
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Fig. 1. Autocorrelation Matrix as achieved from 3.104 real-
izations of the Duffing SP.

high identification performance with a limited number of
signals used in the training phase. Several comparisons with
Least Mean Square (LMS), Recursive Least Square (RLS)
and Normalized Least Mean Square (NLMS) algorithms
showed higher identification performance. Moreover, a re-
duction of some orders of magnitude on the processing-
times of the Lee-Schetzen method were achieved.

The paper is organized as follows. In Sect. 2 the rep-
resentation of nonlinear system with the Karhunen-Loève
Transform is proposed. In Sect. 3 the learning algorithm is
presented. In Sect. 4 experimental results are shown. Sect.
V gives some exhaustive comparisons with the state-of-the-
art. Finally, Sect. 6 concludes the work.

2. REPRESENTATION OF NONLINEAR SYSTEMS
WITH THE KARHUNEN-LOÈVE TRANSFORM

A system is defined, in a broad sense, as a rule T that asso-
ciates an input u to an output y, both u and y being stochas-
tic processes (SPs) (here we use a boldface letter for random
variables and SPs and a letter in normal font for the deter-
ministic variables and the SP realizations).

Since the output and the input are, in general, functions
of an independent variable t-time, position or any other
quantity - the rule is expressed symbolically as

y(t) = T [u(t)] . (1)

The identification problem can be stated as follows. Let
us denote with Ut0 the set of all functions u(t) with t ≥ t0
and with Yt0 the corresponding set of functions y(t) ob-
tained by transformation (1). We want to establish a math-
ematical relationship that is able to describe all the input-
output pairs so defined by varying the time instant t0. This
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Fig. 2. Identification of the Duffing system N=50, L=200,
Poly. Order (n = 10).

definition implies that in order to achieve a complete de-
scription the system has to be stimulated by all the functions
belonging to the space Ut0 . In the Wiener method, the use
of a white noise as the input signal ensures an exhaustive
exploration of the input space.

However, in most application problems a complete de-
scription of the system is not required. In fact, in the iden-
tification stage the input signal space could be restricted to
the set of signals actually occurring in the problem under
observation.

Let us suppose u is an SP depending on a random pa-
rameter x, (for the sake of notational simplicity and with-
out loss of generality we assume x is a scalar) with known
statistics. Since x varies, u(t,x) belongs to a subset of Ut0

and y(t) is also an element of a subset of Yt0 .
By referring to discrete-time finite-time signals, u =

{u[n], n = 0, 1, 2, . . . , L − 1} and y = {y[n], n =
0, 1, 2, . . . , L − 1} eq. (1) become:

y[n,x] = T {u[n,x]} , n = 0, . . . , L − 1 . (2)

In this case y can be represented by the Discrete
Karhunen-Loève Transform (DKLT)

y[n,x] =

L∑
j=1

kj(x)φj [n] , n = 0, . . . , L − 1 (3)

where φj [n], j = 1, 2, . . . , L are orthonormal functions.
Eq. (3) and its inverse are written in matrix form as{

y = Φk(x)
k(x) = ΦT y

(4)
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Fig. 3. Identification of the Narendra system N=50, L=200,
Poly. Order (n = 10).

where y and k are both vectors y = [y1, · · · ,yL], yj =
y[j − 1], k = [k1, · · · ,kL]. Φ is the orthogonal ma-
trix Φ = [φ1, · · · , φL] whose columns are the eigenvectors
φj [n], solutions of the eigenvalue equation

RyyΦ = ΦΓ (5)

where
Ryy = E{yyT } (6)

is the autocorrelation matrix of y, and Γ is the matrix with
eigenvalues on the main diagonal.

In order to approximate (4) a multilayer neural network
can be used, thanks to its properties of universal approxi-
mator. By referring for simplicity to a single layer net, the
output z = [z1, · · · , zL]T is given by

z = N[x;W ] (7)

where N[·] is a nonlinear operator and W is the ma-
trix of weights. The learning algorithm is particularly
simple if N[x;W ] is a linear function of W , so that
each component zj is a linear combination of n functions
{N1(x), · · · , Nn(x)}, namely

N[x;W ] = WN[x] , (8)

with N[x] = [N1(x), · · · , Nn(x)]
T and W =

[w1, · · · , wL]T . Due to the approximating properties
of the neural network we have

k (x) ≈ WN [x] (9)

and also
y ≈ ΦWN [x] . (10)

The above equation represents a model for the system (2),
with the matrix W to be estimated.
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Fig. 4. Learning Times (L=200).

3. LEARNING ALGORITHM

Determining the matrix of weights is equivalent to the
neural network learning from a collection of examples.
The previous equations relate the SPs, while in or-
der to derive a learning algorithm, we must refer to
the realizations x1, x2, . . . , xN of x and the realizations
y(1), y(2), . . . , y(N) of y which can be put in matrix form
as X = [x1, x2, · · · , xN ]T and D = [y(1), y(2), · · · , y(N)].
A currently used estimation of the autocorrelation matrix is
given by

Ryy ≈ R̂yy =
1

N
DDT (11)

and its spectral representation is

R̂yyU = UΛ (12)

where U = [u1, · · · , uL] is the matrix of eigenvectors and
Λ the matrix of eigenvalues. By projecting all the N real-
izations onto the basis U we obtain the KLT representation{

y(i) = Ua(i)

a(i) = UT y(i) i = 1, . . . , N (13)

that is the equivalent of (4) for the realizations. By using
(9), by virtue of the properties of multilayer networks, the
following approximation holds

a(i) ≈ WN
[
x(i)

]
, i = 1, . . . , N . (14)

Consequently

y(i) ≈ UWN
[
x(i)

]
, i = 1, . . . , N (15)

and for the single components we have

uT
μ y(i) ≈ wT

μ N
[
x(i)

]
μ = 1, . . . , L

i = 1, . . . , N
. (16)
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Fig. 5. RMS error as a function of the degree of the poly-
nomial approximation. The RMS error has been estimated
with 5.103 signals (L=200).

The matrix W can be easily determined by using the
least-mean-square approach, that corresponds to the back-
propagation algorithm. To that end minimizing the mean-
square-error for the μ-th component

Eμ =

N∑
i=1

[
ε(i)
μ

]2

=

N∑
i = 1

{
uT

μ y(i) − wT
μ N

[
x(i)

]}2
(17)

yields the following equation

∂Eμ

∂wT
μ

= 0 (18)

which reduces to

DT uμ = NT [X] wμ, μ = 1, . . . , L . (19)

Finally the weights wμ are estimated by solving the L linear
matrix equations (19).

4. EXPERIMENTAL RESULTS

In this section some experimental results of nonlinear sys-
tem identification using the previously described approach
are presented. Several examples with noiseless and noise
output signals are considered and presented in the three
parts into which this section is methodologically divided.
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Fig. 6. Identification of the Narendra system (with superim-
posed additive Gaussian noise), N=50, L=200, Poly. Order
(n = 10).

4.1. Example 1

The first example of system to be identified is described by
the difference equation:

y(t + 1) =
Δt2[Γcos(ωt) − βy3(t)] − y(t − 1)

(1 + kΔt)
+

+
y(t)[kΔt − αΔt2 + 2]

(1 + kΔt)
(20)

where Δt, k, α, β, Γ are constant parameters and ω is is a
random variable (r.v.). Equation (20) is the discrete-time
version of the well-known Duffing equation with Δt =
0.05, k = 0.3, α = −4, β = 1, Γ = 0.5, ω being an
r.v. uniformly distributed in the interval [0, 1] with mean
E{ω} = 3.5.

The autocorrelation matrix as estimated by eq. (11), is
depicted in Fig. 1 for 3.104 realizations.

Choosing a polynomial for the nonlinearity in (8), that
is

N [x] = [1,x, · · · ,xn]
T , (21)

corresponds to using a polynomial neural network [14, 15]
for approximating the function. As these networks are
particularly suitable due to the well-known approximating
properties of polynomials in function representation, they
were used in the identification of the experimental exam-
ples reported here.

The ability of polynomial networks in representing non-
linear input-output mappings is proved by the results in
Fig. 2. As can be see for N= 50 realizations of length
L= 200, and a polynomial order = 10 the approximation
is very good.
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Fig. 7. Identification of the third system N=50, L=200, Poly.
Order (n = 10).

4.2. Example 2

The second example is more complex. The system to be
identified is governed by a modified version of Narendra’s
difference equation [9]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t) = 0.6 sinα(πt) + 0.3 sin(3πt) + 0.1 sin(αt)

ỹ(t + 1) = 0.3 ỹ(t) + 0.6 ỹ(t − 1) + u(t)

y(t + 1) = � [ỹ(t + 1)]

(22)

where �[·] denotes the real part, and α is an r.v. uniformly
distributed in the interval [1, 2.5] with E{α} = 3.5. Fig-
ure 3 shows the identification capabilities of the proposed
approach for this system, with N=50, L=200, and Poly.
Order (n = 10) comparing several trajectories of eq. (22)
with those of the approximating model. The time required
in the learning times as a function of N and n is reported
in Fig. 4, clearly illustrating: (i) the well-known behav-
ior of Vandermonde-optimization for N ≤ n, and (ii) the
low computational complexity of the learning stage. Fig-
ure 5 shows the Root-Mean-Square (RMS) error in system
identification as a function of the polynomial degree. In or-
der to guarantee accurate measurements, 5.103 signals were
considered. The experimental results clearly show that the
RMS error decreases as N increases. Finally, identification
with additive gaussian noise superimposed on the Naren-
dra solutions, was considered. Figure 6 reports six cases
(randomly chosen) which show that the dynamics of the ap-
proximating signals are very-close to those of the system to
be identified, even when the signals are corrupted by noise.
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Fig. 8. Identification of the third system (with superimposed
additive Gaussian noise) N=50, L=200, Poly. Order (n =
10).

4.3. Example 3

The third example of system to be identified is described by
the difference equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = 0.6 sinα(πt) + 0.3 sin(3πt) + 0.1 sin(αt)

f [ỹ(t), ỹ(t − 1)] = ỹ(t)ỹ(t − 1)[ỹ(t) − 2.5]

g[ỹ(t), ỹ(t − 1)] = 1 + ỹ2(t) + ỹ2(t − 1)

ỹ(t + 1) = f [ỹ(t),ỹ(t−1)]
g[ỹ(t),ỹ(t−1)] + u(t)

y(t + 1) = � [ỹ(t + 1)]

(23)

where �[·] denotes the real part, and α is an r.v. uniformly
distributed in the interval [1, 2.5] with E{α} = 3.5. Fig-
ure 7 shows the identification results with N=50, L=200,
and Poly. Order (n = 10). Except for the case depicted in
Fig. 7-(d) where the abrupt variations in the dynamics gen-
erate several spikes (due to the low values of N and n), in
the other cases the approximated dynamics accurately fol-
low the signals generated by eq. (23). Moreover, it is worth
noting that the initial transitions, and the micro and macro
dynamics of signals are generally captured by this method.
Finally the case of additive Gaussian noise superimposed
on (23) was considered. Figure 8 reports the signals of the
given system corrupted by noise, and those from modelling
in bold lines. The dynamics are excellently identified in
cases (a), (d), and (f). Good results are obtained in cases
(c) and (d) where the strong spikes are filtered. Finally case
(b) has a good result only in two intervals of the signals:
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0 ≤ t ≤ 70 and 130 ≤ t ≤ 200. Nevertheless, an excellent
improvement in results can easily be obtained by increasing
the low values of N and n without a strong deterioration in
the learning times.

5. COMPARISON WITH THE STATE-OF-THE-ART

In order to clearly show the effectiveness of our approach,
several comparisons with current best practices were con-
sidered. In this analysis the Lee-Schetzen method [1, 7],
based on the cross-correlation technique for the identifi-
cation of Volterra-Wiener kernels, and the adaptive filter-
ing based approaches [16], such as the Least Mean Square
(LMS), the Recursive Least Square (RLS) and the Normal-
ized Least Mean Square (NLMS) algorithms, were taken
into account. Methodologically, the performance evalua-
tion was divided into two parts: processing times and iden-
tification accuracy. Figure 9 shows the estimated process-
ing times of the Lee-Schetzen method for the example 1.
As a reference implementation for this technique the algo-
rithm by Orcioni et al. [17, 18] was used, which is, to the
best of the authors’ knowledge, one of the best optimized
implementations available. The simulation results were ob-
tained with several signal and memory lengths, whose the
second ones are mathematically expressed as the percentage
between the signal length of each simulation and the used
memory. The order of Wiener-Volterra approximation is 3
and the Input/Output signals are 200. It is worth noting that
a reduction of several orders of magnitude in training-times
was obtained using our approach (Fig. 4) compared with the
above-mentioned Lee-Schetzen method. Additional com-

100 200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

14

16

18

20

Signal Length (L) [Sample]

T
im

e 
[s

]

N=200

LMS
RLS
NLMS
Intell. Ident. (KLT−based)

Fig. 10. The processing-times of: (a) the proposed approach
(Intelligent Identification based on KLT), (b) LMS, (c) RLS,
and (d) NLMS algorithms. The Poly. Order is n=5.

parisons with adaptive filter-based approaches are shown in
Fig. 10. In this case, the considered techniques are: (a)
the proposed approach (Intelligent Identification based on
KLT), (b) LMS, (c) RLS, and (d) NLMS algorithm. The
comparison results show that the identification-times of our
approach are similar to the LMS and NLMS algorithms, and
lower than the RLS algorithm. Moreover, it is worth noting
that our approach provides a better identification-accuracy
than the other techniques with no limitations in terms of
training-set dimensions and the signal length (Fig. 11).

6. CONCLUSIONS

A novel approach based on the approximation capabil-
ities of multi-layer neural networks for system identifi-
cation has been proposed. Experimental results on sev-
eral non-linear dynamical systems with random parame-
ters, clearly show the effectiveness of the algorithm. Ex-
cellent learning-times and identification-performance both
with noiseless and noise signals were achieved. Some com-
parisons with the state-of-the art showed a better identifica-
tion accuracy than current best practices based on adaptive-
filtering. Moreover a reduction of some orders of magni-
tude in training times compared with the well-known Lee-
Schetzen method was achieved, thus making the proposed
methodology one of the current best practices in this field.
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