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Abstract-In this paper a method to detect and classify typical 
electric power disturbances is presented. Voltage sags, swells,
momentary outage and capacitor switching transient events 
(CSTs) are the electric disturbances considered in this work. 
Disturbance detection and some disturbance features are 
obtained by the discrete wavelet transform. These features are 
used in the design of a fuzzy rule classification system. Both 
methods, wavelet detection and the fuzzy classifier, are 
extensively tested on the detection and classification of several 
simulated electric disturbances. In particular, capacitor 
switching transients events (CSTs) are presented to validate the 
proposed methodologies. The performance of the Wavelet-Fuzzy 
logic system turned out to be 95% of correct identification. The 
performance of the fuzzy classifier outperforms a classifier based 
on crisp decisions also presented in this paper.  This performance 
is acceptable compared with other methodologies reported in the 
literature with performances varying from 92% to 95%. 

I. INTRODUCTION

Detection and identification of electric disturbances in 
power lines is a paramount issue in industrial environment. 
Opportune detection and correct identification of electric 
disturbances can lead to activate adequate procedures to avoid 
the negative effects of them, for example damage of expensive 
equipment and machinery [1]. In the last decade several power 
quality studies have been conducted due to the increased 
importance of improving the quality of electric power supply. 
Those studies had predicted that in 1985 20% of the total 
electric load connected in the US was electronic. However, 
this electronic load was estimated to reach approximately 50-
60% by the year 2000 [2]. By the end of this decade more 
sensitive electronic equipment is expected to proliferate even 
more thus jumping to 70-80% of the total US electric load.  In 
a similar fashion, sensitive power electronic equipment will 
increase the electric load worldwide. As this electronic 
equipment helps to save energy and control industrial 
processes they are also especially vulnerable to electric power 
disturbances. Additional surveys have been shown that 80% of 
the electric power disturbances were originated by the 
industrial customer electronic loads [3].  
    Numerous existing approaches have proposed to analyze, 
detect and classify the typical power disturbances encountered 
within industrial facilities. However, those methods are 
strenuous since they are mainly based on inspecting visually 

the signature of the disturbance waveforms [4]. New studies 
applying neural networks, fuzzy logic and wavelet transform 
approaches have been performed before [1],[4], [5]-[9]. 
However the problem stays as an open problem searching for 
better and improved solutions.  
    In response to these concerns, this paper explores a new 
method for detecting and classifying some of the main 
concerning electric power disturbances affecting both, 
industrial customers and utility companies. The typical 
disturbances are termed as voltage sag, voltage swell, 
momentary outage and capacitor switching transient. 
     The approach followed in this research incorporates signal 
multiresolution analysis [4],[10],[11], and linguistic 
description computation [12]-[16]. Therefore, the paper 
presents original work not reported in other papers. 
Multiresolution analysis based on Daubechis wavelet is used 
to detect the occurrence of an electric disturbance to generate 
features used by the fuzzy classification system. The fuzzy 
rules evaluate the multiresolution features as well as electric 
characteristics to identify the disturbances.  
    The paper is organized as follows. Section 2 provides a 
description of electric disturbance generation. Characterization 
of the electric disturbances is presented in Section 3, and 
electric disturbance detection, using wavelet analysis, is 
described in Section 4. The classifier design is reported in 
Section 5. The paper concludes in Section 6. 

II. ELECTRIC DISTURBANCE GENERATION USING THE PSIM 
SIMULATOR

In this work five different electric disturbances were 
simulated and applied on an adjustable speed drive, ASD, 
system [3]. The five events are, voltage sags, swells, 
momentary outage and capacitor switching transient events 
(CSTs) both oscillatory (capacitor bank energization) and 
impulsive (capacitor bank de-energization) types.  
    The ASD system is simulated, with the PSIM simulator, 
under the typical electric disturbances and load conditions. 
The simulated ASD system consists of a line-to-line voltage, 
VLL=220V, an output power, Po=1 KW, a source line 
inductance, Ls=500 H and a three-phase capacitor bank with 
capacitance values varying between 50 H and 300 H.  
Simulation results were saved for subsequent analysis.  
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III. CHARACTERIZATION OF ELECTRIC DISTURBANCES 

     In order to design a system able to detect and classify the 
electric disturbances, each event needs to be characterized. 
Event characterization corresponds to feature extraction that 
will be used in the detection and classification stages. In this 
section the process to determine the most discriminative 
features for each electric disturbance are described. 

A. CSTs Characterization 
    In this work, two types of CSTs are considered. The first 
type is shown in Fig. 1. From this figure we can observe that 
there exists an abrupt change at the starting point of the 
disturbance. After this abrupt change, the signal is altered by 
the presence of a resonant frequency. This resonant frequency 
and its associated energy determines the disturbance duration. 
After 60 milliseconds, approximately, the resonant frequency 
disappears. This type of CSTs behavior is defined as an 
oscillatory capacitor switching transient event [4]. The second 
type of CST is denominated as a premature opening CST or 
impulsive CST. This CST is characterized by the presence of 
two abrupt changes. One change occurs during the beginning 
of the event, while the second occurs at the end, as shown in 
Fig. 2. Under this type of disturbance the capacitor bank does 
not finish to discharge the energy during the previous 
oscillatory period, thus causing two abrupt changes during the 
complete event. One change is due to the closing of the 
capacitor bank switch (energization), and the other during the 
bank switch opening (de-energization). 

B. Voltage Sag, Swell, And Momentary Outage Characterization 
  The voltage sags, swells, and momentary outage disturbances are 

grouped into one cluster of events. The main characteristic of these 
disturbances is a change on the magnitude of the signal, at the starting 
and ending points. This amplitude change allows us to determine the 
starting and ending point of the event. Some examples of these 
disturbances are illustrated in Figs. 3 to 5.  Fig. 3 shows a voltage sag 
with a duration of less than one cycle, and amplitude reduction of 
25% (i.e. 75% sag). Fig. 4 illustrates a case of a 40 millisecond 
momentary outage with a remain voltage of 6 V. Finally, Fig. 5 
illustrates a simulated voltage swell case disturbance. The typical 
swell disturbance is shown with a half-cycle time duration with an 
augmented magnitude of 1.25 p.u. of nominal voltage, which 
corresponds approximately to a line-to-neutral peak voltage of 179 
volts. 

IV. ELECTRIC DISTURBANCES DETECTION USING WAVELET 
ANALYSIS

    Contrary to the Fourier transform, the Wavelet transform 
generates time–scale information in a natural way. Another 
advantage of the wavelet transform is that it generates 
localized information due to discontinuities or abrupt changes 
presented in the signal under analysis. These two features 
aforementioned are characteristics of the electric disturbances 
under study.  
      In this work the discrete Wavelet transform defined in (1), 
[11], is used to decompose the electric disturbance signal into 
several levels of decomposition. 
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where  ,j k x is the scaling function and ,j k x is the 
wavelet function. 

Figure 1. Simulation result of an oscillatory CST. 

Figure 2  Simulation result of a premature opening (impulsive) CST. 

Figure 3. Simulation result of a voltage sag event. 
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Figure 4. Simulation result of a momentary outage event. 

Figure 5. Simulation result of a voltage swell. 

    After analysis of a set of electric disturbance signals it was 
found that details 1 and 4, generated by the order one 
Daubechies wavelet, extract enough information of the electric 
signal to achieve the detection stage of the electric 
disturbances. The block diagram of the detection system is 
illustrated in Fig. 6. In this figure, db1 and db4 stand for 
details 1 and 4 of the Daubechies wavelet transform. Fig. 6 
also shows that db1 is enough to detect and identify the 
oscillatory CST disturbance. The db4 decomposition is used to 
generate the multiclass group that encompasses the premature 
opening of a CST, sag, swell, and momentary outage 
disturbances.  Identification of the oscillatory CST is possible 
with db1 because these wavelet coefficients present a specific 
behavior within the oscillatory CST that not other events 
present. The characteristic of the coefficients of the oscillatory 
CST is that there exists a large value and then an exponential 
decay. The coefficients decrease until they reach a value that 
corresponds approximately to the value observed before the 
starting point of the disturbance. An average of this reached 
value is used to find the ending point of the disturbance. 

V. CLASSIFIERS DESIGN

A. Electric Disturbance Features 
    In this section we present the disturbance features 
considered to design the classifier. These features must have 

Figure 6. Disturbance detection system based on wavelet analysis. 

the maximum discriminative power to assure the best 
identification rate possible, and their computational cost must 
be low in order to guarantee that they can be used in a real 
time application. These features are listed below. 
    The feature of the voltage sag is that it presents an 
amplitude attenuation in the range of 10% to 90% of the 
nominal value. The voltage swell has an amplitude increment 
in the range of 10% to 40% of the nominal value. The 
momentary outage is defined as the voltage drop in the range 
of 90% to 100% of the nominal value. Another important 
characteristic of a CST event is that it presents a resonant 
frequency. This resonant frequency is a function of the 
capacitor bank and the system inductance, which is part of the 
utility distribution system. 
    Considering the previous disturbance features, we can 
group those features into two categories, that is, time features 
and frequency features. Features of the voltage sag, voltage 
swell and momentary outage correspond to time features, 
whereas the CST events contain frequency features. The time 
features can be defined through the RMS value of the signal 
obtained by  
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where ( )x n is the disturbance signal of length M.  
    Frequency features can be used to analyze the impulsive 
CST disturbance by the discrete Fourier transform 
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B.  Crisp Classifier System 
    The RMS values and the frequency features are used to 
design a crisp based classifier. The complete system, detection 
and classification scheme is shown in Fig. 7. From Fig. 7 we 
can observe that db1 has the discriminative power to identify 
the oscillatory CST. In the next stage the impulsive CST is 
discriminated from the sag, swell and momentary outage 
disturbances by means of the Fourier analysis. Finally, the 
RMS value is computed to discriminate among the sag, swell 
and momentary outage. The performance of the system is 
shown in Table I. In Table I two types of capacitor bank de-  

x(t) db1 db4 

CST
Oscillator 

Sag 
Swell

Momentary 
outage
CST

(impulsive)
No event 
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Figure 7. Detection and classification system based on crisp decisions. 

energization (impulsive CSTs) are considered, one is defined 
as a normal opening

TABLE I 
CRISP CLASSIFICATION  PERFORMANCE

 Sag Swell CST_NO CST_PO M.O. No 
event

Errors 

Sag 15 0 0 0 0 3 3 
Swell 0 21 0 0 0 0 0 
CST_NO 0 0 14 0 0 2 2 
CST_PO 1 0 0 18 0 1 2 
M.O. 0 0 0 0 3 0 0 
No event 2 0 0 0 0 8 2 

Performance  89.77%. 

(CST_NO) and the other as premature opening (CST_PO). 
According to the results shown in Table I, the crisp classifier 
performance is 89.77%. 

C. Fuzzy Classifier 
    The fuzzy classification system involves four linguistic 
variables that define four concepts, the wavelet coefficients 
db1, variable CDB1, and db4, variable CDB4, the resonant 
frequency value, Fr, and the RMS value, VRMS. The fuzzy 
classifier is based on Mamdani type rules to evaluate the 
information provided by the linguistic variable inputs. Fig. 8 
illustrates the scheme of the fuzzy classifier.  
   A complete description of the input variables and the output 
variable is provided next. 
    The universe of discourse for the variable CDB1 is [0,10], 
and its possible values are CDB1L, low and CDB1H high, 
defined by the trapezoidal fuzzy sets shown in Fig. 9. 
    The universe of discourse for the variable CDB4 is [0,100], 
and its possible values are CDB4L, low, and CDB4H, high, 
defined by the fuzzy sets shown in Fig. 10, in this case 
represented by a trapezoidal and S functions. 

    The Fr variable is defined within the range [0,500] with 
possible values LOW_Fr, and HIGH_Fr, defined by S 
functions as shown in Fig. 11.  
     The universe of discourse of the input VRMS, Fig. 12, is [0, 
250], and it could take the values, VLRMS, very low, 
LOWRMS, low, MIDRMS, medium, HIGHRMS, high, and   
VHRMS, very high. 
     With respect to the output of the system, the possible 
values are SAG, SWEL, MO, CST_NO, and CST_ PO, 
defined by the fuzzy set shown in Fig. 13. 
   The membership function shapes shown in Figs. 9 to 13 
were selected to better represent the meaning of the variable 
information and their expected  values. For example in Fig. 9 
the variable CDB1 is classified low and high in the intervals 
shown according to the behavior found in the wavelet 
coefficients. The interval of definition of the variable Fr is 
determined by the expected values of this variable, the same 
occurs for the RMS variable. The same criterion is considered 
to generate non overlapping membership functions. 

    The fuzzy rules are of the form 

If condition 1 and condition n THEN event is

Figure 8. Fuzzy classification scheme. 
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Figure 9. Definition of the variable CDB1. 
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Figure 10. Definition of the variable CDB4. 
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Figure 12. Definition of the variable VRMS. 
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Figure 13. Output of the fuzzy system. 

The system includes the following 8 fuzzy rules: 

1. If (CDB1 is CDB1L) and(CDB4 is CDB4L) then Event is 
No event 

2. If (CDB1 is CDB1L) and (F_r is LOWF_r) and (V_RMS 
is VLRMS) and (CDB4 is CDB4H) then Event is MO 

3. If (CDB1 is CDB1L) and (F_r is LOWF_r) and (V_RMS 
is LowRMS) and (CDB4 is CDB4H) then Event is Sag 

4. If (CDB1 is CDB1L) and (F_r is LOWF_r) and (V_RMS 
is MedRMS) and (CDB4 is CDB4H) then Event is No 
event

5. If (CDB1 is CDB1L) and (F_r is LOWF_r) and (V_RMS 
is HRMS) and (CDB4 is CDB4H) then Event is Swell 

6. If (CDB1 is CDB1L) and (F_r is LOWF_r) and (V_RMS 
is VHRMS) and (CDB4 is CDB4H) then Event is Swell 

7. If (CDB1 is CDB1L) and (F_r is HIGHF_r) and (CDB4 is 
CDB4H) then Event is CST_PO 

8. If (CDB1 is CDB1H)) then Event is CST_NO 
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     The implication operator incorporated in the fuzzy rules is 
the Mamdani implication operator defined by 

)()()](),([ yxyx BABA (4)

    The detection and classification system was tested with 108 
electric disturbances generated with the simulator PSIM. The 
performance achieved by the system was 95% of correct 
classification. Table II presents the details of the evaluation by 
means of a confusion matrix. From this table it can be noticed 
that most of the misclassification errors are related to the Sag 
event. This is a consequence of incorrect evaluation of the db1
and db4 wavelet coefficients according to the fuzzy rule 1. 

TABLE II 
PERFORMANCE CONFUSION MATRIX OF THE FUZZY CLASSIFIER

 Sag Swell CST_NO CST_PO M.O. No 
event

Errors 

Sag 20 0 0 0 0 3 3 
Swell 0 21 0 0 0 0 0 
CST_NO 1 0 16 0 0 0 1 
CST_PO 0 0 0 19 0 1 1 
M.O. 0 0 0 0 15 0 0 
No event 0 0 0 0 0 11 0 

Performance 95% 

VI. RESULTS AND  CONCLUSIONS

    Results in this work indicate that the db1 and db4
coefficients of the Daubechies wavelet turned out to be 
efficient to detect the starting and ending points of electric 
disturbances in most of the cases. Besides the db1 wavelet 
coefficient have the discriminative power to identify the 
oscillatory CST. These findings have proved the contribution 
of multiresolution analysis in the detection and classification 
of electric disturbances.  
    One of the main causes of misclassification is related to 
false alarms in the detection of the starting and ending points 
of the disturbance. This point needs to be considered in future 
work in order to increase the classification performance. 
    The work has also illustrated not only the capability of 
fuzzy logic to model physical system but also to outperform 
models based on classical logic. Comparing the results of the 
crisp classifier with the fuzzy logic approach, 89.77% and 
95% respectively, it is clear the better performance of the 
fuzzy approach. The fuzzy system performance is also 
comparable with other systems reported in the literature [6],[7] 
with performances around 92% to 95%.   
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