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Abstract— Recent massive increase of the computational
power has allowed to rebirth of Monte Carlo integration and
its application of Bayesian filtering, or particle filters. Particle
filters evaluate a posterior probability distribution of the state
variable based on observations in Monte Carlo simulation using
so-called importance sampling. However, the filter performance
is deteriorated by degeneracy phenomena in the importance
weights. Recognizing the similarities and the difference of the
processes between the particle filters and Evolution Strategies,
an Evolutionary Computaion approaches, a novel filter called
the Evolution Strategies based particle filter (ESP) has been
proposed to circumvent this difficulty and to improve the
performance. Here, the ESP filter is applied to fault detection
of nonlinear stochastic state space models. Its applicability is
exemplified by numerical simulation studies.

I. INTRODUCTION

The problem of fault detection in dynamic systems has
attracted considerable attention in designing systems with
safety and reliability. In the past two decades, a large number
of methods have been proposed for solving the fault detection
problem, see the survey papers [5], [10], [11], [24] and the
books [6], [7], and references therein. These fault detection
approaches fall into two major categories, i.e., model-based
approaches which use the quantitative analytical model of the
system to be monitored, and the knowledge-based approaches
which do not need full analytical modeling and allow one to
use qualitative models based on the available information
and knowledge of the system to be monitored. In the case of
information-rich systems the dynamic behavior of the system
can be well described by a mathematical modelcan. Thus the
model-based approaches are by nature the most powerful
fault detection method. The decision of a fault is based
on available observed input-output data and a mathematical
model of the system for all model-based approaches, For
the stochastic state space models, most of the fault detection
schemes has relied on the system being linear and the system
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and observation noises being Gaussian, and decision making
for fault detection is carried out based on the innovation from
the Kalman filter [13], [1], [19].

Application of the idea used in the linear/Gaussian case
mentioned above to nonlinear systems with non-Gaussian
noises is generally difficult. Though extended Kalman filter
(EKF) [12], [1], which uses the linear approximations of
the nonlinear functions in system and observation equations
around the estimate and applies the Kalman filter to obtain
estimates for the state, can be used, it does not guarantee
good result in many cases, i.e., divergence of the estimate of
the state variable occurs due to the linearizations of nonlinear
functions in case of severe nonlinearities in the models.
Thus, the fault detection problem in general nonlinear/non-
Gaussian stochastic systems are still open.

Recently, “particle filtering,” a simulation-based method
for Bayesian sequential analysis, attracts much attentions
from the massive progress of computing ability [16], [8], [2]).
This approach represents a probability density function by a
weighted sum based on the discrete grid sequentially chosen
by the importance sampling and the estimates are obtained
based on corresponding importance weights. Though it can
handle any functional nonlinearity and system and observa-
tion noises of any probability distribution, there is a common
problem of the degeneracy phenomenon, where almost all
importance weights tend to zero after some iteration and
hence, a large computational effort is wasted to updating
the particles with negligible weights. In order to resolve this
difficulty, some modifications such as Resampling particle
filter [17] has been proposed. Recognizing the similarities
and differences of the operations in Resampling particle filter
(SIR) and Evolution Strategies [18], which is an Evolutionary
Computation approach [4], [9], [3], we also developed in [21]
a novel particle filter called Evolution Strategies based Par-
ticle Filter (ESP). In this paper, ESP is employed to develop
a new method for fault detection in general nonlinear/non-
Gaussian stochastic systems. Numerical simulation studies
have been conducted to exemplify the applicability of this
approach.
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II. FAULT DETECTION

A variety of fault detection methods has been developed
for dynamic systems depending on the available knowledge
about the system, fault type and noises [11], [10]. Consider
here the following set of nonlinear state space models in-
dexed by m = 0, 1.

xt+1 = f (m)(xt, ut) + vt (1)

yt = g(m)(xt) + wt m = 0, 1 (2)

where xt, ut, yt are the state variable, input and observa-
tion, respectively, f (m)(·) and g(m)(·) are known possibly
nonlinear functions, and vt and wt are independently iden-
tically distributed (i.i.d.) system noise and observation noise
sequences, respectively. We assume vt and wt are mutually
independent. The probability density functions (pdfs) of vt

and wt are both assumed to be known as pv(vt) and pw(wt),
respectively. The system works normally and its behavior is
governed by the given normal mode model described as in (1)
and (2) indexed by m = 0, and then the model may change
to the fault mode model indexed by m = 1 at unknown time
t = τ . Then the fault detection problem to be considered
here can be reduced to perform a hypothesis testing for the
hypotheses:

H0 (Normal mode) : System model indexed by m = 0

H1 (Fault mode) : System model indexed by m = 1
(3)

Wald’s sequential probability ratio test (SPRT) [23] is com-
mon procedure for testing the above hypotheses. In the SPRT,
we compute the logarithm of likelihood ratio function (LLR)

λt = log
p(y1:t|H1)
p(y1:t|H0)

(4)

and compare with two threshold values B∗ < 0 < A∗

derived from the specified error probabilities for false alarm
(α) and miss alarm (β), i.e.,

A∗ = log
1− β

α
, B∗ = log

β

1− α
(5)

If the LLR exceeds the boundary A∗ or falls below the
boundary B∗, one terminates the observation with acceptance
of the hypothesis H1 (fault mode) or the hypothesis H0

(normal mode), respectively. Otherwise, one continues the
observation and defer the decision.

It is shown that for random variable λt, the following
relation holds [7].

EH0(λt) < 0, EH1(λt) < 0 (6)

where EHm
denotes the expectation of random variables with

the pdf under the hypothesis Hm. Since

p(y1:t|Hm) = p(y1:t−1|Hm)p(yt|y1:t−1, Hm) m = 0, 1
(7)

the LLR can be computed recursively by

λt = λt−1 + log
p(yt|y1:t−1, H1)
p(yt|y1:t−1, H0)

= λt + `t,

`t = log
p(yt|y1:t−1, H1)
p(yt|y1:t−1, H0)

(8)

as the new observation comes in, and the test can be
performed recursively.

Fault detection system based on the above mentioned
Wald’s SPRT formulation minimizes, on the average, the
time to reach a decision for specified error probabilities if the
system is either in the normal mode or the fault mode from
the beginning of the test. However, the characteristics of the
fault process differs from it; the system is initially operated
in the normal mode and then transition occurs to the fault
mode at time instant τ > 0 during observations. When the
system is in the normal mode, the LLR defined by (4) will
show, on the average, a negative drift, and then the detection
system suffers an extra time delay in compensating for a
negative quantity accumulated in the period under the normal
mode before the transition to the fault mode. Moreover, only
the decision concerning to the fault mode is necessary in the
usual fault detection, though the SPRT formulation considers
the hypothesis corresponding to the normal mode. In the
following, the idea of the backward SPRT (BSPRT) [20] is
introduced to fit this situation.

A. Fault detection by Backward SPRT

Suppose the system fault occurs at time instant τ , the
hypotheses representing normal and fault modes are given
by

H0 (Normal mode) :

System model at time k indexed by m = 0

H1 (Fault mode) :

System model at time k indexed by m = 1,

k = τ, τ + 1, . . .

(9)

which can be restated as

H0 (Normal mode) :

System models at time t− k + 1 are indexed by m = 0

H1 (Fault mode) :

System models at time t− k + 1 are indexed by m = 1,

t > τ, k = 1, . . . , t− τ + 1
(10)
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Since, in this formulation, system model is indexed by m = 1
from the beginning (k = 1) corresponding to fault mode, it
agrees with the conventional SPRT formulation.

Define a backward LLR (BLLR), computed in reverse
(backward ) direction from the current observation to the past
observations, by

λB
t,k = log

p(yt, yt−1, . . . , yt−k+1|H1)
p(yt, yt−1, . . . , yt−k+1|H0)

(11)

When the BLLR is applied to test the hypotheses (10), the
test is called as the backward SPRT (BSPRT). We have
interest only in detecting the fault mode, the decision rule is
given as follows:

“If λB
t,k > K for some k = 1, . . . , t, where K is a suitable

constant, one terminates observation with acceptance of the
hypothesis that the system is in the fault mode. Otherwise,
one continue observations as the system is likely not in the
fault mode.”

Assuming p(y1:t) = p(y1:k)p(yk+1:t|y1:k) ≈ p(y1:k)
×p(yk+1:t) (y1:k and yk+1:t are independent), we can express
the BLLR approximately with the conventional LLR as

λB
t,k = λt − λt−k, k = 1, 2, . . . , n (12)

with λ0 = 0. So the decision rule for acceptance of the
hypothesis that the system is in the fault mode can be restated
as

λB
t,k = λt − λt−k > K for some k = 1, 2, . . . , t (13)

or,

λt − min
1≤k≤t

λk > K (14)

Introducing the statistics called the maximum BLLR,

Λt = max[0, Λt−1 + `t], t = 1, 2, . . .

Λ0 = 0
(15)

then the decision rule can be expressed as

“If Λt > K, where K is a suitable constant, one terminates
observation with acceptance of the hypothesis that the system
is in the fault mode. Otherwise, one continue observations as
the system is likely not in the fault mode.”

For the nonlinear stochastic state space model (1) and (2),
we can apply the following extended Kalman filter [1] to

estimate the state variables.

x̂t|t−1 = f(x̂t−1|t−1)

σ2
t|t−1 = ã2

t−1σ
2
t−1|t−1 + σ2

v

x̂t|t = x̂t|t−1 + kt(yt − g(x̂t|t−1))

σ2
t|t = (1− ktc̃t)σ2

t|t−1

kt =
c̃tσ

2
t|t−1

c̃2
t σ

2
t|t−1 + σ2

w

ãt =
df(x)
dx

∣∣∣
x=x̂t|t

, c̃t =
dg(x)
dx

∣∣∣
x=x̂t|t−1

(16)

where σ2
v and σ2

w are variances of noises vt and wt, respec-
tively. The predicted output based on the EKF state estimate
is given by

ŷt = g(x̂t|t−1) (17)

For linear Gaussian state space model, the innovations νt =
yt− ŷt is independent Gaussian random variables with mean
zero and variance

σ̂2
ν = c̃2

t σ
2
t|t−1 + σ2

w, (18)

and the test of the BLLR is carried out by using

Λt = max

[
0, Λt−1 + log

σ
(0)
ν

σ
(1)
ν

+
1
2

( (yt − g(1)(x̂(0)
t|t−1))

2

σ
(0)2
ν

−
(yt − g(1)(x̂(1)

t|t−1))
2

σ
(1)2
ν

)
t = 1, 2, . . .

Λ0 = 0

(19)

For nonlinear state space models where the EKF state
estimate is used, innovations νt are only approximations.
It is known that the EKF estimate is often divergent
due to linearization error for severe nonlinear system, and
then the fault detection may fails. Hence, more stable ap-
proximation is required. An approach is to evaluate pdfs
p(yt|y1:t−1, Hm), (m = 0, 1) approximately by using the
particle filters for general nonlinear non-Gaussian models.

III. PARTICLE FILTERS

Here, we briefly explain the particle filters, Sequential
importance sampling particle filter (SIS), Sampling impor-
tance resampling particle filter (SIR) and theirs evolution-
ary computationally modification, Evolution Strategies based
particle filter (ESP) that forms the basis for development of
the new fault detection methods for nonlinear non-Gaussian
state space models.

State estimation problem can be solved by calculating
the posterior pdf of the state variable xt of time instant t

based on all the available data of observation sequence y1:t.
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The posterior pdf p(xt|y1:t) of xt based on the observation
sequence y1:t satisfies the following recursions:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

(Chapman-Kolmogorov equation) (20)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
(Bayes’ rule) (21)

with a prior pdf p(x0|y0) ≡ p(x0) of the initial state variable
x0. Here normalizing constant

p(yt|y1:t−1) =
∫

p(yt|xt)p(xt|y1:t−1)dxt

depends on the likelihood p(yt|xt), which is determined by
the observation equation (2).
In particle filters, the true posterior pdf is approximated
by the following weighted empirical distribution of a set
of n � 1 samples {x(i)

t|t , (i = 1, . . . , n)} called as
particles or discrete grids with associated importance weights
{w(i)

t|t , (i = 1, . . . , n)}, w(i)
t|t > 0,

∑n
i=1 w

(i)
t|t = 1,

p(xt|y1:t) ≈
n∑

i=1

w
(i)
t|t δ(xt − x

(i)
t|t) (22)

where δ(·) is Dirac’s delta function (δ(x) = 1 for x = 0 and
δ(x) = 0 otherwise).
Here, the particles are generated and associated weights are
chosen using the principle of “importance sampling”[8]:
If the samples x

(i)
t|t in (22) were drawn from an importance

density q(xt|y1:t), then the associated normalized weights
are defined by

w
(i)
t|t ∝

p(x(i)
t|t |y1:t)

q(x(i)
t|t |y1:t)

. (23)

When the importance density q(xt|y1:t−1) is chosen to
factorize such that

q(xt|y1:t) = q(xt|xt−1, y1:t)q(xt−1|y1:t−1). (24)

Then we can obtain samples x
(i)
t|t by augmenting each of

the existing samples x
(i)
t−1|t−1 sampled from the importance

density q(xt−1|y1:t−1) with the new state sampled from
q(xt|xt−1, y1:t).
Noting that

p(xt|y1:t) =
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)

∝ p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1)
(25)

we have

w
(i)
t|t ∝

p(yt|x(i)
t|t)p(x(i)

t|t |x
(i)
t−1|t−1)p(x(i)

t−1|t−1|y1:t−1)

q(x(i)
t|t |x

(i)
t−1|t−1, y1:t)q(x

(i)
t−1|t−1|y1:t−1)

= w
(i)
t−1|t−1

p(yt|x(i)
t|t)p(x(i)

t|t |x
(i)
t−1|t−1)

q(x(i)
t|t |x

(i)
t−1|t−1, y1:t)

.

(26)

The particle filter with these steps is called “Sequential
importance sampling particle filter” (SIS).
It is known that the SIS filter suffers from the degeneracy
phenomenon, where all but one of the normalized importance
weights are very close to zero after a few iterations. By
this degeneracy, a large computational effort is wasted to
updating trajectories whose contribution to the final estimate
is almost zero. In order to prevent this phenomenon, resam-
pling process is usually introduced. Its idea is to eliminate
trajectories whose normalized importance weights are small
and to concentrate upon the trajectories with larger weights.
It involves generating new grid points x∗t|t

(i) (i = 1, . . . , n)
by resampling from the grid approximation (22) randomly
with probability

Pr(x∗t|t
(i) = x

(j)
t|t ) = w

(j)
t|t (27)

and the weights are reset to w∗
t|t

(i) = 1/n. If the effective
sample size Neff [14] defined by

N̂eff =
1∑n

i=1(w
(i)
t|t )

2
(28)

with the associated normalized weight w
(i)
t|t , is smaller than

a predetermined threshold Nthres ∈ [1, n], it is decided that
the severe degeneracy is occurred and resampling step should
be introduced. Particle filter with this resampling process
is called “Sampling importance resampling particle filter”
(SIR).

A. Evolution Strategies Based Particle Filters

A novel particle filter called Evolution strategies based
particle filter (ESP) is proposed in [21] by recognizing
that the importance sampling and resampling processes in
SIR filter are corresponding to mutation and selection pro-
cesses in Evolution Strategies (ES) [18], an Evolutionary
Computation approach [4], [9], [3]. Resampling process in
SIR filter selects offspring with probability (26), and this
corresponds to selection process in ES with fitness function
w

(i)
t|t . On the other hand, the importance sampling process in

SIR filter samples x
(i)
t|t according to the importance density

q(xt|x(i)
t−1|t−1, y1:t), and this corresponds to mutation process

in ES from the viewpoint of generating offspring x
(i)
t|t from

the extrapolated parents f(x(i)
t−1|t−1) with perturbation by

vt. The main difference is resampling in SIR is carried out
probabilistically and the weights are reset as 1/n, while the
selection in ES is deterministic and the fitness function is
never reset. Hence, by replacing the resampling process in
SIR by the deterministic selection process in ES, we can
derive a new particle filter as follows.
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Based on the particles x
(i)
t−1|t−1 (i = 1, . . . , n) sampled

from the importance density q(xt−1|y1:t−1), we generate r

samples x
(i,j)
t|t , (j = 1, . . . , r) from the importance density

function q(xt|x(i)
t−1|t−1, y1:t). Corresponding weights w

(i,j)
t|t

are evaluated by

w
(i,j)
t|t = w

(i)
t−1|t−1

p(yt|x(i,j)
t|t )p(x(i,j)

t|t |x(i)
t−1|t−1)

q(x(i,j)
t|t |x(i)

t−1|t−1, y1:t)

i = 1, . . . , n, j = 1, . . . , r

From the set of nr particles and weights {x(i,j)
t|t , w

(i,j)
t|t , (i =

1, . . . , n, j = 1, . . . , r)}, we choose n sets with the larger
weights, and set as x

(i)
t|t , w

(i)
t|t (i = 1, . . . , n). This process

corresponds to (n, nr)-selection in ES. Hence, we call this
particle filter using (n, nr)-selection in ES as Evolution
strategies based particle filter comma (ESP(,)). When we
add the particles x

(i,0)
t|t = f(x(i)

t−1|t−1), (i = 1, . . . , n) in

addition to nr samples x
(i,j)
t|t , (i = 1, . . . , n, j = 1, . . . , r)

from the importance density function q(xt|x(i)
t−1|t−1, y1:t) as

above and evaluate the weights w
(i,j)
t|t , (i = 1, . . . , n, j =

0, . . . , r) by (29), and then choose n sets of (x(i)
t|t , w

(i,j)
t|t )

with larger weights from the ordered set of n(r+1) particles
{x(i,j)

t|t , w
(i,j)
t|t , (i = 1, . . . , n, j = 0, . . . , r)}, we can obtain

another ESP filter. Since this ESP filter uses the selection
corresponding to (n + nr)-selection in ES, we can call
this filter as Evolution strategies based particle filter plus
(ESP(+)). The algorithms are summarized in Fig.1.

As shown in the 2-dimensional plots of squared errors
at t = 1000 and processing time [s] until t = 1000
(Fig.2), the ESP filters behave more stable than SIR both
in squared estimation errors and processing time by their
deterministic selection process [22], we will develop fault
detection methods using the ESP.

IV. FAULT DETECTION BY EVOLUTION STRATEGIES

BASED PARTICLE FILTERS

In the fault detection by using the BLLR (14), the statistics
(15) is used and it is necessary to compute

`t = log
p(yt|y1:t−1, H1)
p(yt|y1:t−1, H0)

t = 1, 2, . . . (29)

where p(yt|y1:t−1, Hm) is the one step output prediction
density of yt under the hypothesis Hm, (m = 0, 1).

Using the grid approximation (22)

p(xt|y1:t, Hm) ≈
n∑

i=1

w
(i,m)
t|t δ(xt − x

(i,m)
t|t ), (m = 0, 1)

(30)

Procedure ESP� �
For t = 0

i = 1, . . . , n, sample x
(i)

0|0 ∼ q(x0|y0);

i = 1, . . . , n, evaluate the weight

w
(i)

0|0 = p(y0|x(i)

0|0)p(x
(i)

0|0)/q(x
(i)

0|0|y0).

For t ≥ 1

i = 1, . . . , n

set x
(i,0)

t|t = f(x
(i)

t−1|t−1)

j = 1, . . . , r

sample x̃
(i,j)

t|t ∼ q(xt|x(i)

t−1|t−1, y1:t);

i = 1, . . . , n and j = 0, 1, . . . , r,

evaluate the weight

w
(i,j)

t|t = w
(i)

t−1|t−1

p(yt|x̃(i,j)

t|t )p(x̃
(i,j)

t|t |x(i)

t−1|t−1)

q(x̃
(i)

t|t |x̃
(i)

t|t , y1:t))
.

Sort the set of pairs {x̃(i,j)

t|t , w
(i,j)

t|t
(i = 1, . . . , n, j = 0, 1, . . . , r)}

by the size of w
(i,j)

t|t in descending

order.

Take the first n x
(i)

t|t from the

ordered set {x̃(i)

t|t , w̃
(i)

t|t}.
i = 1, . . . , n, normalize the weight

w
(i)

t|t = w
(i)

t|t/
∑n

i=1 w
(i)

t|t.

Let p(xt|y1:t) ≈
∑n

i=1 w
(i)

t|tδ(xt − x
(i)

t|t)� �
Fig. 1. Algorithm for ESP filters. ESP(+): with the underlined part; ESP(,):
without the underlined part

where the second superscript m is corresponding to the
models, the pdf p(xt|y1:t−1, Hm) can be approximated as

p(xt|y1:t−1, Hm)

=
∫

p(xt|xt−1, Hm)p(xt−1|y1:t−1, Hm)dxt

=
∫

pv(xt − f (m)(xt−1))p(xt−1|y1:t−1, Hm)dxt

≈
n∑

i=1

w
(i,m)
t−1|t−1pv(xt − f (m)(x(i,m)

t−1|t−1)), (m = 0, 1)

(31)

On the other hand, we can approximate the pdf
p(yt|y1:t−1, Hm) in (29) by

p(yt|y1:t−1, Hm) ≈ 1
n

n∑
i=1

pw(yt − g(m)(x(i,m)
t|t−1)) (32)

where x
(i,m)
t|t−1, (i = 1, . . . , n) are samples from the pdf
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Fig. 2. Squared estimation errors and processing time (triangle: SIS, box:
SIR, star: ESP(,), diamond: ESP(+))

p(xt−1|y1:t−1, Hm) given by (31) since

p(yt|y1:t−1, Hm)

=
∫

p(yt|xt, Hm)p(xt|y1:t−1, Hm)dxt

=
∫

pw(yt − g(m)(xt))p(xt|y1:t−1, Hm)dxt

(33)

Thus, we can conduct the fault detection by evaluating the
BLLR Λt with the pdf estimates obtained by two ESP filters
under the system model Hm, (m = 0, 1) and compare Λt

with suitable threshold K. The fault detection procedure is
summarized in Fig. 3.

V. NUMERICAL EXAMPLES

To exemplify the applicability of the proposed ESP filters,
we carried out a numerical simulation. We consider the fol-
lowing nonlinear state space model with known parameters.

xt =
xt−1

2
+

a(m)xt−1

1 + x2
t−1

+ 8 cos (1.2t) + vt

= f (m)(xt−1) + vt m = 0, 1

yt =
x2

t

20
+ wt = g(m)(xt) + wt

(34)

with a(0) = 25 for normal mode and a(1) = 12.5 for fault
mode, and vt and wt are i.i.d. zero-mean Gaussian random
variates with variance 10 and 1, respectively. We assume
that the fault occurs at t = τ = 101. A sample behavior
of the true state and corresponding observation processes
is shown in Fig.4. The Gaussian distribution with mean
f(x(i)

t−1|t−1) and variance 10 is chosen as the importance

density q(xt|x(i)
t−1|t−1, y1:t).

Sample behaviors of state estimates by ESP(,) with n =
10, r = 2 based on the model Hm, (m = 0, 1), and BLLR
Λt and λt are given in Fig. 5 with corresponding results
by EKF as well for comparison. Since the test statistics
BLLR Λt takes positive value and is growing up rapidly
after the change point τ both in ESP and EKF, we can

Procedure Fault detection by ESP� �
For t = 0

set Λ0 = 0;

m = 0, 1

approximate the pdf p(x0|y0, Hm)

as ESP by

p(x0|y0, Hm) ≈
∑n

i=1 w
(i,m)

0|0 δ(xt − x
(i,m)

0|0 ).

For t ≥ 1

m = 0, 1

approximate the pdf p(xt|y1:t−1, Hm) by

p(xt|y1:t−1, Hm)

≈
∑n

i=1 w
(i,m)

t−1|t−1pv(xt − f (m)(x
(i,m)

t−1|t−1)).

i = 1, . . . , n

sample x
(i,m)

t|t−1 ∼ p(xt|y1:t−1, Hm).

evaluate

p(yt|y1:t−1, Hm) =
∑n

i=1 pw(yt − g(m)(x
(i,m)

t|t−1))/n.

evaluate

Λt = max




0, Λt−1 + log

n∑

i=1

pw(yt − g(1)(x
(i,1)

t|t−1))

n∑

i=1

pw(yt − g(0)(x
(i,0)

t|t−1))




.

if Λt > k then stop observations with

acceptance of the hypothesis that

the system is in the fault mode.

m = 0, 1

approximate the pdf p(xt|y1:t, Hm) as

ESP by

p(xt|y1:t, Hm) ≈
∑n

i=1 w
(i,m)

t|t δ(xt − x
(i,m)

t|t ).� �
Fig. 3. Fault detection procedure by ESP filter

detect the model change when the BLLR exceeds the suitable
threshold K. It is found that the conventioanl LLR λt

accumulates negative values before τ , and it takes long
time to recover this and make delay in detection. This fact
indicates the superiority of BLLR Λt to the conventional
LLR λt. On the other hand, it should be noted that, as shown
in Fig. 5, the state estimate by EKF shows poor behavior
and hence the behavior of test statistics sometimes provides
poor detection result. Eventually, the rate of false alarm1 and
miss alarm2 are higher by the detection procedure using EKF
than by the procedure using ESP as shown in Table I that
summarizes 10 simulation results of fault detection with the

1The decision that the system model has changed is made even when the
system model does not change. In this example, the test statistics exceeds
the threshold between t = 0 and t = 100 < τ .

2The decision that the system model does not change is made even when
model changes. In this example, the test statistics never exceeds the threshold
beween t = 101 = τ and t = 200.
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(a) State (b) Observation

Fig. 4. Sample behavior of state and observation processes

TABLE I

FAULT DETECTION RESULT

False alarm rate Miss alarm rate
K = 10 K = 25 K = 10 K = 25

Fault detection by ESP 5/20 1/20 0/20 0/20
Fault detection by EKF 12/20 5/20 0/20 1/20

threshold3 K =?10 and K = 25. These results illustrate
the applicability of the proposed approach for fault detection
of nonlinear stochastic state space models. By introducing
the other choice of evolution processes such as crossover
and suitable choice of evolution parameters it is expected
the improvement of the performance, and their better choice
will be pursued.

VI. CONCLUSIONS

Fault detection in dynamic systems have attracted consid-
erable attention in designing systems with safety and reliabil-
ity. Though a large number of methods have been proposed
for solving the fault detection problem, it is hardly apply
to nonlinear stochastic state space models. A novel filter
called the Evolution Strategies based particle filter (ESP)
proposed by recognizing the similarities and the difference
of the processes between the particle filters and Evolution
Strategies is applied here to fault detection of nonlinear
stochastic state space models. Numerical simulation studies
have been conducted to exemplify the applicability of this
approach.
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