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Abstract—Post dispatch analysis of signals obtained from 
digital disturbances registers provide important information to 
identify and classify disturbances in power systems, looking for 
a more efficient management of the supply. In order to 

enhance the task of identifying and classifying the disturbances 
- providing an automatic assessment - techniques of digital 
signal processing can be helpful. The Wavelet Transform has 
become a very efficient tool for the analysis of voltage or 

current signals, obtained immediately after disturbances 
occurrences in the network. This paper presents a 
methodology based on the Discrete Wavelet Transform to 
implement this process. It uses a comparison between 

distribution curves of signals energy, with and without 
disturbance. This is done for different resolution levels of its 
decomposition in order to obtain descriptors that permit its 
classification, using artificial neural networks. 

I. INTRODUCTION 

An efficient analysis of disturbances registered in power 
electric systems is fundamental to evaluate the electric 
power quality indexes. Aiming to obtain adequate measures 
to prevent or to correct power quality disturbances, these 
disturbances must be previously identified and classified. 
However, in general, a simple inspection of a signal is not 
enough to identify the kind of phenomenon present in the 
waveforms. Moreover, the big amount of data makes 
impracticable a visual inspection of all registered signals, 
demanding therefore an automatic assessment.     

This paper presents a procedure for obtaining an 

automatic classification of the most important disturbances - 

that imply in degradation of power quality - using Discrete 

Wavelet Transform and Artificial Neural Networks (ANN). 

The Discrete Wavelet Transform has become a very 

efficient tool for the analysis of voltage or current signals, 

registered immediately after disturbances occurrences in the 

network.  Useful information about the signal can be 

obtained from wavelet transform properties to define 

descriptors for the selected disturbances. The main 

advantages of this transform are: the multi-resolution 

decomposition, fast signal restoration, and use of algorithms 

with low computational complexity. The descriptors were 

used to classify the disturbances through Artificial Neural 

Network architecture. 

II. ANALYZED SIGNALS 

The data base used in this work is composed of voltage 
disturbances signals obtained from registering equipments 
(oscillographs) installed at different points of the 
Northeastern Brazilian Power Generation and Transmission 
Company – CHESF. The sampling rate of the equipments 
was 128 samples by cycle. Four disturbances types in the 
network were analyzed: transients, harmonics distortions, 
voltage swell and sag. 

III. FUNDAMENTALS  OF  DISCRETE WAVELET 

TRANSFORM  THEORY 

One of the main goals of the signal processing analysis 

is to extract important information about the process in 

which the signal is associated. Usually, this analysis is done 

using some kind of signal transformation, which is based in 

signal representation and reconstruction techniques. The 

wavelet analysis [1], like the Fourier analysis, is based in 

base functions. While the Fourier’s Transform uses 

sinusoidal functions, by wavelet analysis the base function 

can be chosen according to many families of waveforms. 

These functions are called analysis wavelets or mother-

wavelets. 
The Discrete Wavelet Transform (DWT) consists in 

modifying a discrete signal in the time domain to the wavelet 
domain. This can be carried out using the lifting scheme ([2], 
[3], [4]), in which a time sampled signal is transformed to the 
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wavelet domain by digital filtering techniques. The lifting 
scheme main characteristic is that the whole algorithm is 
derived in the time domain, in contrast to the traditional 
approach which is in the frequency domain. This scheme, 
illustrated in Figure 1, involves three main stages: SPLIT, 
PREDICT and UPDATE [4]. 

 

 

Figure 1. The Lifting scheme 

 

The SPLIT stage splits the input signal, f(n), in two 

subsets, one with the even  indexes elements, fe(n), and the 

other with odd indexes elements, fo(n). Then, 

 

fe(n) = f(2n) 

 

fo(n) = f(2n+1) 

 

By the PREDICT stage the wavelets coefficients d(n) 

are generated by the difference between fo(n) and fe(n), 

with the latest using the prediction operator P: This 

operation is represented by the equation: 

 

)).n(f(P)n(f)n(d eo −=
 

 

The UPDATE stage generates the wavelets coefficients 

a(n) that represent an approximation of the original signal 

f(n). This coefficient is results from the sum of fe(n) with 

the update operator U for d(n): 

 

)).(()()( ndUnfna e +=  

 

A more detailed explanation of the lifting procedure can 

be found in references [3] and [4]. 

 

IV. METHODOLOGY  

This section shows how to proceed toward to obtain a 
reliable classification of power quality disturbances by an 
automatic way. In summary, the whole process is divided 
into four main stages, as shows the scheme of Figure 2. 

      

Figure 2. Schematic diagram of the stages developed in the work. 

 

The first step consists in the acquisition of voltage 
signals samples to be analyzed. The following step 
corresponds to the conditioning of these samples. The 
recorded signals must be pre-processed in such a way that 
peculiar characteristics, which are present in all kinds of 
disturbances, can be easily identified, and converted to 
descriptors to be used in an Artificial Neural Network in 
order to allow a classification. 

The proposed pre-processing stage is based on the 

simple steps reported in ref. [5]. It was developed and 

programmed for utilization in Scilab platform. The 

procedures can be summarized in four stages: 

• Step 1: consists in decomposing the disturbance signal 

in different resolution levels, resulting in various wavelet 

coefficients; 

• Step 2: corresponds to the calculation of the energy 

concentrated in each decomposition level; 

 

In Physics and Engineering, Parseval's theorem [7] is 

often written as: 

 

∫∫
∞

∞−

∞

∞−
= dffXdttx

22 |)(||)(|  

 

where 
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 represents the continuous Fourier 

transform (in normalized, unitary form) of x(t) and f 

represents the frequency component of x. 

The interpretation of this form of the theorem is that the 

total energy contained in a waveform x(t) summed across all 

of time t is equal to the total energy of the waveform's 

Fourier Transform X(f) summed across all of its frequency 

components f. Although one can prove this result from 

purely mathematical considerations, it is actually a 

statement of the energy conservation principle. 

For discrete time signals, the theorem becomes: 
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where X is the discrete-time Fourier transform (DTFT) of x 

and φ represents the angular frequency (in radians per 

sample) of x. 

For the discrete Fourier transform (DFT), the relation 

becomes: 
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where X[k] is the DFT of x[n], both of length N. 

 

If the discrete transform of the signal is accomplished 

in wavelet domain, the first member of equation (3) must 

equal the sum of the energy contents of all signal 

components in this domain. 
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Where:   

f(n): recorded signal, sampled in time domain; 

N: corresponds to the amount of signal samples; 
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: energy of the analysed signal; 

∑
=

N

n

j na
1

2|)(|

: energy concentrated in the approximate 

version of level  “j”  of the analyzed signal; 
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: sum of the energies concentrated in 

detailed versions of levels from 1 until “J” of the analysed 

signal. 

 

• Step 3: repeats steps 1 and 2, just for the sinusoidal 

component of the reference signal, which is obtained 

from the first cycle of the actual registered signal.                                                                                                                                                                                                  

The remaining cycles are inferred using the least-square 

method, applied to the pre-fault registers. 

 

• Step 4: finally, a comparison between the energies 

concentrated in each level of both disturbance signal 

(step 2) and sinusoidal signal (stage 3) is carried out. 

This is done evaluating the percent difference between 

the energy distributions of the signals. The calculation is 

carried out according to the equation: 

 

100*
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The presented methodology involves descriptors to 

define the characteristics peculiar to the different studied 

disturbances [6].  

The following step consists in the disturbance 
classification. This done using an C architecture. As a result, 
the correct classification of the disturbance present in the 
input signal is obtained. 

V. PRE-PROCESSING STAGE 

Comparing both results obtained from former and from 
the actual pre-processing algorithms it can be concluded that 
a significant progress was reached. 

The recorded signals used for the analysis have 1792 
samples and 14 cycles. The sample rate of theses signals 
were 128 samples/cycle. For application of the former pre-
processing algorithm, the amount of samples was reduced to 
1024, discarding the three first and three latest cycles. In 
order to obtain the reference signal, the first cycle is adjusted 
to a sinusoidal wave form by extrapolation, using the least 
square method.    

 

Figure 3. Voltage signal with sag used to construct the Reference Signal. 

 

 

 

Figure 4. Disturbance Signal with 1024 samples, used in pre processing 

signal stage. 
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The main focus of this work is a new improvement 
introduced in the pre-processing algorithm. Once not all 
cycles of the recorded signal contain disturbances, a set of 
rules was elaborated to extract just the part of interest. This 
way, the remaining samples are discarded, as shown in 
Figure 5.    

 

Figure 5. Signal used in pre-processing, containing just the disturbance. 

 

Once just the samples containing the disturbance are 

used to extract descriptors, an increase in the classification 

is to be expected. Moreover, if distortions are present at the 

beginning or at the end of the record, the proposed 

algorithm avoids the possibility of disregarding an 

important part of the signal, as shows Figure 6. 
 

 

Figure 6. Recording signal (1792 samples) with the disturbance in the first 

cycles. 

 

A further algorithm was developed to obtain the 

reference signal, extracting information from the proper 

recorded samples. A significant cycle of the recorded signal, 

related to amplitude and distortion, is selected to become a 

reference, as shown in Figure 7. This reference cycle is 

replicated until the amount of necessary samples is reached. 

This can be observed in Figure 8.  
 

 

Figure 7. Reference cycle, according to the above mentioned rules  

 

 

Figure 8. Reference signal composed replicating the reference cycle  
 

 

VI. ARTIFICIAL NEURAL NETWORK  FOR DISTURBANCE 

CLASSIFICATION 

 

The procedure adopted for disturbances classification by 
means of a neural network structure [8] is based on 
descriptors obtained from the signals decomposition using 
wavelets. For the disturbances analyzed in this work, the 
descriptors were defined as:  
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Where: 
TABLE I: DESCRIPTORS 

 

desc1 

Biggest (absolute) percentage difference of energies 

between the different wavelet decomposition levels of the 

signals with and without disturbance; 

 

desc2 Level where occurred the biggest percentage difference;  

desc3 Second biggest percentage difference;  

desc4 
Level where occurred the second biggest percentage 

difference;  

 

desc5 Third biggest percentage difference;   

desc6 
Level where occurred the third biggest percentage 

difference; 

 

desc7 Fourth biggest percentage difference;  

desc8 Level where occurred the fourth biggest percentage 

difference;  

 

desc9 Fifth biggest percentage difference;  

desc10 
Level where occurred the fifth biggest percentage 

difference; 

 

 

 

 

Four disturbances classes were defined, according to:      
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Where: 
TABLE II: CLASSES 

 

Descriptors   

class1 Voltage sag 

class2 Voltage swell 

class3 Harmonics 

class4 Transitories 

 

The classification was done by means of a neural 

network Multi-Layers Perceptron (MLP). The training 

was carried out using the Resilient Backpropagation 

algorithm (Rprop). Different architectures types were 

analyzed (10:20:4, 10:40:4, 10:60:4, 10:80:4 e 10:100:4). A 

total of 800 standards were used for the training, whereas 

344 standards were used for the validation.     

VII. RESULTS AND COMPARISON  

This section presents the obtained results, using both 

pre-processing algorithms. A comparison is carried out in 

order to assign the efficiency of the new algorithm. 

Tables III and IV summarize the success rates obtained 

for the validation set, considering different architectures of 

the neural network, for the former and for the actual 

algorithm, respectively. The biggest success rate by the old 

pre-processing algorithm was 89,25% whereas by the new 

algorithm this rate was 99,70%. Therefore, a significant 

raise (about 10%) in the success rate was obtained. 

   

 

 
TABLE III 

SUCCESS RATES FOR DIFFERENT ARCHITECTURES OF THE NEURAL 

NETWORK (RPROP) FOR THE FORMER PRE-PROCESSING ALGORITHM    

 

Architecture 

 

 

10:20:4 

 

 

 

 

10:40:4 

 

 

 

 

10:60:4 

 

 

 

 

10:80:4 

 

 

 

 

10:100:4 

 

 

 

85.34% 

 

87.62% 87.95% 88.60% 89.25% 

 

 

 

TABLE IV 

SUCCESS RATES FOR DIFFERENT ARCHITECTURES OF THE NEURAL 

NETWORK (RPROP) FOR THE ACTUAL PRE-PROCESSING ALGORITHM    

 

Architecture 

 

 

10:20:4 

 

 

 

 

10:40:4 

 

 

 

 

10:60:4 

 

 

 

 

10:80:4 

 

 

 

 

10:100:4 

 

 

 

90.69% 

 

99.70% 84.59% 89.53% 82.,55% 

 

Table V shows the Confusion Matrix obtained for the 

best architecture presented in Table IV. This matrix is 

commonly used to evaluate the classification efficiency, 

comparing the identification provided by the neural 

classifier with the real one. The diagonal elements of the 

matrix show the number of disturbances correctly classified.  

 
TABLE V 

 CONFUSION MATRIX OBTAINED FOR PMC NETWORK USING THE RPROP 

ALGORITHM FOR THE BEST ARCHITECTURE OF TABLE IV 

 

Disturbances Sag Swell Transient Harmonics 

Sag 86 0 0 0 

Swell 0 85 1 0 

Transient 0 0 86 0 

Harmonics 0 0 0 86 
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As shown in Table V voltage sag, transients and 

harmonics obtained a success rate of 100%, whereas voltage 

swell was classified with success rate of 98.8%. In this case, 

85 standards, in a set of 86, were well classified.   

VIII. CONCLUSIONS 

 

The objective of this work was to present a procedure to 

classify disturbances responsible for a reduction in power 

quality. The developed methodology considered four event 

types, obtained by means of recording equipments. From the 

signals pre-processing algorithm was possible to define 

descriptors that permitted to characterize a standard for each 

type power quality disturbance, which was used as input for 

neural classifier.       

The improvements introduced in the pre-processing 

algorithm were of great importance to increase the success 

rates in the classification. It can be concluded from the 

results presented in previous section.  
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