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ABSTRACT

The problem of frequency resolution in non-parametric
power spectrum density estimation (PSDE) for noisy signals
is considered. In this setting, finite length of data as well as
the additive noise, both contribute to a decreased frequency
resolution. The existing PSDE approaches offer different forms
of averaging and windowing of the available data only to im-
prove statistical properties of the estimates, however, at the
expense of reducing frequency resolution. In these approaches,
the additive noise and the finiteness of data which are the
causes of the original loss of the frequency resolution are not
treated separately. In this paper, we suggest a new approach
which takes advantages of these two different causes of the
problem. Therefore, the new nonparametric approach to spec-
trum estimation tackles the problem of resolution in two steps.
First, the method optimally reduces noise interference with
the signal via minimum noiseless description length (MNDL).
The new power spectrum estimation MNDL-Periodogram
(PMNDL) of the denoised signal is then computed via con-
ventional indirect periodogram to improve frequency resolu-
tion.

1. INTRODUCTION

Spectrum estimation plays an important role in signal detec-
tion and tracking. In many applications, much interest lies in
narrow-band signal detection which maybe recorded in very
noisy environment. Therefore signal detection and frequency
estimation become nontrivial problems that require robust,
high-resolution spectrum estimation techniques [1].

Conventional PSDE approaches are used for both mod-
eling PSD of stochastic signals and PSD estimation of noisy
signals. We separate these two problems. In this paper, we
consider the PSDE problem for noisy signals and discuss a
different approach to this problem. In application, we are al-
ways dealing with finite-length data that already constitute in
decreased frequency resolution of any signals. Further win-
dowing of the signal-data, as done by the existing modified
versions of the periodogram for improved spectrum estima-
tion, consequently result in further deteriorated frequency res-
olution of the signal. The additive noise embedded in noisy

signals is not considered distinctly in the existing PSDE meth-
ods which impacts frequency resolution of these noisy signals
as well.

This paper considers nonparametric (or classical) meth-
ods for spectrum estimation that are the most often-used and
explored techniques [3] in spectral analysis. It is known that
these classical methods emphasize on obtaining a consistent
estimate of the power spectrum through some averaging or
smoothing operations performed directly on the periodogram
or on the autocorrelation of the noisy data. Although vari-
ance of the modified periodogram estimates is decreased, the
effects of these operations are performed at the expense of re-
ducing the frequency resolution. Section 2 provides a closer
look at these effects on frequency resolution for the existing
nonparametric methods.

In this paper since frequency resolution of noisy signals
is the main focus, the problem of PSDE becomes two-fold.
First, it is necessary to denoise the signal from its interfering
background and then, to compute its power spectrum estima-
tion such that frequency resolution is not decreased due to
further windowing of data as is the case in existing methods.
The proposed method chooses a new spectrum from the noisy
spectrum via minimum noiseless description length (MNDL)
and fixed thresholding, similar to [4]. Section 3 provides the
calculation approach which follows the same fundamentals
used for signal denoising in [4] and for optimum order selec-
tion in [5]. The denoised spectrum is then used to find the
new PSDE of the signal via MNDL-Periodogram.

Section 4, illustrates frequency resolution reduction in clas-
sical averaging or modified periodograms for estimating power
spectrum density. In comparison, the novel approach for power
spectrum estimation is proposed to maintain frequency reso-
lution close to the original spectrum, which is also demon-
strated in the simulation results.

2. PROBLEM STATEMENT

Additive noise as well as the broadening of the spectrum be-
ing estimated due to windowing are particularly a problem
when we wish to resolve signals with closely spaced frequency
components.
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In this paper, we consider noisy signal of the following form

y[n] = ȳ[n] + w[n] (1)

for an available finite N length sample of Y, ȳ[1], ȳ[2], · · · ,
ȳ[N ], where w[n] is white Gaussian noise with variance σ2

w.
Note ȳ(n) is the available noiseless data.

We obtain noisy spectrum Y (ejω) via FFT such that

Y (ejω) =
1
N

N∑
n=0

y[n]e−jωn (2)

where Y (ejω) is the Fourier Transform of noisy signal y[n].

The new PSDE problem is to first find the best denoised
spectrum of Y (ejω) and use it to estimate PSD of the de-
noised signal such that frequency resolution is not affected by
any additional windowing.

2.1. Fundamentals of Existing PSDE Methods

Existing modifications to the periodogram that have been pro-
posed to improve only the statistical properties of the spec-
trum estimate. The effects of these modifications on frequency
resolution of spectrum are explained as follows: The Bartlett
method, also known as averaging periodogram, allows data to
be subdivided into smaller segments prior to computing the
periodogram. The effect of reducing the length of data into
shorter segments results in a window whose spectral width
has been increased by a certain factor. Consequently, the fre-
quency resolution is reduced by the same factor. Similarly,
the Welch method, known as modified periodogram, allows
data segments to not only overlap but also applies a window
for variance reduction. Resolution in this case is not only
window dependent but also suffers from the same effects as
Bartlett due to data segmentation. In the Blackman-Tukey
method the autocorrelation estimate is windowed first prior
to spectrum estimation computation. The effect of window-
ing the autocorrelation is to smooth the periodogram estimate
and thus decreasing the variance in the estimate as a result.
However, this is done at the expense of reducing the resolu-
tion since a smaller number of estimates are used to form the
estimate of the power spectrum [2].

We realize that the periodogram is only modified to im-
prove its statistical properties at the cost of deteriorating fre-
quency resolution, and therefore propose the new method in
the following section to overcome the problem of noise and
windowing data via optimally denoising the signal first to im-
prove the spectrums frequency resolution.

3. MNDL-PERIODOGRAM: A NEW PSDE
APPROACH

In this approach, a new PSD estimate is obtained in the fol-
lowing two steps:

3.1. Spectrum Denoising

Consider the noisy signal y[n] in (1). To evaluate the noisy
spectrum, the FFT error for each n-point is an important un-
available factor

e[ejωon] = Y (ejωon) − Ȳ (ejωon) (3)

where Ȳ (ejωon) is the noiseless spectrum and ωo = 2π
N+1 .

After obtaining the N-point FFT of the signal, we sort the
absolute value of this FFT and denote the sorted versions by
Y s[n] and its associated denoised coefficients by Ȳ s[n].
The tail of the sorted spectrum is more affected by the noise
than the FFT points with the highest absolute values. There-
fore, for the denoising step, the goal is to choose the optimum
number of these sorted noisy spectrum. For each value m,
0 ≤ m ≤ N the chosen noiseless FFT is

Ym[n] =
{

Y s[n] if 0 ≤ n ≤ m,
0 otherwise.

(4)

that represents the choice of the first m estimates and sets the
rest of the FFT values to zero.
and the new error criterion becomes

emY [n] = Ȳ s[n] − Ym[n]. (5)

Note that n in this error and n in (3) possibly represent two
different frequencies. Our goal is to obtain the optimum value
of m which results in the minimum spectrum mean-square es-
timation error (SMSE). This criterion’s estimate is provided
with a new adaptive method based on the observed noisy spec-
trum such that

SMSE[m] = E(||Ȳ s[n] − Ym[n]||2) (6)

=
m−1∑
n=0

E(||emY [n]||2) + Δ[m] (7)

where

Δ[m] =
N−1∑
n=m

‖Ȳ s[n]‖2. (8)

SMSE is similar to the MNDL criterion introduced in [4]where
the objective is to minimize the error or noise between noisy
and noiseless data or spectrum in this case.
Note that as m grows, the emY [n] dependent part of SMSE
grows, while Δ[m] decreases. This always leads to an op-
timum m for which the SMSE is minimized. This desired
criterion is not available, however, from the observed data, an
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estimate of the following available spectrum error (ASE) is
available

ASE[m] =
N−1∑
n=0

E(||Y s[n] − Ym[n]||2) (9)

Here, we present a novel approach which uses the available
spectrum error to provide an estimate of the desired criterion
SMSE[m].

Using (6) for an unbiased estimator (E(emY [n]) = 0), then
ASE[m] in (9) becomes

ASE[m] =
N−1∑
n=m

E(||emY [n]||2) + Δ[m] (10)

We now show that an estimate of emY [n]2 dependent parts
in (8) and (10) can be provided based of the observed data.
Therefore, an estimate of unavailable Δ[m] can be calculated
from (8) and substituted back in (6).

The estimate of emY [n]2 dependent parts of SMSE and ASE
in (8,10) are calculated as

ε1u[m] =
N−1∑
|n|=m

(N − |n|)σ2
w, ε2u[m] =

m∑
|n|=0

|n|σ2
w (11)

Furthermore, variance of the additive noise w[n] is also
calculated and sorted in descending order, keeping high noise
variance at the front and low variance towards the tail such
that

σ2
ws[n] =

1
N

S∑
i=1

(||wi[n] − w̄i[n]||2) (12)

where S is the number of additive noise samples and w̄i[n]
represents the mean of that ith noise sample.
Sorted estimates of the dependent parts in (11) now become

ε1s[m] =
1
N

N∑
|n|=m

σ2
ws, ε2s[m] =

m∑
|n|=0

|n|σ2
ws (13)

Finally, the estimate of Δ[m] and SMSE[m] are

Δ̂[m] = ̂ASE[m] − ε1x[m], (14)

̂SMSE[m] = Δ̂[m] + ε2x[m] (15)

where x = u for unsorted estimates and x = s for the sorted
estimates.

The optimum window length for obtaining acceptable noise-
less spectrum in our case is

m∗ = arg min
m

̂SMSE[m] (16)

Minimization of the estimated desired criterion above pro-
vides optimum denoising of noisy signal for our case.

3.2. PSDE of Denoised Spectrum

We obtain PSD estimate of the denoised spectrum via con-
ventional indirect periodogram. That is, we first obtain the
denoised time-domain signal yMNDL[n] via m-point ifft of
the denoised spectrum Y MNDL(ejωo) by choosing m∗ fre-
quency components. Computation of the new MNDL-Periodo-
gram (PMNDL(ejωo)) is as follows:

PMNDL
yy (ejωo) =

N−1∑
m=−(N−1)

rMNDL
yy [m]e−jωom (17)

where rMNDL
yy [m] is the autocorrelation of denoised time-

domain signal yMDNL[n].

4. SIMULATION RESULTS

We work with two sets of noisy sinusoidal signals of length
N = 1024 and are generated with (1) as follows:

y1[n] = 5sin[0.4πn] + w[n] (18)

y2[n] = 5sin[0.4πn] + 5sin[0.41πn] + w[n] (19)

where w[n] is the added white Gaussian noise with unit vari-
ance (σ2

w = 1).

We obtain noisy spectrum (Y1(ejωon) and Y2(ejωon)) and cor-
responding noiseless spectrum (Ȳ1(ejωon) and Ȳ2(ejωon)) for
both y1[n] and y2[n] noisy signals above. Note that here the
noiseless spectrums, which are obtained by simply taking the
spectrum of pure sine waves, is computed only as a compar-
ison criterion to check against the estimated noiseless spec-
trums in the simulations. Fig. 1 shows the power spectrum
for y1[n] noisy signal Y1(ejωon) and its corresponding noise-
less spectrum Ȳ1(ejωon).
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Fig. 1. Noisy Y1(ejωon) and Noiseless Ȳ1(ejωon) PSD for
y1[n]
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4.1. Optimum Spectrum Denoising

In Fig. 2 we see the estimated ̂SMSE criterion for y1[n] and
observe that the optimum minimum occurs at m∗ = 61 for
sorted noise variance and m∗ = 437 for unsorted noise, while
the desired SMSE in (7) picks m∗ at 18.
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Fig. 2. ̂SMSE with optimum m∗ = 61 for sorted noise (solid
line) and m∗ = 437 for unsorted noise (dashed line).

Similarly, for y2[n] the optimum minimum occurs at m∗ =
105 for sorted noise variance while the desired SMSE in 6
picks m∗ at 26.
However in Fig. 3 and 4 we note that the denoised power
spectrum Y MNDL

1 (ejωon) with m∗ = 18 and Y MNDL
1 (ejωon)

with m∗ = 61 are successful estimated denoised spectrums
with respect to the pure Ȳ1(ejωon) noiseless spectrum which
is not obtained in the existing spectral estimation methods.
As will be observed in following figures, the denoising of the
spectrum prior to spectral estimation greatly enhances the fre-
quency resolution.

The thresholding in the above figures is compared with the
well-known hard thresholding approach, Donoho and John-
stone thresholding σw

√
2 log N = 2373 and MDL threshold-

ing σw

√
log N = 1678. However, these thresholds are much

worse than the estimated threshold obtained by ̂SMSE as they
pick up most of the noise. Therefore, optimum m from (16)
provides the best denoised spectrum.

4.2. PSDE comparison: MNDL-Periodogram vs. existing
methods

After denoised frequency spectrum Y MNDL
1 (ejωon) is ob-

tained via minimum m∗ of ̂SMSE[m], we compute its power
spectrum PMNDL

1 (ejωon) by applying indirect periodogram
method. That is, we first convert Y MNDL

1 (ejωon) spectrum
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Fig. 3. Denoised spectrum Y MNDL
1 with optimum m = 18.
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Fig. 4. Denoised spectrum Y MNDL
1 with optimum m = 61.

into time-domain signal. We then compute its autocorrela-
tion and take the Fourier Transform according to (17). Fig.
5 illustrates the newly obtained PMNDL

1 (ejωon) against the
noiseless PSD Pȳ1(e

jωon).

We now demonstrate a comparison of the new MNDL-
Periodogram against existing modified periodogram already
mentioned in Section 2.

We observe that the Bartlett spectrum in Fig. 6 is very noisy
and relative to MNDL-Periodogram’s spectrum, farther away
from the desired P ȳ1

1 (ejωon) noiseless power spectrum.

The Welch spectrum in Fig. 7 is even further away from the
desired P ȳ1

1 (ejωon) noiseless power spectrum. However its
noise level is better than the Bartlett spectrum and therefore
may provide better frequency resolution.
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Fig. 5. PSDE of y1 via MNDL-Periodogram (PMNDL
1 )

against PSD of noiseless signal (Pȳ1(f))
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Fig. 6. PSDE of y1 via Bartlett (PB
1 ) and MNDL-

Periodogram (PMNDL
1 ) against PSD of noiseless signal

(P ȳ1
1 )

We clearly observe that power spectrum of PB
1 (ejωon),

PW
1 (ejωon), and PBT

1 (ejωon) are definitely broadened/ cor-
rupted in comparison to P ȳ1

1 (ejωon). This is due to the ex-
isting noise and the windowing of the data or autocorrelation
function of the noisy signal as already mentioned in Section
2. However, the spectrum of PMNDL

1 (ejωon) has no modified
effects and therefore has similar frequency resolution with re-
spect to P ȳ1

1 (ejωon).

We demonstrate the improvement of frequency resolution
over the existing methods further by computing the aforemen-
tioned PSDE of y2, which has two closely spaced spectra in
the signal.

Fig. 9 illustrates the PSDE of y2 performed on y1 in the previ-
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Fig. 7. PSDE of y1 via Welch (PW
1 ) and MNDL-Periodogram

(PMNDL
1 ) against PSD of noiseless signal (P ȳ1

1 )
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Fig. 8. PSDE of y1 via Blackman-Tukey (PBT
1 ) and MNDL-

Periodogram (PMNDL
1 ) against PSD of noiseless signal
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ous figure. The two closely spaced spectra are encircled and
zoomed-in versions of the two peaks are shown in figures be-
low.

We take a closer look at the two closely spaced spectra in the
following zoomed in figures displaying the Bartlett, Welch
and Blackman-Tukey methods, each against MNDL-Periodo-
gram and available noiseless PSD P ȳ2

2 .

In Fig. 10 the distance between the peak and the dip is very
well distinguished in the MNDL-Periodogram spectrum where-
as the same resolution is not obtained with the Bartlett ap-
proach.

Furthermore, the Welch method in Fig. 11 displays even
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against PSD of noiseless signal (P ȳ2
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Fig. 10. Bartlett spectrum with zoomed in two closely spaced
spectra
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Fig. 11. Welch spectrum with zoomed in two closely spaced
spectra

worse results where the frequency resolution is completely
lost due to same data segmentation as in Bartlett and in addi-
tion to a hamming windowing of the segments.
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Fig. 12. Blackman-Tukey spectrum with zoomed in two
closely spaced spectra

Although the Blackman-Tukey method in Fig. 12 obtains
closer resolution as MNDL-Periodogram, however its dip be-
tween the two closely spaced spectra is not as distinct as the
later.

We observe that the separation of the two spectra are best
distinguished in PMNDL

2 (ejωon) estimation with a longer dip
and closer to the expected noiseless power spectrum
P ȳ2

2 (ejωon) than the existing PSDE shown by PB
2 (ejωon),

PW
2 (ejωon) or PBT

2 (ejωon). Clearly this novel approach can
be used for better signal detection and spectrum estimation,
especially in noisy environments.

5. CONCLUSION

In this paper, we acknowledged the imposed problem of all
existing modifications on the periodogram that have been pro-
posed to improve only the statistical properties of the spec-
trum estimate at the cost of frequency resolution. We ad-
dressed the PSDE problem with presence of additive noise.
In this case, windowing the available data in the existing non-
parametric methods clearly demonstrates the decreased reso-
lution in PSD estimates of noisy signals. This decrease, which
is due to both the finiteness of the data and the presence of the
additive noise, is improved by the MNDL-Periodogram. The
approach first denoises the data and then estimates the PSD.
For the first step minimizing the estimated spectrum mean
square error (SMSE) provided the best denoised spectrum in
comparison to other thresholding criteria. Next a simple pe-
riodogram approach is used for PSD estimation. The novel
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approach maintains frequency resolution close to the original
noiseless spectrum as no additional windowing of signal is
applied and, as a result, outperforms the existing approaches.
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